
Operating Systems

Assignment 2 – Easy

Instructions:

1. The assignment has to be done in a group of 2 members.

2. You can use Piazza for any queries related to the assignment; avoid asking
queries on the last day.

1 Real Time Scheduling

In real-time systems, tasks must be completed within strict time limits, known
as deadlines. If meeting a deadline is crucial to the running of the system and
failure to do so may have catastrophic effects, that deadline is considered hard.
If satisfying time constraints is desirable, yet missing a deadline would not result
in significant consequences, then that deadline is termed soft.

To enable the execution of real-time jobs in xv6, you need to add the fol-
lowing real-time scheduling policies: the earliest deadline first (EDF) and rate
monotonic (RM) scheduling algorithms. The current scheduler in xv6 is a round
robin scheduler. The scheduler code for xv6 may be found in proc.c and its
accompanying header file, proc.h.

1.1 System Specification:

In this assignment, you need to use xv6 with the following specifications:

1. The system shall use a single core. To enable xv6 to run on a single core,
you need to set the CPUS variable to 1 in the Makefile.

2. Assume a set of n pre-emptable tasks T , such that the tasks do not share
resources, and no precedence ordering exists among the tasks.

3. By default, all processes are initialized with the default xv6 scheduling pol-
icy. To change the scheduling policy of a process to the real-time schedul-
ing policy (EDF or RM), you need to implement the sys sched policy sys-
tem call. The signature of the system call is as follows:

int sys_sched_policy(int pid, int policy)

• pid: pid of the process.

• policy: If 0 is given, the scheduling policy is set to EDF. If 1 is given,
set the scheduling policy to RM.

1



If the augmented (new) set of processes is schedulable, it should return 0;
otherwise, it should return -22. You can read about schedulability checks
from the following links: EDF and RMA.

Note: To break ties between processes with the same static pri-
ority, you can choose the process with the smaller pid.

4. The xv6 kernel may safely terminate a process when it fully executes
(executes for a pre-specified time). With the sys exec time system call,
the programmer will be able to define the duration of a process’s execution.
The signature of the system call is as follows:

int sys_exec_time(int pid, int exec_time)

• pid: pid of the process.

• exec time: number of ticks for which the process should run.

If the system call was successful, it should return 0; otherwise, it should
return -22.

5. To specify the relative deadline of the task (after it has been released) in
the EDF scheduling policy, you must implement the sys deadline system
call. The signature of the system call is as follows:

int sys_deadline(int pid, int deadline)

• pid: pid of the process.

• deadline: deadline of the process (in ticks) relative to its arrival time.

If the system call was successful, it should return 0; otherwise, it should
return -22.

6. To specify the rate (reciprocal of the period) for a process in the RM
scheduling policy, you must implement the sys rate system call. The sig-
nature of the system call is as follows:

int sys_rate(int pid, int rate)

• pid: pid of the process.

• rate: rate of the process (instances per second).

If the system call was successful, it should return 0; otherwise, it should
return -22. You can assume that the value of the rate lies in the range
[1, 30] and the value of the weight (type: integer) lies in the range [1, 3]
(lower the weight, higher is the priority.). To derive the weight (w) for a
process with rate (r) use the following equation:

w = max

(
1,

⌈(
30− r

29

)
∗ 3

⌉)
(1)

2

https://www.youtube.com/watch?v=RbCRJ40DYqU&list=PL1iLu2CSC9EU4mMByEhBp9CcYgAIiDs_v&index=7
https://www.youtube.com/watch?v=2mdz93pnKhY&list=PL1iLu2CSC9EU4mMByEhBp9CcYgAIiDs_v&index=7


2 Report: 10 Marks

Page limit: 10
The report should clearly mention the implementation methodology for all the
real-time scheduling policies. Showing small, representative code snippets in
the report is alright, additionally, the pseudocode should also suffice.

• Implementation of the EDF and RM scheduling policies.

• Any other details that are relevant to the implementation.

Submit a PDF file with the name A2 report.pdf that contains all relevant details.
Also, you must ensure that the group members’ entry numbers are listed on
the cover page.

3 Submission Instructions

• We will run MOSS on the submissions. Any cheating will result in a zero
in the assignment, a penalty as per the course policy and possibly much
stricter penalties (including a fail grade).

• There will be NO demo for assignment 2. Your code will be evaluated
using a check script (check.sh) on hidden test cases and marks will be
awarded based on that. You can find the test scripts here.

How to submit:

1. Copy your report to the xv6 root directory.

2. Then, in the root directory run the following commands:

make clean

tar czvf \

assignment2_easy_<entryNumber1>_<entryNumber2>.tar.gz *

This will create a tarball with the name, assignment2 easy < entryNumber1 >
< entryNumber2 > .tar.gz in the same directory that contains all the

xv6 files and the report PDF document. Entry number format: 2020CSZ2445
(All English letters will be in capitals in the entry number.). Only one
member of the group is required to submit this tarball on Moodle.

3. Please note that if the report is missing in the root directory, then no
marks will be awarded for the report.

4. If you are attempting the assignment as an individual, you do not need to
mention the entryNumber 2 field.

How to validate:

1. Find and replace the following lines in the trap.c file of xv6:

3

https://drive.google.com/file/d/1m-ES_3hd_0dQXnHJbnfWMJSIlCKcJak1/view?usp=share_link


// Force process to give up CPU on clock tick.

// If interrupts were on while locks held, would need to

// check nlock.

if(myproc() && myproc()->state == RUNNING &&

tf->trapno == T_IRQ0+IRQ_TIMER)

{

if((myproc()->sched_policy >= 0) &&

(myproc()->elapsed_time >= myproc()->exec_time))

{

cprintf("The completed process has pid: %d\n",

myproc()->pid);

exit();

}

else

yield();

}

Note: You may need to change the terminate condition according to your
implementation.

2. Run the following commands to validate your submission:

sudo apt install expect

mkdir check_scripts

tar xzvf check_scripts.tar.gz -C check_scripts

cp assignment2_easy_<entryNumber1>_<entryNumber2>.tar.gz \

check_scripts

cd check_scripts

bash check.sh \

assignment2_easy_<entryNumber1>_<entryNumber2>.tar.gz

4


	Real Time Scheduling
	System Specification:

	Report: 10 Marks
	Submission Instructions

