1. (Practice problems for induction) Must state the induction assertion formally and what is the induction on.
 (i) For all \(n \geq 1 \), \(x^{2n-1} + y^{2n-1} \) is divisible by \(x + y \).
 (ii) For all \(n \geq 1 \),
 \[
 1 + \frac{1}{\sqrt{2}} + \frac{1}{\sqrt{3}} + \frac{1}{\sqrt{4}} \cdots \frac{1}{\sqrt{n}} > 2(\sqrt{n} + 1 - 1)
 \]
 (iii) Prove that every integer divisible by 9 satisfies the property that, the sum of the digits is also divisible by 9.
 (iv) The greatest-common-divisor (gcd) of two non-negative integers \(m, n \) is known to satisfy the identity
 \(\text{gcd}(m, n) = \text{gcd}(m, n + m) \). Prove it.

2. Consider the following two definitions of the strings of balanced parentheses:
 A. A string \(w \) is balanced iff
 (i) \(w \) has an equal number of "(" and ")"
 (ii) Any prefix of \(w \) has at least as many "(" as ")"
 B. (i) \(\epsilon \) is balanced.
 (ii) If \(w \) is balanced, so is \((w) \).
 (iii) If \(w \) and \(x \) are balanced then so is \(wx \)
 (iv) Nothing else is balanced.
 Show that the above definitions A and B are equivalent.

3. Show that the Principle of Mathematical Induction and the Principle of Complete induction are equivalent.
 Hint: Express them rigorously as sentences in first order logic.

4. Show two distinct bijective mappings between integers and rationals.

5. What is fallacy in applying a diagonalization argument to the set of rationals?

6. A relation \(\leq_{\#} \) is defined as follows
 If \(A, B \) are sets, then \(A \leq_{\#} B \) iff there exists a 1-1 mapping \(f : A \rightarrow B \) and an onto mapping
 \(g : B \rightarrow A \).
 If \(f : A \rightarrow B \) is a bijection then, \(A =_{\#} B \).
 What can you say about the pairs of sets
 (i) integers and rationals (ii) integers and Reals
 The Bernstein-Schroeder theorem says that If \(A \leq_{\#} B \) and \(B \leq_{\#} A \) then \(A =_{\#} B \).