1. Give context-free grammars generating the following sets.

(a) The set of all strings of balanced parentheses, i.e., each left parenthesis has a matching right parenthesis and pairs of matching parentheses are properly nested.

(b) The set of all strings over alphabet \{a,b\} with exactly twice as many a’s as b’s.

(c) The set of all strings over alphabet \{a,b,+,\cdot,\ast,(,),\in,\phi\} that are well-formed regular expression over alphabet \{a,b\}. Note that we must distinguish between ϵ as the empty string and as a symbol in the regular expression. We use \in in the latter case.

(d) The set of all strings over alphabet \{a,b\} not of the form ww for some string w.

2. Suppose G is a CFG with m variables and no right side of production longer than l. Show that if $A \Rightarrow^{*}_G \epsilon$, then there is a derivation of no more than $\frac{lm - 1}{l - 1}$ steps by which A derives ϵ. How close to this bound can you actually come?

3. Suppose G is a CFG and w, of length l, is in $L(G)$. How long is a derivation of w in G if

(a) G is in CNF

(b) G is in GNF

4. Show that every CFL without ϵ is generated by a CFG all of whose productions are of the form $A \rightarrow a$, $A \rightarrow aB$, and $A \rightarrow aBC$.

5. A language L is said to have the prefix property if no word in L is a proper prefix of another word in L. Show that if L is $N(M)$ for DPDA M, then L has the prefix property. Is the foregoing necessarily true if L is $N(M)$ for a nondeterministic PDA M?

6. Show that the following are not context free languages.

(a) $\{a^i b^j c^k | i < j < k\}$

(b) $\{a^i b^j | j = i^2\}$

(c) $\{a^i | i$ is a prime $\}$

(d) the set of strings of a’s, b’s and c’s with an equal number of each

(e) $\{a^n b^n c^m | n \leq m \leq 2n\}$

7. Which of the following are CFL’s?

(a) $\{a^i b^i | i \neq j$ and $i \neq 2j\}$

(b) $(a+b)^* - \{(a^n b^n)^n | n \geq 1\}$

(c) $\{ww^Rw | w$ is in $(a+b)^*\}$

(d) $\{b_{i+1} # b_i | b_i$ is i in binary, $i \geq 1\}$

(e) $\{wwx | x$ are in $(a+b)^*, w$ is in $(a + b)^+\}$

(f) $(a+b)^* - \{(a^n b^n) | n \geq 1\}$
8. Show that if L is a CFL over a one-symbol alphabet, then L is regular. [Hint: Let n be the pumping lemma constant for L and let $L \subseteq 0^*$. Show that for every word of length n or more, say 0^n, there are p and q no greater than n such that 0^{p+iq} is in L for all $i \geq 0$. Then show that L consists of perhaps some words of length less than n plus a finite number of linear sets, i.e., sets of the form $\{0^{p+iq}|i \geq 0\}$ for fixed p and q, $q \leq n$. You may want to bound the number of parse trees of a certain depth, call them the base trees so that every other larger parse tree can be obtained by pumping some portions of one of the base trees.]