
Operating Systems

Assignment 2 – Hard

Instructions:

1. The assignment has to be done individually.

2. You can use Piazza for any queries related to the assignment and avoid
asking queries on the last day.

1 Real Time Scheduling

Real-time systems are developed to react to events within a strict time frame.
These systems are deployed in a wide spectrum of applications ranging from
medical equipment, financial trading, and industrial automation to military
systems, air-traffic control, and spacecraft navigation. Soft real-time systems
have relaxed timing constraints and do not incur severe consequences whereas
missing a deadline in hard real-time systems can have serious repercussions.

Liu and Layland’s periodic task model is a mathematical model for schedul-
ing periodic tasks in real-time systems. For a set of n periodic tasks, the model
assumes that each task i has a period Pi and an execution time Ti. The pe-
riod Pi is the time interval between successive releases of the task. We will
further assume that the relative deadline of a task i is represented by Di. Rel-
ative deadline (Di) is the time interval between the task’s release time and its
deadline.

Processing
Time (Ti)

Deadline
(Di)

Period (Pi)

i

Time

i

Figure 1: The Periodic Task Model

Deadline monotonic scheduling and rate monotonic scheduling are both
static priority scheduling algorithms in which priorities are assigned based on
the relative deadline(Di) and the period(Pi) of the task respectively.

1

Implement the deadline monotonic (DM) and rate monotonic (RM) schedul-
ing algorithms for the Linux kernel. The admission controller should ensure
that the new processes meet its timing constraints. This includes the process’s
deadline, the worst-case execution time, and the period. The controller should
ensure that the new process’s timing requirements do not conflict with existing
processes or exceed the system’s capacity. Implement system calls to provide
the details about the process’s release time, period, worst-case execution time,
and deadline.

1. We have a set of n preemptable tasks T , such that the tasks do not share
resources, and no precedence order exists among the tasks.

2. A process must register itself for RM or DM scheduling with the help of
the following system calls:

int sys_register_dm(pid, period, deadline, exec_time)

OR

int sys_register_rm(pid, period, deadline, exec_time)

• pid: pid of the process.

• period: period of the process (Pi).

• exec time: the number of ticks for which the process should run (Ti).

• deadline: the relative deadline of the process (Di).

If the process is schedulable, it should return 0; otherwise, it should return
-22. You can read about schedulability checks from the following link RM
scheduling.

3. To notify the kernel that a process has finished executing, the process
must send a yield message using the sys yield system call for which the
signature is as follows:

int sys_yield(pid)

• pid: pid of the process.

If the system call was successful, it should return 0; otherwise, it should
return -22.

4. To remove the process sys remove system call must be invoked with the
following signature:

int sys_remove(pid)

• pid: pid of the process.

If the system call was successful, it should return 0; otherwise, it should
return -22.

5. To list all the registered processes sys list system call must be invoked
with the following signature:

2

https://www.youtube.com/watch?v=2mdz93pnKhY&list=PL1iLu2CSC9EU4mMByEhBp9CcYgAIiDs_v&index=7
https://www.youtube.com/watch?v=2mdz93pnKhY&list=PL1iLu2CSC9EU4mMByEhBp9CcYgAIiDs_v&index=7

void sys_list()

• pid: pid of the process.

This system call should print in the following format:

PID: period : deadline: execution time

PID: period : deadline: execution time

PID: period : deadline: execution time

6. You must implement an application to test the scheduler. The pseudo-
code for the application is mentioned below:

int main(int argc , char *argv []) {

period = argv [1];

exec_time = argv [2];

deadline = argv [3];

pid_t = getpid ();

syscall(sys_register_dm(pid_t , period , deadline ,

exec_time));

init = gettime ();

do{

exec_start = gettime ();

wakeup_time = (exec_start - init);

print("Wakeup:", wakeup_time);

perform_job(processing_time);

finish = gettime ();

finish_time = (finish - exec_start);

print("Time to finish:", finish_time);

syscall(sys_yield(pid_t));

} while (true);

syscall(sys_remove(pid_t));

}

You will need to create a supplementary Process Control Block (PCB) that
holds information about the current state (Ready, Sleeping, or Executing), pro-
cess parameters (Di, Pi, Ti), and timers (implementation dependent). When
the kernel receives a yield message, it should put the associated process into a
sleeping state and set up a per-process timer. Once the timer expires, the timer
handler should change the state of the process to ready and wake up the kernel
thread responsible for scheduling. This kernel thread must choose the process
with the highest priority that is in the ready state and context switch to this
process. The currently executing process might get preempted by the scheduler

3

during the context switch. To start a process, the kernel thread should execute
the wake up process() function. The kernel thread can use the set current state
() function to sleep while waiting for the next process.

Question 1: Explain the circumstances wherein the deadline monotonic algo-
rithm might be preferred over the rate monotonic scheduling algorithm and vice
versa with suitable examples.

1.1 Priority Ceiling Protocol (PCP)

Whenever a certain low-priority task holds a resource requested by a higher-
priority task, it results in the higher-priority task getting blocked and becoming
incapable to proceed. Since the scheduler constantly preempts the lower-priority
task to execute the higher-priority one, it leads to a phenomenon called priority
inversion. Priority Ceiling Protocol (PCP) thwarts priority inversion by allo-
cating a priority ceiling to each shared resource. When a process acquires a
resource, the priority of that process is temporarily raised to the priority ceiling
(the highest priority of any process that acquires the resource) of the resource,
assuring that a lower-priority task cannot preempt it. The resource for the
scope of this assignment would be a read-only file that multiple processes try
to access. Implement a priority ceiling protocol on top of RM.

Question 2: In case the Linux kernel utilizes the priority inversion protocol
instead of the priority ceiling protocol. What will be the advantages and disad-
vantages of it?

2 Report

Page limit: 10
The report should clearly mention the implementation methodology for all the
real-time scheduling policies. Showing small, representative code snippets in
the report is alright, additionally, the pseudocode should also suffice.

• Implementation of the DM and RM scheduling policies.

• Answers to the in-text questions.

• Challenges faced and the novelties introduced (if any).

• Submit a pdf file containing all the relevant details.

4

https://elixir.bootlin.com/linux/latest/C/ident/wake_up_process
https://elixir.bootlin.com/linux/v6.3-rc2/C/ident/set_current_state
https://elixir.bootlin.com/linux/v6.3-rc2/C/ident/set_current_state

	Real Time Scheduling
	Priority Ceiling Protocol (PCP)

	Report

