
Operating Systems

Assignment 1 – Hard

Total: 40 Marks

Instructions:

1. The assignment has to be done individually.

2. You can use Piazza for any queries related to the assignment and avoid
asking queries on the last day.

The assignment has 4 parts.

1 Install Linux: 3 Marks

In this section, we discuss the procedure of installation of the Linux kernel on
a virtual machine (VM).

1.1 Virtual Machine Setup

In this subsection, we discuss the procedure to spawn a virtual machine (VM)
on the host machine. Before spawning a VM, you must use the following in-
structions to determine whether your system supports KVM virtualization. We
use the Ubuntu 22.04.1 version on the system.

sudo apt-get install cpu-checker

sudo kvm-ok # Check if your system supports KVM virtualization

After confirming that your system supports KVM virtualization, you must in-
stall the required tools to spawn a VM using the libvirt library. Additionally,
you must download the Ubuntu server ISO from this page. The following in-
structions must be executed to install libvirt :

sudo apt install -y qemu qemu-kvm libvirt-daemon \

libvirt-clients bridge-utils virt-manager

sudo usermod -G libvirt -a $USER # Add the user to the libvirt \

group

sudo systemctl status libvirtd # Check if libvirtd-service is \

running

Execute the command below to generate a graphical user interface for creating
a new virtual machine on your system.

virt-manager # Command to start the virt-manager

1

https://www.releases.ubuntu.com/22.04/ubuntu-22.04.1-live-server-amd64.iso

To create an VM, you should follow the instructions below. :

1. Navigate to the File tab and choose New Virtual Machine.

2. Select the local install media option and navigate to the ISO file on your
local machine using the Browse option.

3. Minimum requirements are 4 CPU cores, 4 GB of RAM, and a 50 GB disk
image. Select the appropriate resource choices for your computer.

4. Install the Ubuntu server ISO on the virtual machine, you can refer to the
following guide.

5. While configuring the storage for Ubuntu, make sure you unmount the
/boot mount partition and adjust the size of the partitions accordingly.

1.2 Build the Linux Kernel

In this section, we discuss the build process, and installation of the Linux kernel
in the VM. First, you need to install the necessary tools for installing the Linux
kernel using the following command:

sudo apt-get install git fakeroot build-essential ncurses-dev \

xz-utils libssl-dev bc flex libelf-dev bison

You need to download the source code of the latest stable Linux kernel using
the following commands.

git clone \

git://git.kernel.org/pub/scm/linux/kernel/git/stable/linux.git

cd linux

git checkout v6.1.6

To compile and run Linux on the virtual machine you can run the commands:

cp -v /boot/config-$(uname -r) .config

Open .config file and set the CONFIG_SYSTEM_TRUSTED_KEYS\

option to ""

make -j <num_cores>

sudo make modules_install -j <num_cores>

sudo make install -j <num_cores>

Open the grub configuartion file at /etc/default/grub \

set the GRUB_TIMEOUT to 60 and comment GRUB_TIMEOUT_STYLE option.

sudo update-grub

Restart the virtual machine and select the latest kernel from the grub menu.

2

https://ubuntu.com/tutorials/install-ubuntu-desktop#1-overview

2 Context Switch Tracker: 15 Marks

In the Linux kernel, the task struct structure stores the state of a single process
(refer to the include/linux/sched.h file). We want to find the total number of
voluntary and involuntary context switch events suffered by a subset of processes
and their threads currently running on the system (referred to as monitored
processes).

2.1 Data Structure

In this subsection, we discuss the data structure that you need to create in
the Linux kernel to keep track of the monitored processes. Let us create the
pid node structure that stores the list of monitored processes in a doubly linked
list. To perform any operation on the pid node structure use the list mech-
anism provided by the Linux kernel (see include/linux/list.h file). Create the
pid ctxt switch structure, to store the cumulative number of context switch
events sufferred by the monitored processes.

struct pid_node {

pid_t pid; /* process id */

struct list_head next_prev_list; /* contains pointers

to previous and next elements */

};

struct pid_ctxt_switch {

unsigned long ninvctxt /* Count of involuntary context

switches */

unsigned long nvctxt /* Count of voluntary context

switches */

};

2.2 Working

This subsection describes how the context switch tracker operates.

1. Create the sys register system call, which is used by users to add a process
to the list of monitored processes. The system call adds the process’s pid
to the end of the linked list. The signature of the system call is as follows:

int sys_register(pid_t pid)

• pid: pid of the process.

Note: The pid t data type is defined in /usr/include/sys/types.h
If the system call was successful in adding the process’s pid to the linked
list, it should return 0. The system call should detect and respond to the
following conditions:

• If the process’s pid does not exist, return -3.

• If the process’s pid is less than 1, return -22.

3

2. Create the sys fetch system call, which allows users to fetch the cumulative
count of the context switch events (#ncse) for the monitored processes.
The system call iterates through the linked list and saves the#ncse values.
Subsequently, it sends the result in the pid ctxt switch structure. The
signature of the system call is as follows:

int sys_fetch(struct pid_ctxt_switch *stats)

• stats: #ncse.

If the system call was successful, it should return 0; otherwise, it should
return -22.

3. Create the sys deregister system call, which is used by users to remove
a process from the list of monitored processes. The system call iterates
through the linked list and removes the process from the list. The signa-
ture of the system call is as follows:

int sys_deregister(pid_t pid)

• pid: pid of the process.

If the system call was successful in removing the process’s pid from the
linked list, it should return 0. The system call should detect and respond
to the following conditions:

• If the process’s pid does not exist in the linked list, return -3.

• If the process’s pid is less than 1, return -22.

3 On Demand Signal Generator using a Kernel
Module: 12 Marks

This part aims to create a Linux kernel module that generates a signal for
the target process. Any process that wants to fire a signal to another process
(target) uses the proc filesystem to insert the PID of the target process and the
signal number in the /proc/sig target file. Refer link for more details on the
Linux kernel module.

The created kernel module must check this file at a regular interval of 1
second and fire the appropriate signal to the target process. The working of the
signal generator is as follows:

1. When the kernel module initializes, it creates a /proc/sig target file.

2. Any process that wants to generate a signal must create an entry in the
/proc/sig target file in the format specified below:

PID1, SIGNAL

PID2, SIGNAL

3. The kernel module regularly reads the file (with a 1 second delay) and
sends an appropriate signal to the target process.

4

https://tldp.org/LDP/lkmpg/2.6/html/lkmpg.html

4 Report: 10 Marks

Page limit: 10
The report should clearly mention the implementation methodology for all the
parts of the assignment. Showing small, representative code snippets in the
report is alright, additionally, the pseudocode should also suffice.

• Explain the implementation of the context switch tracker.

• How exactly does your Linux module work?

• Any other details that are relevant to the implementation.

• Submit a pdf file containing the relevant details.

• Say what you have done that is extra.

5 Submission Instructions

1. There will be a demo for assignment 1 in which you must demonstrate
how the context switch tracker and the kernel module function work. This
will be followed by a viva in which your general theoretical and practical
understanding will be tested (in the context of the assignment). Note that
regardless of the code that you submit, the viva performance is vitally
important.

2. Create a patch file with the context switch tracker changes.

sudo diff -rupN linux-change/ linux-base/ > ctxttrack.patch

linux-base refers to the vanilla version of the Linux

kernel, and linux-change refers to the modified Linux kernel.

3. Create a zip file that contains the report, ctxttrack.patch, and the ker-
nel module files and then name the zip file as, assignment1 hard <
entryNumber > .zip. Submit this zip file on Moodle. Entry number
format: 2020CSZ2445. Note that all English letters are in capitals.

5

	Install Linux: 3 Marks
	Virtual Machine Setup
	Build the Linux Kernel

	Context Switch Tracker: 15 Marks
	Data Structure
	Working

	On Demand Signal Generator using a Kernel Module: 12 Marks
	Report: 10 Marks
	Submission Instructions

