
5
x86 Assembly Language

In this chapter, we shall study the basics of the x86 family of assembly languages. They are
primarily used in Intel and AMD processors, which have an overwhelmingly large market share
in the desktop, laptop, and low end server markets. They are steadily making deep inroads
into the middle and high end server markets as well as the smart phone market. Hence, it
is essential for the reader to have a good understanding of this important class of assembly
languages. At this stage we expect the reader to have a basic understanding of assembly
language from Chapter 3.

5.1 Overview of the x86 Family of Assembly Languages

5.1.1 Brief History

Let us start out by noting that x86 is not one language; it is actually a family of assembly
languages with a very interesting history. Intel released the 8086 microprocessor in 1978, and
called it 8086. It was Intel’s first 16-bit microprocessor. This microprocessor proved to be very
successful in the market, and succeeded in displacing other 8-bit competitors at that time. This
motivated Intel to continue this line of processors. Intel then designed the 80186 and 80286
processors in 1982. 80186 was aimed at the embedded processor market, and 80286 was aimed
at desktops. Both of them were fairly successful and helped establish Intel processors firmly in
the desktop market. Those days IBM was the biggest vendor of PCs (personal computers), and
most IBM PCs used Intel processors. The rapid proliferation of PCs led Intel to release two
more processors, 80386 and 80486, in 1985 and 1989 respectively. These were 32-bit processors.
Note that as Intel moved from 8086 to 80486, it continuously added more and more instructions
to the instruction set. However, it also maintained backward compatibility. This means that
any program meant to run on a 8086 machine, could also run on a 80486 machine. Secondly,
it also maintained a consistent assembly language format for this family of processors whose
name ended with “86”. Over time this family of processors came to be known as “x86”.

175

c© Smruti R. Sarangi 176

Gradually, other companies started using the x86 instruction set. Most notably, AMD
(Advanced Micro Devices) started designing and selling x86 based processors. AMD released
the K5, K6, and K7 processors in the mid nineties based on the 32-bit x86 instruction set. It also
introduced the x86 64 instruction set in 2003, which was a 64-bit extension to the standard 32-
bit x86 Intel ISA. Many other vendors such as VIA, and Transmeta also started manufacturing
x86 based processors starting from 2000.

Each vendor has historically taken the liberty to add new instructions to the base x86
instruction set. For example, Intel has proposed many extensions over the years such as Intel R©

MMXTM, SSE1, SSE2, SSE3, and SSE4. The number of x86 instructions are more than 900
as of 2012. Similarly, AMD introduced the 3D Now!TMinstruction set, and VIA introduced its
custom extensions. The rich history of x86 processors has led to many different extensions of
the basic instruction set, and there are numerous assemblers that have their unique syntax.
Almost all x86 vendors today support hundreds of instructions. Current 64-bit Intel processors
support 16-bit, and 32-bit code that dates way back to the original 8086.

If we try to classify the entire family tree of x86 ISAs, we can broadly divide them as
16-bit, 32-bit, and 64-bit instruction sets. 16-bit instruction sets are rarely used nowadays. 32-
bit instruction sets are extremely popular in the smart phone, embedded, and laptop/netbook
markets. The 64-bit ISAs (also known as the x86-64 ISA) are mainly meant for workstation class
desktop/laptops and servers. Other than minor syntactic differences the assembly languages
for these instruction sets are mostly the same. Hence, learning one ISA is sufficient. In this
book, we try to strike a compromise between embedded processors, laptops, desktops, smart
phones, and high end servers. We thus focus on the 32-bit x86 ISA because in our opinion it
falls in the middle of the usage spectrum of the x86 ISA. We shall mention the minor syntactic
differences with other flavours of x86 whenever the need arises.

5.1.2 Main Features of the x86 ISA

Before delving into the details of the 32-bit x86 ISA, let us list some of its main features.

1. It is a CISC ISA. Instructions have varying lengths, and operands also do not have a fixed
length.

2. There are at least 300 scalar instructions, and this number is increasing every year.

3. Almost all the instructions can have a memory operand. In fact, most instructions allow
a source, and a destination memory operand.

4. Most of the x86 instructions are in the 2-address format. For example, the assembly
instruction to add two registers eax, and ebx, is add eax, ebx. Here, we add the contents
of the eax, and ebx registers, and save the results in the eax register.

5. x86 has many complicated addressing modes for memory operands. Along with the tradi-
tional base-offset addressing mode, it supports base-index and base-index-offset addressing
modes.

6. It does not have a return address register. Function call and return instructions, save and
retrieve the return address from the stack.

177 c© Smruti R. Sarangi

7. Like ARM and SimpleRisc , x86 has a flags register that saves the outcome of the last
comparison. The flags register is used by conditional branch instructions.

8. Unlike SimpleRisc , x86 instructions do not see an unified view of instruction and data
memory. The x86 memory is segmented. This means that instructions and data reside in
different memory regions (known as segments). x86 machines restrict the segments that
an instruction can access.

It is true that the x86 architecture is a CISC instruction set, and it has hundreds of opcodes
and many addressing modes. Nevertheless, we are sure that at the end of this chapter, the
reader will concur with us that the x86 instruction set is in reality a fairly simple instruction
set, is easy to understand, and is very elegant. A conventional argument supporting the case
of RISC ISAs is that the hardware is simpler, and more efficient. Consequently, in modern
Intel/AMD processors (Pentium R© 4 onwards), the x86 instructions are internally translated
into RISC instructions, and the entire processor is essentially a RISC processor. We can thus
get the best of both worlds.

5.2 x86 Machine Model

5.2.1 Integer Registers

eax

ebx

ecx

edx

esp

ebp

esi

edi

ax

bx

cx

dx

sp

bp

si

di

rax

rbx

rcx

rdx

rsp

rbp

rsi

rdi

r8

r9

r15

ax

bx

cx

dx

64 bits
32 bits

16 bits
ah al

bh bl

ch

dh

cl

dl

cs

ss

ds

es

gs

fs

16 bit segment registers

eflags

eip

flags

ip

rflags

rip

64 bits
32 bits

16 bits

Figure 5.1: The x86 register set

c© Smruti R. Sarangi 178

Figure 5.1 shows the x86 register set. The 16 and 32-bit x86 ISAs have 8 general purpose
registers. These registers have an interesting history. The original 8080 microprocessor designed
forty years ago had seven 8-bit general purpose registers namely a, b, c, d, e, f and g. In the late
seventies, x86 designers decided to create a 16-bit processor called 8086. They decided to keep
four registers (a, b, c, and d), and suffixed them with the ’x’ tag (’x’ for extended). Thus, the
four general purpose registers got renamed to ax, bx, cx, and dx. Additionally, the designers
of the 8086 machine decided to retain some 16-bit registers namely the stack pointer (sp), and
the register to save the PC (ip). The designers also introduced three extra registers in their
design – bp (base pointer), si (starting index), and di (destination index). The intention of
adding the bp register was to save the value of the stack pointer at the beginning of a function.
Compilers are expected to set sp equal to bp at the end of the function. This operation destroys
the stack frame of the callee function. The registers si, and di are used by the rep instruction
that repeats a certain operation. Typically, a single rep instruction is equivalent to a simple
for loop. Thus, the 8086 processor had eight 16-bit general purpose registers – ax, bx, cx,
dx, sp, bp, si, and di. It was further possible to access the two bytes (lower and upper) in the
registers ax – dx. For example, the lower byte in the ax register can be addressed as al, and
the upper byte can be addressed as ah. 16-bit x86 instructions can use combinations of 8-bit
and 16-bit operands.

The 8086 processor had two special purpose registers. The first register called ip contained
the PC. The PC is typically not accessible to programmers on x86 machines (unlike the ARM
ISA). The second special purpose register is the flags register that saves the results of the last
comparison (similar to the flags register in ARM and SimpleRisc). The flags register is used
by subsequent conditional branch instructions to compute the outcome of the branch.

In the might eighties, when Intel decided to extend the 8086 design to support 32-bit
registers, it decided to keep the same set of registers (8 general purpose + ip + flags), and
similar nomenclature. However, it extended their names by adding an ’e’ prefix. Thus in a 32-
bit machine, register eax is the 32-bit version of ax. To maintain backward compatibility with
the 8086, the lower 16 bits of eax can be addressed as ax (if we wish to use 16-bit operands).
Furthermore, the two bytes in ax can be addressed as ah and al (similar to 8086). As shown
in Figure 5.1, the names were changed for all the other registers also. Notably, in a 32-bit
machine, the stack pointer is stored in esp, the PC is stored in eip, and the flags are stored in
the eflags register.

There are many advantages to this strategy. The first is that 8086 code can run on a 32-bit
x86 processor seamlessly. All of its registers are defined in the 32-bit ISA. This is because each
16-bit register is represented by the lower 16 bits of a 32-bit register. Hence, there are no issues
with backward compatibility. Secondly, we do not need to add new registers, because we simply
extend each 16-bit register with 16 additional bits. We refer to the new register with a new
name (16-bit name prefixed with ’e’).

Exactly the same pattern was followed while extending the x86 ISA to create the 64-bit
x86-64 ISA. The first letter was replaced from ’e’ to ’r’ to convert a 32-bit register to a 64-bit
register. For example, the register rax is the 64-bit version of eax. Its lower 32 bits can be
addressed as eax. The connotation of ax, ah, and al remains the same as before. Additionally,
the x86-64 ISA introduced 8 more general purpose registers namely r8 – r15. However, their
subfields cannot be addressed directly. The 64-bit PC is saved in the rip register, and the flags
are stored in the rflags register.

179 c© Smruti R. Sarangi

The eflags register

Let us now quickly discuss the structure of the eflags register. Like ARM and x86, the eflags
register contains a set of fields, where each field or bit indicates the status of execution of the
instruction that last set it. Table 5.1 lists some of the most commonly used fields in the eflags
register, along with their semantics.

Field Condition Semantics

OF Overflow Set on an overflow

CF Carry flag Set on a carry or borrow

ZF Zero flag Set when the result is a 0,
or the comparison leads to an
equality

SF Sign flag Sign bit of the result

Table 5.1: Fields in the eflags register

5.2.2 Floating Point Registers

The floating point instructions in x86 have a dual view of the floating point register file. They
can either see them as normal registers or as a set of registers organised as a stack. Let us
elaborate.

To start out, x86 defines 8 floating point registers named: st0 . . . st7. These are 80-bit
registers, The x86 floating point format has a 64-bit mantissa, and a 15-bit exponent. It is thus
more precise than double precision numbers. The registers st0 to st7 are organised as a stack.
Here, st0 is the top of the stack, and st7 is the bottom of the stack as shown in Figure 5.2.
Additionally, x86 has a tag register that maintains the status of each register in the stack.
The tag register has 8 fields (1 field for 1 register). Each field contains 2 bits. If the value of
these bits is 00, then the corresponding register contains valid data. If the value is 01, then
the register contains a 0, and if it is 11, then the register is empty. 10 is reserved for special
purposes. We shall refer to the stack of registers, as the floating point stack, or simply the FP
stack.

The registers st0 to st7 are positions on the FP stack. st0 is always the top of the stack,
and st7 is always the bottom of the stack. If we push a data item on to the FP stack, then
the contents of each register get transferred to the register below it. If the stack is full (means
that st7 contains valid data), then a stack overflow occurs. This situation needs to be avoided.
Most floating point instructions operate on data values saved at the top of the stack. They pop
the source operands, and push the destination operand.

5.2.3 View of Memory

Let us now describe the functionality of the segment registers (see Figure 5.1), and the view
of memory. x86 instructions can have two views of memory. The first view is like ARM and
SimpleRisc , which views memory as one large array of bytes that stores both code and data.

c© Smruti R. Sarangi 180

st0

st7

st1

st2

st3

st4

st5

st6

Top of the stack

F
P
 sta

ck

Figure 5.2: The x86 floating point register stack

This is known as the linear memory model. In comparison, the segmented memory model views
memory as consisting of fixed size segments, where each segment is tailored to store one kind
of data such as code, stack data, or heap data (for dynamically allocated data structures). We
shall not discuss the linear model of memory because we have seen it before in Chapter 3. Let
us discuss the segment registers, and the segmented memory model in this section.

Definition 40

Linear Memory Model A linear memory model views the entire memory as one large
array of bytes that saves both code and data.

Segmented Memory Model A segmented memory model views the memory as a se-
quence of multiple fixed size segments. Code, data, and the stack have their own
segments.

The Segmented Memory Model

Let us define the term address space as the set of all memory addresses accessible to a program.
The aim of the segmented memory model is to divide the address space into separate smaller
address spaces. Each address space can be specialised to store a specific type of information
such as code or data.

There are two reasons for using segmentation. The first is historical. In the early days
different parts of a program were physically saved at different locations. The code was saved on
punch cards, and the memory data was stored in DRAM memories. Hence, it was necessary to

181 c© Smruti R. Sarangi

partition the address space among the devices that stored all the information that a program
required (code, static data, dynamic data). This reason is not valid anymore. Nowadays, all
the information a program requires is typically stored at the same place. However, we still
need segmentation to enforce security. Hackers and viruses typically try to change the code of
a program and insert their own code. Thus a normal program can exhibit malicious behaviour
and can corrupt data, or transfer sensitive data to third parties. To ensure added protection,
the code region is saved in a code segment. Most systems do not allow normal store instructions
to modify the code segment. We can similarly partition the data segments for different classes
of data. In Section 10.4.6, we will have a more thorough discussion on this topic.

Segmentation in x86

The 8086 designers had 6 segment registers that stored the most significant 16 bits of the
starting location of the segment. The remaining bits were assumed to be all zeros. The cs
register stored the upper 16 bits of the starting location of the code segment. Similarly, the ds
register stored the upper 16 bits of the starting location for the data segment, and the ss register
stored the corresponding set of bits for the stack segment. The es (extra segment), fs, and
gs registers could be used to store information for additional user defined segments. Till date
all x86 processors have preserved this model (see Figure 5.1). The contents of instructions are
saved in the code segment, and the data that a program accesses is saved in the data segment.
In most small programs, the stack and data segments are the same. In 8086 processors the
memory address was 20 bits wide. Hence, to obtain the final address also known as the linear
address, the 8086 processor first shifted the contents of the segment register 4 positions to
the left to obtain the starting location of the segment. It then added this address with the
memory address specified by the instruction. We can think of the memory address specified by
an instruction as an offset in the segment, where the starting memory location of the segment
is indicated by the appropriate segment register.

This strategy served the needs of the 8086 designers well. However, this strategy is not
suitable for 32 and 64-bit machines. In this case, the memory addresses are 32 and 64 bits
wide respectively. Thus, the segment registers need to be wider. In the interest of backward
compatibility, designers did not touch the segment registers. They just changed the semantics
of its contents for newer processors. Instead of saving the upper 16 bits of the starting location
of a segment, the registers now contain a segment id. The segment id uniquely identifies a
segment across all the programs running in a system. To get the starting location, 32/64-bit
x86 processors, lookup a segment descriptor table with 13 bits (bits 4 to 16) of the segment
id. 13 bits can specify 8192 entries, which is more than sufficient for all the programs in the
system.

Modern x86 processors have two kinds of segment descriptor tables namely the local de-
scriptor table (LDT), and the global descriptor table (GDT). The LDT is typically local to
a process (running instance of a program) and contains the details of the segments for that
process. The LDT is normally not used nowadays because programs do not use a lot of seg-
ments. In comparison there is only one system level GDT. The GDT can contain up to 8191
entries (the first entry is reserved). Each entry in the GDT contains the starting address of
the segment, the size of the segment, and the privileges required to access the segment. Every
memory access needs to go through the GDT for fetching the starting address of the segment.

c© Smruti R. Sarangi 182

This unnecessarily lengthens the critical path of a memory request, and creates contention at
the GDT. To make the access to the GDT faster, modern processors have a small structure
called a segment descriptor cache that stores a few entries of the GDT that are relevant to
the currently executing process. The descriptor cache typically stores the details of all the
segments that the frequently running processes use. This strategy ensures that we do not need
to access the GDT on every memory access. The small and fast descriptor cache is sufficient.
After accessing the descriptor cache, or the GDT, x86 processors get the starting address of
the segment. They subsequently generate the memory address by adding the address specified
in the instruction with the starting address of the segment. This address is then passed on to
the memory system.

Definition 41

Process It is defined as the running instance of a program. For example, if we run two
copies of a program, then we create two processes.

LDT (Local Descriptor Table) The LDT is a per process table that saves the descrip-
tion of all the segments that a process uses. The LDT is indexed by a segment id, and
contains the starting address of the segment, and the privileges required to access it.
It is not used very frequently in modern systems.

GDT (Global Descriptor Table) The GDT is similar to the LDT. However, it is a
system wide table that is shared by all the processes running on a machine.

Now, that we have discussed the view of the register files, and the memory system, let us
describe the addressing modes.

5.2.4 Addressing Modes

Addressing Modes for Specifying Immediates

The best thing about x86 is that there are no size restrictions on immediates. Immediates can be
as large as the size of the register. For example, in a 32-bit system, the size of the immediate can
be as large as 32 bits. Depending upon the assembly language, we can specify immediates in the
hex format (0x...), binary format (e.g., 10101b), or in decimal. Most of the time programmers
prefer the hex or decimal formats. For hexadecimal numbers most assemblers allow us to specify
the number with the standard 0x prefix. Additionally, we can specify a number with the h/H
suffix. For example, 21H is the same as 0x21. For negative numbers, we need to simply put a
‘-’ before the number.

Addressing Modes for Specifying Registers

All registers in x86 are addressed by their names. For example, the general purpose registers
on a 32-bit machine are addressed as eax, ebx . . . edi, according to the rules mentioned in

183 c© Smruti R. Sarangi

Section 5.2.1. We can use 16-bit register names in 32-bit mode, and we can use 16 and 32-bit
register addressing in 64-bit mode. Note that we cannot do the reverse. For example, we cannot
use 64-bit register names in 32-bit mode.

Addressing Modes for Memory Operands

x86 supports a variety of addressing modes for main memory. In specific, it supports the
register-indirect, base-offset, base-index, and base-index-offset addressing modes as mentioned
in Section 3.2.5. In addition, it also supports a new addressing mode called the base-scaled-
index-offset addressing mode that scales the index by a constant factor. Let us elaborate.

address =

cs :

ds :

ss :

es :

fs :

gs :

eax

ebx

ecx

edx

esp

ebp

esi

edi

︸ ︷︷ ︸

base

+

eax

ebx

ecx

edx

ebp

esi

edi

︸ ︷︷ ︸
index

×

1

2

4

8

︸︷︷︸
scale

+ [displacement]︸ ︷︷ ︸

offset

(5.1)

Equation 5.1 shows the generic format of a memory address in the 32-bit version of x86.
The interesting aspect of x86 memory addressing is that all of these fields are optional. Hence,
it is possible to have a large number of addressing modes.

Let us first consider the addressing modes that require a base register. With the base
register, we can optionally specify a segment register. If we do not specify a segment register,
then the hardware assumes default segments (ds for data, ss for stack, and cs for code). We
can subsequently specify an index. The index is contained in another register (excluding esp).
We can optionally multiply the index with a power of 2 (1, 2, 4, or 8). Lastly, we can specify a
32-bit offset known as the displacement. The memory address is computed using Equation 5.1.

Now, let us look at addressing modes that do not require a base register. We can just use an
index register and optionally scale it by 1, 2, 4, or 8. For example, we can specify that we want
to access the memory address equal to 2× ecx. This approach uses the scaled-index addressing
mode. We can optionally add a fixed offset (known as the displacement) to the address.

Lastly, it is possible to specify the entire 32-bit address in the displacement field, and not
specify any register at all. This approach is typically used in the operating system code to
directly operate on memory addresses. Regular assembly programmers need to strictly avoid
such direct memory addressing because most of the time we are not aware of the exact memory
addresses. For example, the starting address of the stack pointer is typically allocated at run
time in modern systems, and tends to vary across runs. Secondly, this is not a portable and
elegant approach. It is only meant for operating system writers.

Let us explain with examples (see Table 5.2).

c© Smruti R. Sarangi 184

Definition 42
In the x86 ISA, the fixed offset used while specifying the effective address of a memory
operand, is known as the displacement.

Memory operand Value of the address Addressing mode
(in register transfer notation)

[eax] eax register-indirect

[eax + ecx*2] eax + 2 * ecx base-scaled-index

[eax + ecx*2 - 32] eax + 2 * ecx - 32 base-scaled-index-offset

[edx - 12] edx - 12 base-offset

[edx*2] edx * 2 scaled-index

[0xFFE13342] 0xFFE13342 memory-direct

Table 5.2: Example of memory operands

5.2.5 x86 Assembly Language

There are various x86 assemblers such as MASM [mas,], NASM [nas,], and the GNU assem-
bler [gx8,]. In this book, we shall present code snippets that have been tested with the NASM
assembler. The popular NASM assembler is freely available at [nas,], and is known to work on
a variety of platforms including Windows R© , Mac OS X, and different flavours of Linux. Note
that we shall mostly avoid using NASM specific features, and we shall keep the presentation of
assembly code very generic. Our assembly codes should be compatible with any assembler that
supports the Intel format for x86 assembly. The only major feature of NASM that we shall use
is that comments begin with a ‘;’ character.

Let us now describe the structure of an assembly language statement in the Intel format.
Its generic structure is as follows.

Structure of an Assembly Statement
<label>: <assembly instruction> ; <comment>

For an assembly instruction, the label and the comment are optional. Alternatively, we can
just have a label or a comment, or a combination of both in a single line. In our code, we shall
use labels starting with a ’.’. However, labels can start with regular alphabets and other special
characters also. For a detailed description readers can refer to the NASM documentation.

Each x86 assembly instruction has an opcode followed by a set of operands.

x86 Assembly Instruction
<opcode>

<opcode> <operand1>

<opcode> <operand1>, <operand2>

185 c© Smruti R. Sarangi

An overwhelming majority of x86 instructions are in the 0, 1 and 2-address formats. 0-
address format instructions like nop instructions in SimpleRisc do not require any operands.
1-address format instructions have a single source operand. In this case the destination operand
is equal to the source operand. For example, the instruction not eax computes the bitwise
complement of eax, and saves the result in eax. In two operand instructions, the first operand
is the first source operand and also the destination operand. The second operand is the second
source operand. For example, add eax, ebx, adds the contents of eax and ebx, and subsequently
saves the result in eax.

The source operands can be register, memory, or immediate operands. However, both the
sources cannot be memory operands. Needless to say the destination operand cannot be an
immediate operand. When a single operand is both the source and destination, both the rules
apply.

5.3 Integer Instructions

5.3.1 Data Transfer Instructions

The mov Instruction

Semantics Example Explanation

mov (reg/mem), (reg/mem/imm) mov eax, ebx eax ← ebx

Table 5.3: Semantics of the mov instruction

The mov instruction is a very simple yet versatile instruction in the x86 ISA. It moves the
contents of the second operand, into the first operand. The second operand can be a register,
a memory location, or an immediate. The first operand can be a register or a memory location
(Table 5.3 shows the semantics). The reader needs to note that both the operands cannot be
memory locations.

We thus do not need any dedicated load/store instructions in x86. The mov instruction
can achieve the function of loading and storing memory values because it accepts memory
operands. The mov instruction can also transfer values between registers (similar to SimpleRisc
and ARM). Thus, we have fused the functionality of three RISC instructions into one CISC
instruction. Let us consider some examples.

Example 55
Write an x86 assembly instruction to set the value of ebx to -17.
Answer:

mov ebx, -17

c© Smruti R. Sarangi 186

Example 56
Write an x86 assembly instruction to load ebx with the contents of (esp - eax*4 -12).
Answer:

mov ebx, [esp - eax*4 -12]

Example 57
Write an x86 assembly instruction to store the contents of edx in (esp - eax*4 -12). An-
swer:

mov [esp - eax*4 -12], edx

movsx, and movzx Instructions

Semantics Example Explanation

movsx reg, (reg/mem) movsx eax, bx eax ← sign extend(bx), the second
operand is either 8 or 16 bits

movzx reg, (reg/mem) movsx eax, bx eax ← zero extend(bx), the second
operand is either 8 or 16 bits

Table 5.4: Semantics of the movsx, and movzx instructions

The simple mov instruction assumes that the sizes of the operands are the same (16, or
32, or 64 bits). However, sometimes we face the need for saving a smaller register or memory
operand in a larger register. For example, if we save the 16 bit register ax in ebx then we need
we have two options. We can either extend the sign of the input operand, or pad it with 0s.
The movsx instruction (see Table 5.4) copies a smaller register or memory operand to a larger
register and extends its sign. For example, the following code snippet extends the sign of bx
(from 16 to 32 bits), and saves the results in eax.

movsx eax, bx ; eax = sign_extend(bx)

The movzx instruction is defined on the same lines. However, instead of performing a sign
extension, it pads the MSB bits with 0s.

movzx eax, bx ; eax = bx (unsigned)

187 c© Smruti R. Sarangi

Semantics Example Explanation

xchg (reg/mem), (reg/mem) xchg eax, [eax + edi] swap the contents of eax
and [eax + edi] atomi-
cally

Table 5.5: Semantics of the xchg instruction

The Atomic Exchange (xchg) Instruction

The xchg instruction swaps the contents of the first and second operands. Here, also we cannot
have two memory operands. This instruction ensures that before the operation is done, no
other operation can read temporary values. For example, if we are swapping the values of eax,
and the memory operand [ebx], there might be an intermediate point in the execution where
the contents of eax are updated, but the contents of [ebx] are not updated. The x86 processor
does not allow other threads (sub-programs that share the address space) to read the contents
of [ebx] at this point. It makes other conflicting instructions in other execution threads wait
till the xchg instruction completes. This property is known as atomicity. An instruction is
atomic if it appears to execute instantaneously. Most of the time, atomic instructions such as
xchg are used for implementing data structures that are shared across multiple threads. The
reader should read Chapter 11 for a detailed discussion on parallel software that uses multiple
threads.

Definition 43
An instruction is atomic if it appears to execute instantaneously.

Example 58
Write a function to swap the contents of eax, and [esp].

Answer:

xchg eax, [esp]

push and pop Instructions

The x86 architecture is explicitly aware of the stack. It has two dedicated instructions for
saving and retrieving operands off the stack. The push instruction pushes data on the stack. In
specific, the push instruction can push the contents of a register, memory location, or immediate
on the stack. It has just one source operand. Its operation is shown in Table 5.6. Conceptually,
it first saves the value of the first operand as a temporary value temp. Then, it decrements the

c© Smruti R. Sarangi 188

Semantics Example Explanation

push (reg/mem/imm) push ecx temp ← ecx; esp ← esp - 4; [esp] ← temp

pop (reg/mem) pop ecx temp ← [esp]; esp ← esp + 4; ecx ← temp

Table 5.6: Semantics of the push and pop instructions

stack pointer, and transfers the temporary value to the top of the stack. In a 32-bit system,
we decrement the stack pointer by 4. When we are pushing a register, the processor knows its
size based on the name of the register. For example, if the name of the register is ax, its size
is 16 bits, and if the name of the register is eax, its size is 32 bits. However, if we are pushing
a memory operand or a constant, the assembler cannot determine the size of the operand. We
might be intending to push 2 bytes, 4 bytes, or 8 bytes on the stack. In this case, it is necessary
to indicate the size of the operand to the assembler such that it can generate appropriate binary
code. In the NASM assembler, we specify this information as follows:

push dword [esp]

The modifier dword (double word) represents the fact that we need to push 4 bytes on the
stack. The starting address of the 4 bytes is stored in esp. Table 5.7 shows the list of modifiers
for different sized data types.

Modifier Size

byte 8 bits

word 16 bits

dword 32 bits

qword 64 bits

Table 5.7: Modifiers in the NASM assembler

For pushing in the value of immediate values, NASM assumes they are by default 32 bits
long (if we are running NASM in 32-bit mode). We can override this setting by specifying a
size modifier (word,dword,...) in the instruction.

On the same lines we can define a pop instruction as shown in Table 5.6. Conceptually,
the pop instruction saves the top of the stack in a temporary location. It then proceeds to
increment the stack pointer by 4 (in the case of 32 bits), and then it saves the temporary value
in the destination. The destination can either be a register or a memory location. The push
and pop instructions thus make working with the stack very easy in x86 assembly programs.

Example 59 What is the final value of ebx?

mov eax, 10

push eax

mov ebx, [esp]

189 c© Smruti R. Sarangi

Answer: 10

Example 60
What is the final value of ebx?

mov ebp, esp

mov eax, 10

mov [esp], eax

push dword [esp]

mov ebx, [ebp-4]

Answer: Note that ebp and esp are initially the same. After we push a value to the stack,
esp gets decremented by 4. Hence, the new location of the top of the stack is equal to ebp−4.
Since we push the value of eax (10) to the top of the stack using the push instruction, the
value of ebx is equal to 10.

Example 61 What is the final value of ebx?

mov eax, 17

push eax

pop dword [esp]

mov dword ebx, [esp]

Answer: 17

5.3.2 ALU Instructions

Let us now discuss the rich set of ALU instructions that x86 processors support.

Add and Subtract Instructions

Table 5.8 shows the add and subtract operations that are typically used in x86 processors. The
basic add and subtract instructions add the values of the first and second operands, and treat
the first operand also as the destination operand. They set the carry and overflow fields of
the eflags register. The adc instruction adds its two source operands, and also adds the value
of the carry bit. Similarly, the sbb instruction subtracts the second operand from the first,
and then subtracts the carry bit from the result. We can use the adc and sbb instructions to
add or subtract very large integers (refer to Example 62 and Example 63). In these examples,

c© Smruti R. Sarangi 190

Semantics Example Explanation

add (reg/mem), (reg/mem/imm) add eax, ebx eax ← eax + ebx

sub (reg/mem), (reg/mem/imm) sub eax, ebx eax ← eax - ebx

adc (reg/mem), (reg/mem/imm) adc eax, ebx eax ← eax + ebx + (carry bit)

sbb (reg/mem), (reg/mem/imm) sbb eax, ebx eax ← eax - ebx - (carry bit)

Table 5.8: Semantics of add and subtract instructions

we first operate on the lower bytes. While operating on the higher bytes we need to take the
carry generated by adding or subtracting the lower bytes into account. We use the adc and sbb
instructions respectively for this purpose.

Example 62
Write an x86 assembly program to add two 64-bit numbers. The first number is stored in
the registers ebx, and eax, where ebx stores the higher byte, and eax stores the lower byte.
The second number is stored in edx, and ecx. Save the result in ebx (higher byte), and
eax(lower byte).
Answer:

add eax, ecx

adc ebx, edx

Example 63
Write an x86 assembly program to subtract two 64-bit numbers. The first number is stored
in the registers ebx, and eax, where ebx stores the higher byte, and eax stores the lower
byte. The second number is stored in edx, and ecx. Subtract the second number from the
first number. Save the result in ebx (higher byte), and eax(lower byte).

Answer:

sub eax, ecx

sbb ebx, edx

inc, dec, and neg Instructions

Table 5.9 shows the semantics of increment (inc), decrement (dec), and negate (neg) instruc-
tions. The inc instruction, adds 1 to the source operand. In this case also the source and
destination operands are the same. Similarly, the dec instruction subtracts 1 from the source
operand, which is also the destination operand. Note that the operand can either be a register

191 c© Smruti R. Sarangi

Semantics Example Explanation

inc (reg/mem) inc edx edx ← edx + 1

dec (reg/mem) dec edx edx ← edx - 1

neg (reg/mem) neg edx edx ← -1 * edx

Table 5.9: Semantics of inc, dec, and neg instructions

or a memory location. The neg instruction computes the negative of the value stored in the
first operand (register or memory). Let us consider an example (see Example 64).

Example 64
Write an x86 assembly code snippet to compute eax = -1 * (eax + 1).
Answer:

inc eax

neg eax

The Compare(cmp) Instruction

Semantics Example Explanation

cmp (reg/mem), (reg/mem/imm) cmp eax, [ebx + 4] compare the values in eax,
and [ebx+4], and set the flags

cmp (reg/mem), (reg/mem/imm) cmp ecx, 10 compare the contents of ecx
with 10, and set the flags

Table 5.10: Semantics of the cmp instructions

Table 5.10 shows the cmp (compare) instruction. It compares two operands and sets the
values of the flags. It performs the comparison by subtracting the value of the second operand
from the first operand. It is conceptually a subtract instruction that does not have a destination
operand.

Multiplication and Division Instructions

Table 5.11 shows the signed multiplication and division instructions in x86. They are known as
imul and idiv respectively. The unsigned variants of the instructions are known as mul and div.
They have exactly the same semantics as their signed counterparts. The signed instructions
are more generic. Hence, we only discuss their operation in this section.

The imul instruction has three variants. The 1-address format variant has 1 source operand,
which can either be a register or a memory address. This source operand is multiplied with the

c© Smruti R. Sarangi 192

Semantics Example Explanation

imul (reg/mem) imul ecx edx:eax ← eax * ecx

imul reg, (reg/mem) imul ecx, [eax + 4] ecx ← ecx * [eax + 4]

imul reg, (reg/mem), imm imul ecx, [eax + 4], 5 ecx ← [eax + 4] * 5

idiv (reg/mem) idiv ebx Divide (edx:eax) by the con-
tents of ebx; eax contains the
quotient, and edx contains the
remainder.

Table 5.11: Semantics of the imul and idiv instructions

contents of eax. Note that when we multiply two 32-bit numbers, we require at most 64 bits
to save the result (see Section 7.2.1). Hence, to avoid overflows, the processor saves the results
in the register pair (edx,eax). edx contains the upper 32 bits, and eax contains the lower 32
bits of the final product. The 2-address format version is similar to other ALU instructions
that we have studied. It multiplies the first and second source operands, and saves the result in
the destination register (which is the first operand). Note that in this variant of the multiply
instruction, the destination is always a register, and the result is truncated to fit in the register.
The imul instruction has another variant that requires 3 operands. Here, it multiplies the
contents of the second and third operands and stores the product in the register specified by
the first operand. For this variant of the imul instruction, the first operand needs to be a
register, the second operand can be a register or memory location, and the third operand needs
to be an immediate value.

The idiv instruction takes just 1 operand (register or memory). It divides the contents of
the register pair (edx:eax) by the contents of the operand. It saves the quotient in eax, and the
remainder in edx. Note that the remainder has the same sign as the dividend. A subtle point
should be noted here. While using a positive dividend that fits in 32 bits, we need to explicitly
set edx to 0, and for a negative dividend that fits in 32 bits, we need to explicitly set edx to -1
(for sign extension).

Let us consider a set of examples.

Example 65
Write an assembly code snippet to multiply 3 with -17, and save the result in eax.

Answer:

mov ebx, 3

imul eax, ebx, -17

193 c© Smruti R. Sarangi

Example 66
Write an assembly code snippet to compute k3, where k is the content of ecx, and save the
result in eax.

Answer:

mov eax, ecx

imul ecx

imul ecx

Example 67
Write an assembly code snippet to divide -50 by 3. Save the quotient in eax, and remainder
in edx.

Answer:

mov edx, -1

mov eax, -50

mov ebx, 3

idiv ebx

At the end eax contains -16, and edx contains -2.

Logical Instructions

Semantics Example Explanation

and (reg/mem), (reg/mem/imm) and eax, ebx eax ← eax AND ebx

or (reg/mem), (reg/mem/imm) or eax, ebx eax ← eax OR ebx

xor (reg/mem), (reg/mem/imm) xor eax, ebx eax ← eax XOR ebx

not (reg/mem) not eax eax ← ∼ eax

Table 5.12: Semantics of and, or, xor, and not instructions

Table 5.12 shows the semantics of four commonly used logical operations. and, or, and xor
instructions have exactly the same format as add and sub instructions, and most of the other
2-address format instructions. They compute the bitwise AND, OR, and exclusive OR of the
first two operands respectively. The not instruction computes the 1’s complement (flips each
bit) of the source operand, which is also the destination operand (format is similar to other
1-address format instructions such as inc, dec, and neg).

c© Smruti R. Sarangi 194

Shift Instructions

Semantics Example Explanation

sar (reg/mem), imm sar eax, 3 eax ← eax ≫ 3

shr (reg/mem), imm shr eax, 3 eax ← eax � 3

sal/shl (reg/mem), imm sal eax, 2 eax ← eax � 2

Table 5.13: Semantics of shift instructions

Table 5.13 shows the semantics of shift instructions. sar (shift arithmetic right) performs
an arithmetic right shift by replicating the sign bit. shr (shift logical right), shifts the first
operand to the right. Instead of replicating the sign bit, it fills the MSB bits with 0s. sal
and shl are the same instruction. They perform a left shift. Recall that we do not have an
arithmetic left shift operation. Let us consider some examples.

Example 68
What is the final value of eax?

mov eax, 0xdeadbeef

sal eax, 4

Answer: 0xeadbeef0

Example 69 What is the final value of eax?

mov eax, 0xdeadbeef

sar eax, 4

Answer: 0xfdeadbee

Example 70 What is the final value of eax?

mov eax, 0xdeadbeef

shr eax, 4

Answer: 0xdeadbee

195 c© Smruti R. Sarangi

5.3.3 Branch/ Function Call Instructions

Conditional and Unconditional Branch Instructions

Semantics Example Explanation

jmp 〈label〉 jmp .foo jump to .foo

j 〈condcode〉 j 〈condcode〉 .foo jump to .foo if the 〈condcode〉 con-
dition is satisfied

Table 5.14: Semantics of branch instructions

Condition code Meaning

o Overflow

no No overflow

b Below (unsigned less than)

nb Not below (unsigned greater than or equal to)

e/z Equal or zero

ne/nz Not equal or not zero

be Below or equal (unsigned less than or equal)

s Sign bit is 1 (negative)

ns Sign bit is 0 (0 or positive)

l Less than (signed less than)

le Less than or equal (signed)

g Greater than (signed)

ge Greater than or equal (signed)

Table 5.15: Condition codes in x86

Table 5.14 shows the semantics of branch instructions. jmp is an unconditional branch
instruction that branches to a label. The assembler internally replaces the label by the PC of
the label. x86 defines a series of branch instructions with the j prefix. These are conditional
branch instructions. The j prefix is followed by the branch condition. The conditions are shown
in Table 5.15. For example, the instruction je means jump if equal. If the last comparison has
resulted in an equality, then the processor branches to the label; otherwise, it executes the
next instruction. If the condition is not satisfied, the conditional branch is equivalent to a nop
instruction.

Now that we have introduced branch instructions, we can implement complex algorithms
using loops. Let us look at a couple of examples. We would like to advise the reader at this point
that the best method to learn assembly language is by actually writing assembly programs. No
amount of theoretical reading can substitute for actual practice.

c© Smruti R. Sarangi 196

Example 71
Write a program in x86 assembly to add the numbers from 1 to 10.
Answer:

x86 assembly code
1 mov eax, 0 ; sum = 0

2 mov ebx, 1 ; idx = 1

3 .loop:

4 add eax, ebx ; sum += idx

5 inc ebx ; idx ++

6 cmp ebx, 10 ; compare idx and 10

7 jle .loop ; jump if idx <= 10

Here, we store the running sum in eax and the index in ebx. In Line 4, we add the
index to the sum. We subsequently, increment the index, and compare it with 10 in Line 6.
If it is less than or equal to 10, then we continue iterating. eax contains the final value.

Example 72
Write a program in x86 assembly to test if a number stored in eax is prime. Save the result
in eax. If the number is prime, set eax to 1, otherwise set it to 0. Assume that the number
in eax is greater than 10.
Answer:

x86 assembly code
1 mov ebx, 2 ; starting index

2 mov ecx, eax ; ecx contains the original number

3 .loop:

4 mov edx, 0 ; required for correct division

5 idiv ebx

6 cmp edx, 0 ; compare the remainder

7 je .notprime ; number is composite

8 inc ebx

9 mov eax, ecx ; set the value of eax again

10 cmp ebx, eax ; compare the index and the number

11 jl .loop

12

13 ; end of the loop

14 mov eax, 1 ; number is prime

15 jmp .exit ; exit

16

17 .notprime:

18 mov eax, 0

19 .exit:

197 c© Smruti R. Sarangi

In this algorithm, we keep on dividing the input (stored in eax) by a monotonically
increasing index. If the remainder is equal to 0 in any iteration, then the number is com-
posite (non prime). Otherwise, the number is prime. In specific, we perform the division
in Line 5, and jump to the label .notprime if the remainder (stored in edx) is 0. Otherwise,
we increment the index in ebx, and keep iterating. Note that in each iteration, we need to
set the values of eax and edx because they are overwritten by the idiv instruction.

Example 73
Write a program in x86 assembly to find the factorial of a number stored in eax. Save your
result in ecx. You can assume that the number is greater than 10.
Answer:

x86 assembly code
1 mov ebx, 2 ; idx = 2

2 mov ecx, 1 ; prod = 1

3

4 .loop:

5 imul ecx, ebx ; prod *= idx

6 inc ebx ; idx++

7 cmp ebx, eax ; compare num (number) and idx

8 jle .loop ; jump to .loop if idx <= num

In Line 2, we initialise the product to 1. Subsequently, we multiply the index with the
product in Line 5. We then increment the index, and compare it with the input stored in
eax. We keep on iterating till the index is less than or equal to the input.

Function Call and Return Instructions

Semantics Example Explanation

call 〈label〉 call .foo Push the return address on the
stack. Jump to the label .foo.

ret ret Return to the address saved on the
top of the stack, and pop the entry

Table 5.16: Semantics of the function call and return instructions

Unlike ARM and SimpleRisc , x86 does not have a return address register. The call in-
struction pushes the return address on the stack, and jumps to the beginning of the function
as explained in Table 5.16. Similarly, the ret instruction jumps to the entry at the top of the

c© Smruti R. Sarangi 198

stack. The entry at the top of the stack needs to contain the return address. The ret instruc-
tion subsequently pops the stack and removes the return address. Let us now consider a set of
examples.

Example 74
Write a recursive function to compute the factorial of a number (≥ 1) stored in eax. Save
the result in ebx.
Answer:

x86 assembly code
1 factorial:

2 mov ebx, 1 ; default return value

3 cmp eax, 1 ; compare num (input) with 1

4 je .return ; return if input is equal to 1

5

6 ; recursive step

7 push eax ; save input on the stack

8 dec eax ; num--

9 call factorial ; recursive call

10 pop eax ; retrieve input

11 imul ebx, eax ; prod = prod * num

12

13 .return:

14 ret ; return

In the factorial function, we assume that the input (num) is stored in eax. We first
compare the input with 1. If it is equal to 1, then we return 1 (Lines 2 to 4). However, if the
input is greater than 1, then we save the input by pushing it to the stack (7). Subsequently,
we decrement it and recursively call the factorial function in Line 9. The result of the
recursive call is stored in ebx. To compute the result (in ebx), we multiply ebx with num
(stored in eax) in Line 11.

In Example 74 we pass arguments through registers. We use the stack to only store values
that are overwritten by the callee function. Let us now use the stack to pass arguments to the
factorial function (see Example 75)

Example 75
Write a recursive function to compute the factorial of a number (≥ 1) stored in eax. Save
the result in ebx. Use the stack to pass arguments.
Answer:

x86 assembly code
1

2 factorial:

199 c© Smruti R. Sarangi

3 mov eax, [esp+4] ; get the value of eax from the stack

4 mov ebx, 1 ; default return value

5 cmp eax, 1 ; compare num (input) with 1

6 je .return ; return if input is equal to 1

7

8 ; recursive step

9 push eax ; save eax on the stack

10 dec eax ; num--

11 push eax ; push the argument

12 call factorial ; recursive call

13 pop eax ; pop the argument

14 pop eax ; retrieve the value of eax

15 imul ebx, eax ; prod = prod * num

16

17 .return:

18 ret ; return

Here, we use the stack to pass arguments. Since the stack pointer gets automatically
decremented by 4 after a function call, the argument eax is available at [esp+4] because we
push it on the stack just before we call the function. To call the factorial function again,
we push eax on the stack, and then pop it out after the function returns.

Let us now assume that we have a lot of arguments. In this case, we need to push and
pop a lot of arguments from the stack. It is possible that we might lose track of the order of
push and pop operations, and bugs might be introduced in our program. Hence, if we have a
lot of arguments, it is a better idea to create space in the stack by subtracting the estimated
size of the activation block from the stack pointer and moving data between the registers and
stack using regular mov instructions. Let us now modify our factorial example to use mov
instructions instead of push and pop instructions (see Example 76).

Example 76
Write a recursive function to compute the factorial of a number (≥ 1) stored in eax. Save
the result in ebx. Use the stack to pass arguments. Avoid push and pop instructions.
Answer:

x86 assembly code
1 factorial:

2 mov eax, [esp+4] ; get the value of eax from the stack

3 mov ebx, 1 ; default return value

4 cmp eax, 1 ; compare num (input) with 1

5 jz .return ; return if input is equal to 1

6

c© Smruti R. Sarangi 200

7 ; recursive step

8 sub esp, 8 ; create space on the stack

9 mov [esp+4], eax ; save the input eax on the stack

10 dec eax ; num--

11 mov [esp], eax ; push the argument

12 call factorial ; recursive call

13 mov eax, [esp+4] ; retrieve eax

14 imul ebx, eax ; prod = prod * num

15 add esp, 8 ; restore the stack pointer

16

17 .return:

18 ret ; return

In this example, we have avoided push and pop instructions altogether. We instead
create space on the stack by subtracting 8 bytes from esp in Line 8. We use 4 bytes to save
the input (in eax) for later use. We use the rest of the 4 bytes to send the argument to the
recursive function call. After the function returns, we retrieve the value of eax from the
stack in Line 13. Lastly, we restore the stack pointer in Line 15.

However, this method is also not suitable for large functions in complex programming lan-
guages such as C++. In a lot of C++ functions, we dynamically allocate space on the stack. In
such cases, most of the time, we do not know the size of the activation block (see Section 3.3.10)
of a function in advance. Hence, deallocating an activation block becomes difficult. We need
to dynamically keep track of the size of the activation block of the function. This introduces
additional complexity, and additional code. It is a better idea to save the value of esp in a
dedicated register at the beginning of a function. At the end of the function, we can transfer
the saved value in the register to esp. This strategy effectively destroys the activation block.
Most of the time, we use the ebp (base pointer) register to save the value of esp at the beginning
of a function. This register is also referred to as the frame pointer. Now, it is possible that a
called function might follow the same strategy, and overwrite the value of ebp set by the caller.
Thus, in this case, ebp needs to be a callee saved register. If an invoked function overwrites
the value of ebp, it needs to ensure that by the time it returns to the caller, the value of ebp
is restored. By using the base pointer, we do not need to explicitly remember the size of the
activation block. We dynamically allocate data structures on the stack.

Let us augment our running example with this feature (see Example 77).

Example 77
Write a recursive function to compute the factorial of a number (≥ 1) stored in eax. Save
the result in ebx. Use the stack to pass arguments. Avoid push and pop instructions.
Secondly, use the ebp register to store the value of the stack pointer.
Answer:

201 c© Smruti R. Sarangi

x86 assembly code
1 factorial:

2 mov eax, [esp+4] ; get the value of eax from the stack

3

4 push ebp ; save ebp

5 mov ebp, esp ; save the stack pointer

6

7 mov ebx, 1 ; default return value

8 cmp eax, 1 ; compare num (input) with 1

9 je .return ; return if input is equal to 1

10

11 ; recursive step

12 sub esp, 8 ; create space on the stack

13 mov [esp+4], eax ; save input on the stack

14 dec eax ; num--

15 mov [esp], eax ; push the argument

16 call factorial ; recursive call

17 mov eax, [esp+4] ; retrieve input

18 imul ebx, eax ; prod = prod * num

19

20 .return:

21 mov esp, ebp ; restore the stack pointer

22 pop ebp ; restore ebp

23 ret ; return

Here, we save the old value of ebp on the stack, and set its new value to the stack pointer
in Lines 4 and 5, respectively. At the end of the function, we restore the values of esp and
ebp in Lines 21 and 22.

Stack Management Instructions – enter and leave

Semantics Example Explanation

enter imm, 0 enter 32, 0 push ebp (push the value of ebp on
the stack); mov ebp, esp (save the
stack pointer in ebp); esp ← esp -
32

leave leave mov esp, ebp (restore the value of
esp); pop ebp (restore the value of
ebp)

Table 5.17: Semantics of the enter and leave instructions.

c© Smruti R. Sarangi 202

The four extra lines added in Example 77 are fairly generic, and are typically a part of most
large functions. Programmers can add them if they are writing assembly code, or compilers can
add them during automatic code generation. In either case, using the base pointer is a very
convenient mechanism to manage the stack, and to destroy the activation block. Since these
set of instructions are so commonly used, the designers of the x86 ISA decided to dedicate two
specialised instructions for this purpose. The enter instruction pushes the value of ebp on the
stack, and sets its new value to be equal to the stack pointer. Additionally, it is also possible
to set the initial size of the activation block. The first argument takes the size of the activation
block. If we specify 32 as the first argument, then the enter instruction decrements esp by 32.
Note that during the course of execution of the function, the size of the activation block might
continue to vary. The second argument for the enter instruction corresponds to the nesting
level of the function. We shall refrain from discussing it here. Interested readers can refer to
the references mentioned at the end of the chapter. We shall simply use the value of 0 for the
second argument.

The leave instruction performs the reverse set of computations. It first restores the value
of esp, and then the value of ebp (see Table 5.17). Note that the leave instruction is meant to
be invoked just before the ret instruction. We can thus augment Example 77 to use the enter
and leave instructions (see Example 78). Secondly, we can omit the statement that subtracted
8 from esp (Line 12) in Example 77 because this functionality is now built in to the enter
instruction.

Example 78
Write a recursive function to compute the factorial of a number (≥ 1) stored in eax. Save
the result in ebx. Use the stack to pass arguments. Avoid push and pop instructions. Use
the enter and leave instructions to buffer the values of ebp and esp.
Answer:

x86 assembly code
1

2 factorial:

3 mov eax, [esp+4] ; get the value of eax from the stack

4

5 enter 8, 0 ; save ebp and esp, decrement esp by 8

6

7 mov ebx, 1 ; default return value

8 cmp eax, 1 ; compare num (input) with 1

9 je .return ; return if the input is equal to 1

10

11 ; recursive step

12 mov [esp+4], eax ; save input on the stack

13 dec eax ; num--

14 mov [esp], eax ; push the argument

15 call factorial ; recursive call

16 mov eax, [esp+4] ; retrieve input

17 imul ebx, eax ; prod = prod * num

203 c© Smruti R. Sarangi

18

19 .return:

20 leave ; load esp and ebp

21 ret ; return

Lastly, we should mention that x86 processors have a nop instruction that does not do any-
thing at all. It is mainly used for the purpose of ensuring correctness in modern processors (see
Chapter 9), and for ensuring that blocks of code are aligned to 16 byte or 64 byte boundaries.
We require the latter functionality for better behaviour at the level of the memory system.

5.3.4 Advanced Memory Instructions

String Instructions

Semantics Example Explanation

lea reg, mem lea ebx, [esi + edi*2 + 10] ebx ← esi + edi*2 + 10

stos(b/w/d/q) stosd [edi]← eax; edi← edi + 4 * (−1)DF

lods(b/w/d/q) lodsd eax ← [esi]; esi ← esi + 4 * (−1)DF

movs(b/w/d/q) movsd [edi] ← [esi] ; esi ← esi + 4 *
(−1)DF ; edi ← edi + 4 * (−1)DF

std std DF ← 1

cld cld DF ← 0

DF → Direction Flag

Table 5.18: Semantics of advanced memory instructions

The lea instruction stands for load effective address. It has a register operand, and a memory
operand. The role of the lea instruction is to copy the address of the memory operand (not its
contents) to the register.

Let us now introduce a special set of instructions known as string instructions. We shall
introduce the following instructions: stos, lods, and movs. The stos instruction transfers data
from the eax register to the location specified by the edi register. It comes in four flavours
depending upon the amount of data that we wish to transfer. It uses the ’b’ suffix for 1 byte,
’w’ for 2 bytes, ’d’ for 4 bytes, and ’q’ for 8 bytes. We show an example of the stosd instruction
in Table 5.18. The stosd instruction transfers the contents of eax (4 bytes) to the memory
address specified by edi. Subsequently, this instruction increments or decrements the contents
of edi by 4 depending on the direction flag. The direction flag (DF) is a field in the flags
register similar to zero, carry, and overflow. If the direction flag is set (equal to 1), then the
stos instruction subtracts the size of the operand from the contents of edi. Conversely, if DF
is equal to 0, then the stos instruction adds the size of the operand to edi.

We introduce two 0-address format instructions namely std and cld to set and reset the
direction flag respectively.

c© Smruti R. Sarangi 204

The lods and movs set of instructions are defined in a similar manner. For example, the
lodsd instruction transfers the contents of the memory location specified by esi to eax. It
subsequently increments or decrements the contents of esi by the size of the operands based
on the value of DF . The movs instruction combines the functionality of lods and stos. It first
fetches a set of bytes from the memory address stored in esi. Subsequently, it writes the bytes
to the memory address specified by edi. It increments or decrements esi and edi based on the
value of the direction flag.

Trivia 2
The si register (16-bit version of esi) stands for the source index register. Similarly, the di
register stands for the destination index register.

Let us now look at a set of examples.

Example 79 What is the value of ebx?

lea edi, [esp+4]

mov eax, 21

stosd ; saves eax in [edi]

mov ebx, [esp+4]

Answer: We save 21 (eax) in the memory address specified in edi by using the stosd
instruction. This memory address is equal to (esp + 4). After executing the stosd instruc-
tion, we load the contents of this memory address into ebx. The result is equal to the value
of eax seen by the stosd instruction, which is 21.

Example 80 What is the value of eax after executing this code snippet?

lea esi, [esp+4]

mov dword [esp+4], 19

lodsd ; eax <-- [esi]

Answer: Note the use of the modifier dword here. We need to use it because we are
saving an immediate to a memory location, and we need to specify its size. The value of
eax is equal to the value stored in [esp+4], which is 19.

205 c© Smruti R. Sarangi

Example 81 What is the value of eax after executing this code snippet?

mov dword [esp+4], 192

lea esi, [esp+4]

lea edi, [esp+8]

movsd

mov eax, [esp+8]

Answer: The movsd instruction transfer 4 bytes from the memory address specified in esi
to the memory address specified in edi. Since we write 192 to the memory address specified
in esi, we shall read back the same value in the last line.

Instructions with the rep Prefix

The string instructions can additionally increment or decrement the values of esi and edi. We
have not used this feature up till now. Let us use this feature to transfer an array of 10 integers
from one location to another. This feature is very frequently used in modern processors to
transfer large amounts of data between two locations.

Let us first show a conventional solution in Example 82.

Example 82 Write a program to create a copy of a 10 element integer array. Assume that
the starting address of the original array is stored in esi, and the starting address of the
destination array is stored in edi.
Answer:

mov ebx, 0 ; initialise

.loop:

mov edx, [esi+ebx*4] ; transfer the contents

mov [edi + ebx*4], edx

inc ebx ; increment the index

cmp ebx, 10 ; loop condition

jne .loop

Example 83 Write a program to create a copy of a 10 element integer array. Assume that
the starting address of the original array is stored in esi, and the starting address of the
destination array is stored in edi. Use the movsd instruction.
Answer:

c© Smruti R. Sarangi 206

cld ; DF = 0

mov ebx, 0 ; initialisation of the loop index

.loop:

movsd ; [edi] <-- [esi]

inc ebx ; increment the index

cmp ebx, 10 ; loop condition

jne .loop

As compared to Example 82, we reduce the number of instruction in the loop from 5 to
4.

In Example 83, we use the movsd instruction to replace a pair of load/store instructions
with just one instruction. This reduces the number of instructions in the loop from 5 to 4. We
were not able to get a bigger reduction because we still need to update the loop index, and
compute the loop condition.

To make our code look even more elegant, the x86 ISA defines a rep prefix that can used
with any string instruction. The rep prefix instructs the processor to execute a single string
instruction n times, where n is the value stored in the ecx register. Every time the processor
executes the string instruction, it decrements ecx. At the end, the value of ecx becomes 0. Its
semantics is shown in Table 5.19.

Semantics Example Explanation

rep inst rep movsd val ← ecx; Execute the movsd in-
struction val times; ecx ← 0

Table 5.19: Semantics of rep instructions

Example 84 Write a program to create a copy of a 10 element integer array. Assume that
the starting address of the original array is stored in esi, and the starting address of the
destination array is stored in edi. Use the rep prefix with the movsd instruction.
Answer:

cld ; DF = 0

mov ecx, 10 ; Set the count to 10

rep movsd ; Execute movsd 10 times

The rep prefix thus allows us to fold an entire loop into just one instruction as shown in
Example 84. The rep prefix is meant to be used with string instructions for copying large regions

207 c© Smruti R. Sarangi

of data. It makes the code for operating on strings of data very compact and elegant. The
rep instruction has two variants namely repe, and repne. These instructions use an additional
termination condition, along with the value of ecx. Instructions prefixed with repe can also
terminate when the zero flag becomes 0, and an instruction prefixed with repne also terminates
when the zero flag becomes 1.

5.4 Floating Point Instructions

x86 has a large set of floating point instructions. Let us first give a historical perspective. The
early 8086 processor, and many of its successors till the Intel 486 did not have a floating point
unit in the processor. They used a separate co-processor chip called the x87 that provided
floating point capability. However, after the release of Intel 486, the floating point unit has
been an integral part of the x86 architecture. Hence, many features of the floating point ISA
are artefacts of the older era, in which a floating point instruction was essentially a message to
an external processing unit.

One of the direct consequences of such a design strategy is that there are no direct commu-
nication paths between integer registers, and floating point registers. Secondly, it is not possible
to load an immediate into a floating point register by specifying its value in an instruction. We
can only load the value of floating point registers via memory. For example, if we wish to store
a floating point constant in a floating point register, then we need to first load the constant in
memory. Subsequently, we need to issue a floating point load instruction to load the constant
into a floating point register. Figure 5.3 shows a conceptual organisation of the x86 ISA. The
integer instructions use the integer registers, and they have their own processor state. Likewise,
the floating point instructions use their set of registers, and have their own state. Both the
types of instructions, however, share the memory.

Memory

Integer
registers

FP
registers

Constants

Figure 5.3: Conceptual organisation of the x86 ISA

Let us start by looking at methods to load values into the floating point registers. We
shall refer to the floating point register stack as the FP stack and designate the floating point
registers (st0 . . . st7) as reg while describing the semantics of instructions. We shall also
abbreviate floating point as FP for the sake of brevity.

c© Smruti R. Sarangi 208

5.4.1 Data Transfer Instructions

Load Instruction

Semantics Example Explanation

fld mem fld dword [eax] Pushes an FP number stored in
[eax] to the FP stack

fld reg fld st1 Pushes the contents of st1 to the top
of the stack

fild mem fild dword [eax] Pushes an integer stored in [eax] to
the FP stack after converting it to a
32-bit floating point number

Table 5.20: Floating point load instructions

Table 5.20 shows the semantics of the floating point load instructions. The most commonly
used floating point load instruction is the fld instruction. The first variant of the fld instruction
can load a 32-bit floating point value from memory, and push it to the FP stack. We can use
our standard addressing modes with integer registers as described in Section 5.2.4 for specifying
an address in memory. The second variant can push the contents of an existing FP register
on the FP stack. We can alternatively use the fild instruction that can read an integer from
memory, convert it to floating point, and push it on the FP stack. Let us consider an example.

Example 85
Push the constant, 2.392, on the FP stack.
Answer: We need to first define the constant 2.392 in the data section. In NASM, we
do this as follows.

section .data

num: dd 2.392

We need to embed this code snippet at the beginning of the assembly file. Here, the
declaration “section .data” means that we are declaring the data section. In the data section,
we further declare a variable, num, that is a double word (32 bits, specified by dd), and its
value is 2.392. Let us now push this value to the FP stack. We need to embed the following
code snippet in the main assembly function.

fld dword [num]

The assembler treats num as a memory address. While generating code, it will replace
it with its actual address. However, in an assembly program, we can seamlessly treat num
as a valid memory address, and its contents can thus be represented as [num]. The fld
instruction in this code snippet loads 32 bits (dword) from num to the top of the FP stack.

209 c© Smruti R. Sarangi

Exchange Instruction

Semantics Example Explanation

fxch reg fxch st3 Exchange the contents of st0 and
st3

fxch fxch Exchange the contents of st0 and
st1

Table 5.21: Floating point exchange instructions

Table 5.21 shows the format of the floating point exchange instruction, fxch. It exchanges
the contents of two floating point registers. The 1-address format fxch instruction exchanges
the contents of the register specified as the first operand and st0. If we do not specify any
operands, then the processor exchanges st0 and st1 (the top of the stack, and the entry just
below the top of the stack).

Store Instructions

Semantics Example Explanation

fst mem fst dword [eax] [eax] ← st0

fst reg fst st4 st4 ← st0

fstp mem fstp dword [eax] [eax] ← st0; pop the FP stack

fist mem fist dword [eax] [eax] ← int(st0)

fistp mem fistp dword [eax] [eax] ← int(st0); pop the FP stack

Table 5.22: Floating point store instructions

Let us now look at the store instructions in Table 5.22. The format is similar to the
floating point load instructions. We have three variants of the basic fst instruction. The first
variant requires a single memory operand. It stores the contents of st0 in the memory location
specified by the memory operand. The second variant requires a FP register operand and stores
the contents of st0 in the FP register.

The third variant uses the ‘p’ suffix which is a generic suffix and is used by many other
instructions also. The fstp instruction initially saves the value contained in st0 in the memory
location specified by the first operand, and then pops the stack. Since the stack size is limited,
it is often necessary to pop the stack to create more space. When we are storing st0, we are
saving a copy of its contents in main memory. Hence, it makes sense to have a variant of the
fst instruction that can free the entry from the stack by popping it.

x86 has additional support for conversion of floating point values to integers. We can use
the fist instruction that first converts the contents of st0 to a signed integer by rounding it
and then saves it in the location specified by the memory operand. Note that we always use a
modifier (byte/word/dword/qword) for memory operands such that we can specify the number

c© Smruti R. Sarangi 210

of bytes that need to be transferred. The fist instruction also supports the ‘p’ suffix (see the
semantics of the fistp instruction in Table 5.22).

Example 86
Transfer the contents of st0 to eax by converting the save FP number to an integer.
Answer:

fist dword[esp]

mov eax, [esp]

5.4.2 Arithmetic Instructions

Let us now consider arithmetic instructions. The floating point ISA in x86 has rich support
for floating point operations, and is thus extensively used in numerical computing. Let us start
with the basic floating point add instruction, and take a look at all of its variants.

Add Instruction

Semantics Example Explanation

fadd mem fadd dword [eax] st0 ← st0 + [eax]

fadd reg , reg fadd st0, st1 st0← st0 + st1 (one of the registers
has to be st0)

faddp reg faddp st1 st1 ← st0 + st1; pop the FP stack

fiadd mem fiadd dword [eax] st0 ← st0 + float([eax])

Table 5.23: Floating point add instructions

The semantics of the floating point add instructions is shown in Table 5.23. The basic fadd
instruction has two variants. The first variant uses a single memory operand. Here, we add
the value of the floating point number contained in the memory location to the contents of st0.
The result is also stored in st0. The second variant of the fadd instruction uses two floating
point registers as arguments. It adds the contents of the second register to the first register.

The fadd instruction follows the same pattern as the floating point load and store instruc-
tions. It accepts the ‘p’ suffix. The faddp instruction typically takes 1 argument, which is a
register. We show an example of the instruction faddp st1 in Table 5.23. Here, we add the
contents of st0 to st1, and save the result in st1. Then, we pop the stack. For working with
integers, we can use the fiadd instruction that takes the address of an integer in memory. It
adds this integer to st0, and saves the results in st0.

Subtraction, Multiplication, and Division Instructions

x86 defines subtraction, multiplication, and division instructions that have exactly the same
format as the fadd instructions, and all of its variants as shown in Table 5.23. Let us just show

211 c© Smruti R. Sarangi

the basic form of each instruction that uses a single memory operand in Table 5.24.

Semantics Example Explanation

fsub mem fsub dword [eax] st0 ← st0 - [eax]

fmul mem fmul dword [eax] st0 ← st0 * [eax]

fdiv mem fdiv dword [eax] st0 ← st0 / [eax]

Table 5.24: Floating point subtract, multiply, and divide instructions

Example 87
Compute the arithmetic mean of two integers stored in eax and ebx. Save the result (in
64 bits) in esp + 4. Assume that the data section contains the integer, 2, in the memory
address two.

Answer:

; load the inputs to the FP stack

mov [esp], eax

mov [esp+4], ebx

fild dword [esp]

fild dword[esp + 4]

; compute the arithmetic mean

fadd st0, st1

fdiv dword [two]

; save the result (converted to 64 bits) to [esp+4]

; use the qword identifier

fstp qword [esp + 4]

5.4.3 Instructions for Special Functions

Semantics Example Explanation

fabs fabs st0 ← |st0|
fsqrt fsqrt st0 ←

√
st0

fcos fcos st0 ← cos(st0)

fsin fsin st0 ← sin(st0)

Table 5.25: Floating point instructions for special functions

c© Smruti R. Sarangi 212

The greatness of the x86 ISA is that it supports trigonometric functions, and complex
mathematical operations such as the square root, and log operations (not covered in this book).
Table 5.25 shows the x86 instructions for computing the values of special functions. The fabs
function computes the absolute value of st0, the fsqrt function computes the square root, the
fcos and fsin functions compute the sine and cosine of the value stored in st0 respectively. All
of these instructions use st0 as their default operand, and also write the result back to st0.

Example 88
Compute the geometric mean of two integers stored in eax and ebx. Save the result (in 64
bits) in esp+ 4.

Answer:

; load the inputs to the FP stack

mov [esp], eax

mov [esp+4], ebx

fild dword [esp]

fild dword[esp + 4]

; compute the geometric mean

fmul st0, st1

fsqrt

; save the result (converted to 64 bits) to [esp+4]

; use the qword identifier

fstp qword [esp + 4]

5.4.4 Compare Instruction

Semantics Example Explanation

fcomi reg , reg fcomi st0, st1 compare st0 and st1, and set the
eflags register (first register has to
be st0)

fcomip reg , reg fcomi st0, st1 compare st0 and st1, and set the
eflags register; pop the FP stack

Table 5.26: Floating point compare instructions

The x86 ISA has many compare instructions. In this section, we shall present only one
compare instruction called fcomi that compares two floating point values saved in registers,
and sets the eflags register. Table 5.26 shows the semantics of the fcomi instruction with and

213 c© Smruti R. Sarangi

without the ‘p’ suffix. Once, the eflags register is set, we can use regular branch instructions for
implementing control flow within the program. Note that in x86 we need to use the condition
codes for unsigned comparison in this case. Most of the time programmers make the mistake
of using the condition codes for signed comparison such as l, le, g, or ge for testing the results
of floating point comparison. This leads to wrong results. We should instead use the a (above)
and b (below) condition codes.

Let us now consider an example (Example 89) that computes the value of sin(2θ), and veri-
fies if it is equal to 2sin(θ)cos(θ). The readers should recall from their high school trigonometry
class that both these expressions are actually equal, and one can be derived from the other.
Example 89 experimentally verifies this fact for any given value of θ. We compute the value of
sin(2θ) and 2sin(θ)cos(θ), and compare them using fcomi. Note that floating point arithmetic
is approximate (see Section 2.4.6). Hence, the correct way to compare floating point numbers is
to first subtract them, compute the absolute value of the difference, and compare the difference
with a threshold. The threshold is typically a small number (10−5 in our case). If the difference
is less than a threshold, we can infer equality.

Example 89
Compare sin(2θ) and 2sin(θ)cos(θ). Verify that they have the same value for any given
value of θ. Assume that theta is stored in the data section at the label theta, and the
threshold for floating point comparison is stored at label threshold. Save the result in eax
(1 if equal, and 0 if unequal).
Answer:

; compute sin(2*theta), and save in [esp]

fld dword [theta]

fadd st0 ; st0 = theta + theta

fsin

fstp dword [esp]

; compute (2*sin(theta)*cos(theta))

fld dword [theta]

fst st1

fsin

fxch

fcos ; st0 = cos(theta)

fmul st1 ; st0 = sin(theta) * cos (theta)

fadd st0 ; st0 = 2 * st0

; compute the modulus of the difference

fld dword [esp] ; load (sin(2*theta))

fsub st0, st1

fabs

; compare

c© Smruti R. Sarangi 214

fld dword [threshold]

fcomi st0, st1 ; compare

ja .equal

mov eax, 0

jmp .exit

.equal:

mov eax, 1

.exit:

After the end of a function, it is time to clean up the floating point registers, and stack
such that another function can use them. Let us conclude this section by taking a look at the
cleanup instructions.

5.4.5 Stack Cleanup Instructions

Semantics Example Explanation

ffree reg ffree st4 Free st4

finit finit Reset the status of the FP unit in-
cluding the FP stack and registers

Table 5.27: Floating point stack cleanup instructions

Table 5.27 shows two instructions for cleaning up the FP stack. The ffree instruction
sets the status of the register specified as an operand to empty. Using ffree to free all the
registers is a quick solution. For freeing the entire stack we need to invoke the ffree instruction
iteratively. For deleting the entire FP stack, a cleaner solution is to use the finit instruction
that does not take any arguments. It resets the FP unit, frees all the registers, and resets the
stack pointer. The finit instruction ensures that an unrelated function can start from a clean
state.

5.5 Encoding the x86 ISA

We have taken a look at a wide variety of x86 instructions, addressing modes, and instruction
formats. It is truly a CISC instruction set. However, the process of encoding is more regular.
Almost all the instructions follow a standard format. In the case of ARM and SimpleRisc , we
described the process of encoding instructions in great detail. We shall refrain from doing this
here for the sake of brevity. Secondly, an opcode in x86 typically has a variety of modes, and
prefixes. We do not want to digress from the main theme of this book by describing x86 in
such level of detail. Let us start out by looking at the broad structure of an encoded machine
instruction.

215 c© Smruti R. Sarangi

5.5.1 High Level View of x86 Instruction Encoding

Figure 5.4 shows the structure of an encoded instruction in binary.

Prefix
1-4 bytes
(optional)

Opcode
1-3 bytes

ModR/M
1 byte

(optional)

SIB
1 byte

(optional)

Displacement

1/2/4 bytes
(optional)

Immediate

1/2/4 bytes
(optional)

Figure 5.4: x86 binary instruction format

The first set of 1-4 bytes are used to encode the prefix of the instruction. The rep prefix is
one such example of a prefix. There are many other kinds of prefixes that can be encoded in
the first group of 1-4 bytes.

The next 1-3 bytes are used for encoding the opcode. Recall that the entire x86 ISA has
hundreds of instructions. Secondly, the opcode also encodes the format of operands. For
example, the add instruction can either have its first operand as a memory operand, or have
its second operand as a memory operand. This information is also a part of the opcode.

The next two bytes are optional. The first byte is known as the ModR/M byte, which
specifies the address of the source and destination registers, and the second byte is known as
the SIB (scale-index-base) byte. This byte records the parameters for the base-scaled-index
and base-scaled-index-offset addressing modes. A memory address might optionally have a
displacement (also referred to as the offset in this book) that can be as large as 32 bits. We
can thus optionally have 4 more bytes in an instruction to record the value of the displacement.
Lastly, some x86 instructions accept an immediate as an operand. The immediate can also be
as large as 32 bits. Hence, the last field, which is again optional, is used to specify an immediate
operand.

Let us now discuss the ModR/M and SIB bytes in more detail.

ModR/M Byte

The ModR/M byte has three fields as shown in Figure 5.5.

Mod Reg R/M

2 3 3

Figure 5.5: The ModR/M byte

The two MSB bits of the ModR/M byte contain the Mod field. The Mod field indicates
the addressing mode of the instruction. It can take 4 values as shown in Table 5.28.

The Mod field indicates the addressing mode of one of the operands. It can either be a
register or a memory operand. If it is a memory operand, then we have three options. We

c© Smruti R. Sarangi 216

Mod bits Semantics

00 We use the register indirect addressing mode for one of the operands.
When R/M = 100, we use the base-scaled-index addressing mode, and
there is no displacement. The ids of the scale, index, and base are
specified in the SIB byte. When R/M = 101, the memory address only
consists of the displacement. The rest of the values of the R/M bits
specify the id of the base register as shown in Table 5.29.
Other than the case of R/M=101, the rest of the combinations of the
R/M bits are not associated with a displacement (assumed to be 0).

01 We use a single byte signed displacement. If R/M = 100, then we get
the ids of the base and index registers from the SIB byte.

10 We use a 4 byte signed displacement. If R/M = 100, then we get the
ids of the base and index registers from the SIB byte.

11 Register direct addressing mode.

Table 5.28: Semantics of the Mod field

Register Code

eax 000

ecx 001

edx 010

ebx 011

esp 100

ebp 101

esi 110

edi 111

Table 5.29:
Register encoding

can either have no displacement (Mod = 00), a 8 bit displacement (Mod = 01), or a 32-bit
displacement (Mod=10). If it is a register operand, then the Mod field has a value of 11.

The important point to note is that for all the memory address modes, if the R/M bits are
equal to 100, then we need to use the information in the SIB byte for computing the effective
memory address.

The Reg field encodes the second operand if it is a register. Since both the operands cannot
be memory operands, we use the Mod and R/M bits for encoding one of the operands that
might be a memory operand (source or destination), and use the Reg field for encoding the
other operand, which has to be a register. The encoding for the registers is shown in Table 5.29.

For floating point instructions, the default register operand is always st0. Some instructions
accept another FP register operand. For such instructions, we use register direct addressing
(Mod = 11). We use the R/M bits for specifying the id of the additional FP register. We use 3
bits to encode the index of the register. For example, st0 is encoded as 000, and st6 is encoded
as 110. For the rest of the instructions that either assume default operands, or have a single
memory operand, we use the same format as defined for integer instructions.

SIB Byte

The SIB byte is used to specify the base and index registers (possibly with scaling). For
example, it can be used to encode memory operands of the form [eax + ecx*4]. Recall that
to use the SIB byte it is essential to set the Mod field in the ModR/M register to 100. This
indicates to the processor that the SIB byte follows the ModR/M byte.

The structure of the SIB byte is shown in Figure 5.6.

The SIB byte has three fields – scale, index, and base. The effective memory address (before
considering the displacement) is equal to base+ index× scale. The base and index fields point
to integer registers. Both of them are 3 bits each (can encode up to 8 registers), and use the
encoding shown in Table 5.29. The two MSB bits are used to specify the scale. We can have

217 c© Smruti R. Sarangi

Scale

2 3 3

Index Base

Figure 5.6: The SIB byte

four values for the scale in x86 instructions namely 1 (00), 2 (01), 4 (10), and 8 (11).

Rules for Encoding Memory Operands

Note that some rules need to be followed while encoding memory operands. The esp register
cannot be an index, and if the value of the Mod field is 00, then ebp cannot be a valid base
register. Recall that if we set the R/M bits to 101 (id of ebp), when the Mod field is 00, then
the memory address is only a displacement. Or, in other words we can use memory direct
addressing here by directly specifying its address.

If (Mod = 00), then in the SIB byte ebp cannot be a valid base register. If we specify the
base register as ebp in the SIB byte, then the processor calculates the effective memory address
based on the value of the scale and the index.

Example 90
Encode the instruction add ebx, [edx + ecx*2 + 32]. Assume that the opcode for the add
instruction is 0x03.
Answer: Let us calculate the value of the ModR/M byte. In this case, our displacement
fits within 8 bits. Hence, we can set the Mod bits equal to 01 (corresponding to an 8 bit
displacement). We need to use the SIB byte, because we have a scale, and an index. Thus,
we set the R/M bits to 100. The destination register is ebx. Its code is 011 (according to
Table 5.29). Thus, the ModR/M byte is 01011100 (equal to 0x5C).

Now, let us calculate the value of the SIB byte. The scale is equal to 2. This is encoded
as 01. The index is ecx (001), and the base is edx (010). Hence, the SIB byte is: 01 001
010 = 4A. The last byte is the displacement, which is equal to 0x20.

Thus, the encoding of the instruction is 03 5C 4A 20 in hex.

5.6 Summary and Further Reading

5.6.1 Summary

Summary 5

c© Smruti R. Sarangi 218

1. The x86 ISA is a family of CISC instruction sets that is primarily used by Intel and
AMD processors.

(a) The original x86 ISA used by 8086 processors used a 16-bit ISA.

(b) Since the mid eighties, x86 processors have moved to the 32-bit ISA.

(c) Finally, since 2003, most of the high end x86 architectures have moved to the
64-bit ISA.

(d) The basic structures of all the ISAs is the same. There are minor differences in
the syntax.

2. The 8 basic registers of the 16-bit x86 ISA are – ax, bx, cx, dx, sp, bp, si, and di.
We use the ‘e’ prefix in 32-bit mode, and the ‘r’ prefix in 64-bit mode.

3. Additionally, the 16-bit x86 ISA has the ip register to save the program counter, and
the flags register to save the results of the last comparison, and other fields that
instructions may use.

4. The x86 ISA predominantly uses instructions in the 2-address format. The first
operand is typically both the source, and the destination. Secondly, one of the operands
can be a memory operand. It is thus possible to fetch the value of a memory location,
operate on it, and write it back to memory, in the same instruction.

5. x86 processes see a segmented memory model. The entire memory space is partitioned
into different segments. Instructions reside in the code segment by default, and data
resides in the data or stack segments by default. It is in general not possible for
instructions to access segments that they typically are not meant for. For example, it is
in general not possible for a store instruction to change the contents of an instruction
in the code segment.

(a) In the 16-bit mode, the top 16 bits of the starting address of each segment are
stored in a segment register.

(b) The effective memory address specified by a memory instruction is added to the
address contained in the segment register (after left shifting it by 4 positions) to
compute the actual memory address.

(c) In later ISAs (32 and 64-bit mode), the contents of segment registers are looked up
in segment descriptor tables (referred to as the LDT and GDT) for obtaining the
starting address of segments. To speed up memory accesses, processors typically
use a small memory structure known as a segment descriptor cache that keeps
the most recently used entries.

6. x86 integer instructions:

(a) The mov instruction is one of the most versatile instructions. It can move values
between two registers, or between registers and memory addresses. It can also be
used to load immediates in registers or memory locations.

219 c© Smruti R. Sarangi

(b) x86 defines a host of other arithmetic, and branch instructions.

(c) String instructions are a unique feature of the x86 ISA. They can be used to
transfer large amounts of data between memory locations. To compress an entire
loop of string instructions into one instruction, we typically use the rep prefix
that repeats a given instruction n times, where n is the value stored in the ecx
register.

7. The x86 floating point registers can either be accessed as normal registers (st0 . . . st7),
or as values on a floating point stack. Most of the floating point instructions operate
on st0, which is the top of the stack.

8. There is no direct way to load immediates into the FP registers. We need to first
load them into memory, and then load them to the floating point stack. x86 has
instructions for computing complex mathematical operations (such as square root),
and trigonometric functions directly.

9. Encoding the x86 instruction set is relatively simpler, since the encoded form has a
very regular structure.

(a) We can optionally use 1-4 bytes to encode the prefix.

(b) The opcode’s encoding requires 1-3 bytes.

(c) We can optionally use two additional bytes known as the ModR/M and SIB bytes
to encode the address of operands (both register and memory).

(d) If the memory operand uses a displacement (offset), then we can add 1-4 bytes
for encoding the displacement after the SIB byte.

(e) Lastly, the x86 ISA accepts 32-bit immediate values. Hence, we can use the last
1-4 bytes to specify the value of an immediate operand if required.

5.6.2 Further Reading

The most accurate source of information is the x86 developer manuals released by Intel on their
website [int, , INTEL, 2010].

For the sake of brevity, we have only discussed the popularly used instructions. However,
there are many instructions in the x86 ISA that might prove to be useful in a specific set
of scenarios, which we have not covered in this book. Intel’s software developer manuals are
always the best places to find this information. Secondly, we have only discussed the basic x86
ISA. The reader should definitely look at the extensions to the x86 ISA such as the MMXTM,
SSE, and 3d Now! (by AMD) extensions. These extensions add vector instructions, which
can operate on arrays of data. These instructions are used in graphics, games, and scientific
applications. The Intel AVX instruction set is the latest addition in the long line of x86 ISAs.
It introduces 512 bit registers that can contain multiple integers. The interested reader should
definitely take a look at this instruction set and try to write programs with it. In this book,
we shall show an example using the SSE instruction set in Section 11.5.3.

c© Smruti R. Sarangi 220

The reader can additionally refer to books that describe the x86 instruction set in great
detail, and have a wealth of solved examples. The following books [Cavanagh, 2013, Das,
2010, Kumar, 2003] are useful references in this regard.

Exercises

x86 Machine Model

Ex. 1 — What are the advantages of the segmented addressing mode? Why do modern x86
processors need the LDT and GDT tables?

Ex. 2 — Explain the memory addressing modes in x86.

Ex. 3 — Describe the floating point registers and the floating point stack in x86.

* Ex. 4 — We can specify an entire 32-bit immediate in a single instruction in x86. Recall
that this was not possible in ARM and SimpleRisc . What are the advantages and disadvantages
of having this feature in the ISA?

* Ex. 5 — We claim that using a stack based architecture makes the software very portable.
It does not need to be aware of the number and semantics of registers in an ISA. Comment on
this statement, and try to find other reasons for preferring a stack based machine.

** Ex. 6 — Given an arithmetic expression containing floating point operands, how can we
evaluate it using a floating point stack? What should be the order of loading and operating
on operands? [HINT: A regular arithmetic operation such as – (1 + 2.5) * 3.9 – is called an
infix expression. To evaluate expressions using a stack, we need to convert it into a postfix
expression of the form – 1 2.5 + 3.9 *. Here, we first push 1 and 2.5 on the stack, add the
result, push 3.9 on the stack, and multiply the first two entries. The reader should read more
about postfix expressions in textbooks on discrete mathematics.]

Assembly Programming using Integer Instructions

Ex. 7 — Write x86 assembly code snippets to compute the following:

i) a+ b+ c

ii) a+ b− c/d
iii) (a+ b) ∗ 3− c/d
iv) a/b− (c ∗ d)/3

v) (a� 2)− (b� 3)

Ex. 8 — Write an assembly program to convert an integer stored in memory from the little
endian to the big endian format.

221 c© Smruti R. Sarangi

Ex. 9 — Compute the factorial of a positive number using an iterative algorithm.

Ex. 10 — Compute the factorial of a positive number using a recursive algorithm.

Ex. 11 — Write an assembly program to find if a number is prime.

Ex. 12 — Write an assembly program to test if a number is a perfect square.

Ex. 13 — Write an assembly program to test if a number is a perfect cube.

Ex. 14 — Given a 32-bit integer, count the number of 1 to 0 transitions in it.

Ex. 15 — Write an assembly program that checks if a 32-bit number is a palindrome. A
palindrome is a number which is the same when read from both sides. For example, 1001 is a
4-bit palindrome.

Ex. 16 — Write an assembly program to examine a 32-bit value stored in eax and count the
number of contiguous sequences of 1s. For example, the value:

01110001000111101100011100011111

contains six sequences of 1s. Write the final value in register ebx.

Ex. 17 — Write an assembly program to count the number of 1’s in a 32-bit number.

* Ex. 18 — Write an assembly program to find the smallest number that is a sum of two
different pairs of cubes. [Note: 1729 is known as the Hardy-Ramanujan number. 1729 =
123 + 13 = 103 + 93].

** Ex. 19 — In some cases, we can rotate an integer to the right by n positions (less than or
equal to 31) so that we obtain the same number. For example: a 8-bit number 01010101 can
be right rotated by 2, 4, or 6 places to obtain the same number. Write an assembly program to
efficiently count the number of ways we can rotate a number to the right such that the result
is equal to the original number.

*** Ex. 20 — Write an assembly language program to find the greatest common divisor of
two binary numbers u and v. Assume the two inputs (positive integers) to be available in eax
and ebx. Store the result in ecx. [HINT: The gcd of two even numbers u and v is 2∗gcd(u/2, v/2)]

Ex. 21 — Write an assembly program that uses string instructions to set the value of a range
of memory addresses to 0. Reduce the code size by using the rep prefix.

Assembly Programming using Floating Point Instructions

Ex. 22 — How do you load and store floating point numbers?

Ex. 23 — Write an assembly program to find the roots of the equation x2−x−1 = 0. Recall

that the roots of a quadratic equation of the form ax2 + bx+ c are equal to −b±
√
b2−4ac
2a .

c© Smruti R. Sarangi 222

Ex. 24 — Verify the following trigonometric identities for random values of θ using assembly
programs. Use the rdrand instruction that loads a random 32-bit integer into a register.

S. No. Identity

1 sin2(θ) + cos2(θ) = 1

2 sin
(
π
2 − θ

)
= cos(θ)

3 cos(θ + φ) = cos(θ)cos(φ)− sin(θ)sin(φ)

4 sin(θ) + sin(φ) = 2sin
(
θ+φ
2

)
cos
(
θ−φ
2

)
Ex. 25 — Assume that we have two arrays of 10 floating point numbers, where the starting
addresses of the arrays are stored in eax and ebx respectively. Find the arithmetic mean
(AM), geometric mean (GM), and harmonic mean (HM) using assembly routines. Verify that
AM ≥ GM ≥ HM .

* Ex. 26 — Let us compute the value of the constant e using an assembly program. Use the
following mathematical expression.

e = 1 +
1

1!
+

1

2!
+

1

3!
+

1

4!
+ . . .+

1

10!

** Ex. 27 — For random values of θ show that the following identity holds:

sin(θ) = θ − θ3

3!
+
θ5

5!
− . . .

x86 ISA Encoding

Ex. 28 — What are the values of the SIB and ModR/M bytes for the instruction, mov eax,
[eax + ebx*4]?

Ex. 29 — What are the values of the SIB, ModR/M, and displacement bytes for the instruc-
tion, mov eax, [eax + ebx*4 + 32]?

Ex. 30 — What is the value of the ModR/M byte when we need to specify a memory address
that does not have any base or index registers? Assume that the value of the reg field is 000.

* Ex. 31 — Assume that we have an instruction that has two operands: eax and [ebp]. How
do we encode it (specify the values of the relevant bytes)?

* Ex. 32 — What are the values of the SIB and ModR/M bytes for the instruction, mov eax,
[ebx*4]?

Design Problems

Ex. 33 — Write an x86 assembly emulator that can read an assembly file, and execute each
assembly instruction one by one.

223 c© Smruti R. Sarangi

Ex. 34 — Use the GNU compiler to generate an assembly file for a test program written in
C using the command, gcc -S -masm=intel.

