
   

 

  1 

 

A Guide to Hacking the Linux Kernel 
Abhishek Safui 

 

Linux Kernel Hacking 
In this document, we discuss the steps to get yourself ready for exploring the Linux kernel. We will be 

compiling the Linux kernel on a development host (laptop/desktop) and running the kernel on a virtual 

machine (same architecture). We are using an x86_64 (64-bit x86 Intel/AMD) laptop running Ubuntu 22.04, 

for development and testing purposes. Additionally, we shall use libvirt, a virtualization library that 

manages the interface to the QEMU CPU emulator and KVM virtual machine. Specifically, it exposes APIs 

to launch virtual machines. The virt-manager is a graphical user interface for configuring libvirt virtual 

machines. The virsh command is the command line counterpart of virt-manager.  

Getting your system ready  
The first step towards Linux kernel hacking is to prepare your system for kernel compilation and testing. 

For compiling the Linux kernel, we need to install the following dependencies: 

sudo apt update 

sudo apt install git fakeroot build-essential ncurses-dev xz-utils 

libssl-dev bc flex libelf-dev bison 

To launch virtual machines using libvirt, we need to install the following software packages: 

sudo apt install cpu-checker qemu qemu-kvm libvirt-daemon libvirt-

clients bridge-utils virt-manager 

Add the user to libvirt group. 

sudo usermod -G libvirt -a $USER 

Check that the libvirtd daemon is running: 

sudo systemctl status libvirtd 

Check that KVM is working in your development system using the following command: 

sudo kvm-ok 

If everything is OK, the output should be: 

INFO: /dev/kvm exists 

KVM acceleration can be used 

If KVM does not work, you may need to check the BIOS configuration to enable virtualization 

technologies (Intel VT-X or AMD-V).  

The steps that we will typically follow are:  



   

 

  2 

 

• (Cross) Compile the kernel 

• Run the compiled kernel in a virtual machine 

• Attach GDB to the kernel running on the virtual machine. 

Compile the Linux Kernel 
Fetch the Linux kernel code: 

git clone \ 

git://git.kernel.org/pub/scm/linux/kernel/git/stable/linux.git 

cd linux 

git checkout v6.1.6 

• The same instructions should work for any 6.x kernel. 

After fetching the Linux kernel source code, we need to configure the features to be compiled using a 

.config file that can be generated using the make menuconfig command. A default configuration will get 

generated if we run make menuconfig and do not modify any configuration. We may not be interested in all 

the features provided by the Linux kernel’s default configuration. Disabling unnecessary drivers and other 

Linux kernel features will reduce the kernel compilation time and size.  

For the first build, we may go ahead with the default .config file generated by running make menuconfig. 

Later on we can replace the .config file with a minimal set of features that we need for our development 

and testing purposes.  

Now, to build the kernel, just execute the make command with a single argument: the number of cores 

available in your system. 

make -j <num_cores> 

If you encounter errors related to system certificates (required for verification of signed kernel modules for 

security purposes), disable them to avoid the additional complexity. It is important to keep matters simple 

at this stage. Run the following commands. 

scripts/config --disable SYSTEM_TRUSTED_KEYS 

scripts/config --disable SYSTEM_REVOCATION_KEYS 

Once the kernel is compiled, it will be available at arch/x86_64/boot/bzImage. 

  



   

 

  3 

 

 

Directly Booting the Linux Kernel on QEMU 
To boot the x86_64 Linux kernel on a virtual machine, we need a rootfs prepared for the x86_64 

architecture. We may use a pre-built rootfs available for download over the internet, or we may build a 

custom rootfs of our own. 

In this step, we shall build a minimal root filesystem and create a .config file for configuring our Linux 

kernel compilation features. The aim is to reduce the size of the Linux kernel binary and the time required 

to build the kernel. 

Building a custom rootfs for our custom kernel (Optional if using a prebuilt rootfs) 
To reduce the compilation and testing time, we can use a minimal configuration available from embedded 

Linux platform tools such as Buildroot (https://buildroot.org/) or The Yocto Project 

(https://www.yoctoproject.org/). Both these tools are extensively used in the software industry to package 

software for deployment on a VM or embedded hardware. These tools allow us to create custom Linux 

operating system images, which include a rootfs with desired packages, libraries and a package 

management system, and a custom kernel. Expertise in these tools is a much-desired skill particularly for 

embedded Linux kernel developers.  

In this document, we shall explain how to get started with the Yocto Project. The rootfs and the kernel 

.config file created in this step will be used to boot a VM with our custom kernel using virt-manager. Please 

make sure that you have 60 GB of disk space available. The build process will take a lot of time to build 

everything from scratch, but subsequent modifications can be processed very quickly.  

Getting Started with the YOCTO Project 

Download 

git clone -b mickledore git://git.yoctoproject.org/poky.git 

Configure 

cd poky 

source oe-init-build-env 

This will create a build/ directory. 

Edit build/conf/local.conf to modify the following variables according to your requirements: 

PACKAGE_CLASSES ?= "package_deb" 

SDKMACHINE ?= "x86_64" 

EXTRA_IMAGE_FEATURES ?= "debug-tweaks tools-sdk tools-debug tools-profile" 

IMAGE_FSTYPES = "live wic.qcow2" 

CONF_VERSION = "2" 

INHERIT += "rm_work" 

BB_NUMBER_THREADS = "10" 

PARALLEL_MAKE = "-j 10" 

https://buildroot.org/
https://www.yoctoproject.org/


   

 

  4 

 

IMAGE_INSTALL:append = "procps  vim" 

The above configuration is self-explanatory, except the EXTRA_IMAGE_FEATURES. Each feature is 

well documented in this link https://docs.yoctoproject.org/3.2.3/ref-manual/ref-features.html#image-

features 

 

Build 
Execute the following command to build an image 

bitbake -k core-image-sato 

core-image-sato will build an image with a minimal GUI for navigation. core-image-minimal will generate 

a minimal image with no GUI. 

The image will be stored at poky/build/tmp/deploy/images/qemux86-64/ 

The Linux kernel compiled by the Yocto project will store its .config at  

poky/build/tmp/work/qemux86_64-poky-linux/linux-

yocto/5.19.17+gitAUTOINC+239a6c0d3c_84f2f8e7a6-r0/linux-qemux86_64-standard-build/.config 

We will not need this kernel binary, but we will be using the generated .config file to compile our kernel. 

Preparing the SDK for Compiling User Space Applications  (optional) 
 

It is also good to have an SDK, which we can use to compile software meant for running inside the VM 

booted with our custom rootfs. We can use the following command: 

bitbake -c populate_sdk core-image-sato 

To understand in detail how a rootfs is built from scratch, one may consult this reference. It describes the 

process in great detail: https://www.linuxfromscratch.org/ 

  

https://docs.yoctoproject.org/3.2.3/ref-manual/ref-features.html#image-features
https://docs.yoctoproject.org/3.2.3/ref-manual/ref-features.html#image-features
https://www.linuxfromscratch.org/


   

 

  5 

 

Running the Kernel 
Now that we have a kernel (the Yocto kernel) and a rootfs, we can try booting up a VM. Later when we 

build our own kernel, we will replace the kernel keeping the rootfs the same.  

We first need to configure a VM in virt-manager as shown in the images below.  

 

 

 
 



   

 

  6 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



   

 

  7 

 

 

 

 

 

 
 

It should boot with a GUI (like the image shown below) for core-image-sato. 

 

 

Now that we have booted up an image, we note down the free space available in the image.  

Realizing that we do not have much space left in the booted hdd, we need to expand the hdd and then  

modify the partition table. We can increase the disk size as follows: 

qemu-img resize disk.qcow2 +10G 

To change the partition table, we need to boot up the VM with a gparted ISO image and expand the 

partition of the hdd and then reboot the system without the cdrom.  

 

 

 



   

 

  8 

 

Replace the Yocto Kernel with our Custom Kernel 
We have already compiled an x86_64 kernel, which we can boot using QEMU: qemu-system-x86_64.  

We may now replace the kernel and its initialization (initrd (initial RAM disk)) configuration in the virt-

manager configuration section “Boot Options” and boot with the generated bzImage  located at 

arch/x86_64/boot/bzImage. Before booting, we also need to install the kernel modules and header files in 

the rootfs. For this, we need to mount the image (explained in the next section). After mounting the disk 

image containing the rootfs, and installing the kernel headers and the kernel modules, we may proceed to 

start the virtual machine.  

In case, the kernel complains about an unknown filesystem, we need to create an initrd for the kernel or 

reinclude all the required drivers and rebuild the kernel. 

Mounting the rootfs to Install the Kernel Modules and Headers 

 
While the VM is shut down, we perform the following steps to mount the hdd image and perform 

modifications as needed. 

This is a quick guide to mounting qcow2 disk images on your host. This is useful to reset passwords, edit 

files or recover something without the virtual machine actually running. 

Step 1 - Enable NBD (network block device module) on the host 

modprobe nbd max_part=8 

Step 2 - Connect the QCOW2 image as the network block device 

qemu-nbd --connect=/dev/nbd0 /var/lib/vz/images/100/vm-100-disk-

1.qcow2 

Step 3 - Find the virtual machine partitions 

fdisk /dev/nbd0 -l 

Step 4 - Mount the partition from the VM 

mount /dev/nbd0p1 /mnt/somepoint/ 

Step 5 - After you are done, unmount and disconnect 

umount /mnt/somepoint/ 

qemu-nbd --disconnect /dev/nbd0 

rmmod nbd 

After mounting, we install headers as follows:  

sudo make headers_install INSTALL_HDR_PATH= <mount-point>/usr/include 

 

 

 



   

 

  9 

 

To install modules: 

export INSTALL_PATH=<mount-point>/lib/modules/<kernel-version>/ 

make modules_install 

 

 

  



   

 

  10 

 

Debugging the Linux Kernel with KDB and KGDB 
 
This section discusses the steps to connect to the kernel debugger for debugging the kernel code. There are 

two ways of connecting to the kernel debugger: kdb and kgdb. The Linux Kernel has a debug core that is 

common to both kdb and kgdb. 

KDB vs KGDB 
kdb is a debugging tool that is not source code aware, but it provides a shell to perform kernel debugging, 

like dumping the kernel log buffer using dmesg (messages written by the kernel).   

kgdb(gdb), on the other hand, is a source code-aware tool that lets us peek into the kernel data structures, 

like what we can do with `gdb` for user space applications (with some limitations). But there are 

limitations of using kgdb on a complex system like the kernel since the entire system is halted, and 

interrupts and other time-critical events are delayed if we try to single-step through each line of the kernel 

code. Typically, we use kdb for simple tasks like dumping all available debugging information and move 

on to kgdb if required.   

 Some of the tasks that can be achieved with the kdb shell are:  

• Dump register or memory contents 

• Change memory contents 

• Dump dmesg logs  

• List all processes  

• Backtrace any process  

• Dump the ftrace buffer(s) 
 

Using KDB 
To debug the Linux Kernel with the kdb shell, we need to compile the Linux Kernel with some flags 

enabled, which we explain in this section. After compilation, we boot the kernel in a qemu virtual machine 

and launch the kdb shell. 

Compiling the Linux Kernel with debug flags 
To debug the kernel using kdb, we need to compile the kernel with following flags:. The mandatory 

configuration options for kdb are highlighted. The CONFIG_KGDB flag enables the Linux kernel 

debugger and the CONFIG_KGDB_KDB flag enables the kdb frontend to the kernel debugger. Other 

flags enable alternate ways of invoking the kdb shell.  

• CONFIG_KGDB=y  

• CONFIG_KGDB_KDB=y   

• CONFIG_FRAME_POINTER=y # For accurate stack back traces 

• CONFIG_KGDB_SERIAL_CONSOLE=y   

• CONFIG_KDB_KEYBOARD=y  #Applicable for KDB only, with PS/2 style keyboard as input 

• CONFIG_MAGIC_SYSRQ=y   # To enter kdb using MAGIC SYSRQ 

• CONFIG_MAGIC_SYSRQ_DEFAULT_ENABLE=0x1 

• CONFIG_MAGIC_SYSRQ_SERIAL=y 

• CONFIG_MAGIC_SYSRQ_SERIAL_SEQUENCE="" 



   

 

  11 

 

 
To enable CONFIG_DEBUG_INFO, go to Kernel hacking > Compile-time checks and compiler options > 

Debug information and select Generate DWARF Version 4 debuginfo. 

To enable CONFIG_FRAME_POINTER go to Kernel hacking > x86 Debugging > Frame pointer unwinder and 

select Frame pointer unwinder. 

To enable CONFIG_KGDB go to Kernel hacking > Kernel debugging and select KGDB: kernel debugger 

To search the exact location for any config option in make menuconfig, press `/` and type in the 

configuration option that you are looking for. 

Booting the Linux Kernel and Invoking the kdb Shell 
Once the Linux Kernel is compiled with the required debug flags, boot the kernel in a qemu virtual machine 

as already explained in a previous section. As the root user, invoke the following command: 

echo ttyS0 > /sys/module/kgdboc/parameters/kgdboc 

The above command may be executed from any terminal (ssh login terminal for example). But the kdb 

command will only work from ttyS0, which is the serial console. So, the next step is to log in to the serial 

console. Use the following command to enter the console.  

virsh console <vm-name> 

Press Enter to get the prompt. Login using root credentials. You may wait for a fault to happen or may 

enter the kdb shell using the following command: 

echo g > /proc/sysrq-trigger 

 

Use the help command to list all the commands available in the kdb shell. 



   

 

  12 

 

 

In case you don’t get the kdb shell working, check the terminal using the tty command. It should be the 

same serial console as configured using the kgdboc parameter. 

  



   

 

  13 

 

Using KGDB (gdb) 
In this section, we shall describe the process of debugging the Linux Kernel using kgdb. First, we introduce 

kgdb and explore its relationship with our familiar debugging tool, gdb. Next, we describe how to compile 

the Linux Kernel to enable kgdb. Finally, we explain how to configure qemu to allow gdb running on a 

remote host to attach to the Linux Kernel running as a guest. 

KGDB and the Linux Kernel Debug Core 
 kgdb is a stub that allows gdb, running on a second machine, to connect to the kgdb core of the target 

machine. kgdb has two components running inside the kernel:   

• KGDB core: It performs functions like setting breakpoints and fetching the data in memory.   

• KGDB I/O: It connects the kgdb core to various drivers like the serial console, keyboard, etc., and 

takes care of the transmission of the debug information.  

In the kgdb approach of debugging the Linux Kernel, we use gdb running on a second machine since it 

serves as the frontend client to connect to the kgdb core. There are multiple ways of connecting gdb to the 

kgdb core. The kgdboc  kernel command line parameter is used to specify how we wish to connect to it. 

There are other related command line parameters:   

• kgdwait tells the kernel to wait (during boot) until the debugger is attached   

• sysrq_always_enabled enables the sysrq (Magic System Request Key) 

FreeBSD has a tool named kgdb that is based on gdb and is used to connect to the KDGB core. But this 

tool is limited to FreeBSD. 

Kernel Configuration to get kgdb to Work 
Disable KASLR at compile time using the CONFIG_RANDOMIZE_BASE config option. This can also 

be done at runtime using the nokaslr kernel command line option. Also, set the following compile-time 

flags. 

• CONFIG_KGDB=y 

• CONFIG_KGDB_SERIAL_CONSOLE=y 

• CONFIG_GDB_SCRIPTS=y 

• CONFIG_DEBUG_KERNEL=y  

• CONFIG_DEBUG_INFO=y    # gdb will require symbols for proper debugging 

• CONFIG_FRAME_POINTER=y # For accurate stack back traces 

 

Directly Booting the Kernel in QEMU/KVM and Debugging using kgdb 
In this step, we directly boot the kernel, as we did in a previous section that explained how to get started 

with booting a custom kernel with a custom rootfs. This time we will configure the QEMU VM with the “-

s” option. This option asks QEMU to listen on TCP port 1234 for connections from kgdb. To configure the 

libvirt virtual machine with this option, we edit the VM configuration using the following command.  

virsh edit <vm-name> 

This will open the libvirt XML file corresponding to the virtual machine. We add the following 

configuration under the domain tag. Note the xmlns option in the domain tag.  



   

 

  14 

 

<domain type='kvm' 

xmlns:qemu='http://libvirt.org/schemas/domain/qemu/1.0'> 

... 

... 

  <qemu:commandline> 

    <qemu:arg value='-s'/> 

  </qemu:commandline> 

</domain> 

Now that we have booted the VM with the kernel that is compiled with all the required configuration options 

for debugging, we are ready to attach gdb to the kgdb core from the host machine as follows. 

gdb vmlinux 

(gdb) target remote :1234 

(gdb) continue 

 

Conclusion 
In this section, we have described the process of attaching gdb to the kernel running in the guest 

QEMU/KVM virtual machine over the network from the host machine. We have also explained how to use 

the kdb shell to connect to the Linux Kernel debug core. 

References 
1. https://qemu-project.gitlab.io/qemu/system/gdb.html 

2. https://docs.kernel.org/dev-tools/gdb-kernel-debugging.html 

3. Using kgdb, kdb and the kernel debugger internals — The Linux Kernel documentation 

 

https://qemu-project.gitlab.io/qemu/system/gdb.html
https://docs.kernel.org/dev-tools/gdb-kernel-debugging.html
https://www.kernel.org/doc/html/v4.14/dev-tools/kgdb.html

	A Guide to Hacking the Linux Kernel
	Linux Kernel Hacking
	Getting your system ready
	Compile the Linux Kernel
	Directly Booting the Linux Kernel on QEMU
	Building a custom rootfs for our custom kernel (Optional if using a prebuilt rootfs)
	Getting Started with the YOCTO Project
	Download
	Configure

	Build
	Preparing the SDK for Compiling User Space Applications  (optional)

	Running the Kernel
	Replace the Yocto Kernel with our Custom Kernel
	Mounting the rootfs to Install the Kernel Modules and Headers

	Debugging the Linux Kernel with KDB and KGDB
	KDB vs KGDB
	Using KDB
	Compiling the Linux Kernel with debug flags
	Booting the Linux Kernel and Invoking the kdb Shell
	Using KGDB (gdb)
	KGDB and the Linux Kernel Debug Core
	Kernel Configuration to get kgdb to Work
	Directly Booting the Kernel in QEMU/KVM and Debugging using kgdb


	Conclusion
	References

