
10
The Memory System

Up till now, we have considered the memory system to be one large array of bytes. This
abstraction was good enough for designing an instruction set, studying assembly language, and
even for designing a basic processor with a complicated pipeline. However, from a practical
standpoint, this abstraction will need to be further refined to design a fast memory system. In
our basic SimpleRisc pipeline presented in Chapter 8 and 9, we have assumed that it takes 1
cycle to access both data and instruction memory. We shall see in this chapter, that this is
not always true. In fact, we need to make significant optimisations in the memory system to
come close to the ideal latency of 1 cycle. We need to introduce the notion of a “cache” and a
hierarchical memory system to solve the dual problems of having large memory capacity, and
low latency.

Secondly, up till now we have been assuming that only one program runs on our system.
However, most processors typically run multiple programs on a time shared basis. For example,
if there are two programs, A and B, a modern desktop or laptop typically runs program A for
a couple of milliseconds, executes B for a few milliseconds, and subsequently switches back and
forth. In fact as your author is writing this book, there are a host of other programs running on
his system such as a web browser, an audio player, and a calendar application. In general, a user
does not perceive any interruptions, because the time scale at which the interruptions happen
is much lower than what the human brain can perceive. For example, a typical video displays a
new picture 30 times every second, or alternatively one new picture every 33 milliseconds. The
human brain creates the illusion of a smoothly moving object by piecing the pictures together.
If the processor finishes the job of processing the next picture in a video sequence, before 33
milliseconds, then it can execute a part of another program. The human brain will not be
able to tell the difference. The point here is that without our knowledge, the processor in
co-operation with the operating system switches between multiple programs many many times
a second. The operating system is itself a specialised program that helps the processor manage
itself, and other programs. Windows and Linux are examples of popular operating systems.

We shall see that we require special support in the memory system to support multiple

469

c© Smruti R. Sarangi 470

programs. If we do not have this support, then multiple programs can overwrite each other’s
data, which is not desired behavior. Secondly, we have been living with the assumption that we
have practically an infinite amount of memory. This is also not true. The amount of memory
that we have is finite, and it can get exhausted by large memory intensive programs. Hence, we
should have a mechanism to still run such large programs. We shall introduce the concept of
virtual memory to solve both of these issues – running multiple programs, and handling large
memory intensive programs.

To summarise, we observe that we need to design a memory system that is fast, and is
flexible enough to support multiple programs with very large memory requirements.

10.1 Overview

10.1.1 Need for a Fast Memory System

Let us now look at the technological requirements for building a fast memory system. We
have seen in Chapter 6 that we can design memory elements with four kinds of basic circuits
– latches, SRAM cells, CAM cells and DRAM cells. There is a tradeoff here. Latches and
SRAM cells are much faster than DRAM or CAM cells. However, as compared to a DRAM
cell, a latch, CAM or SRAM cell is an order of magnitude larger in terms of area, and also
consumes much more power. We observe that a latch is designed to read in and read out data
at a negative clock edge. It is a fast circuit that can store and retrieve data in a fraction of
a clock cycle. On the other hand, an SRAM cell is typically designed to be used as a part of
a large array of SRAM cells along with a decoder and sense amplifiers. With this additional
overhead, an SRAM cell is typically slower than a typical edge triggered latch. In comparison,
CAM cells are best for memories that are content associative, and DRAM cells are best for
memories that have very large capacities.

Now, our SimpleRisc pipeline assumes that memory accesses take 1 cycle. To satisfy this
requirement, we need to build our entire memory from latches, or small arrays of SRAM cells.
Table 10.1 shows the size of a typical latch, SRAM cell, and DRAM cell as of 2012.

Cell type Area Typical latency
(array of cells)

Master Slave D flip flop 0.8 µm2 fraction of a cycle

SRAM cell 0.08 µm2 1-5 cycles

DRAM Cell 0.005 µm2 50-200 cycles

Table 10.1: Sizes of a Latch, SRAM cell, and DRAM cell

We observe that a typical latch (master slave D flip flop) is 10 times larger than an SRAM
cell, which in turn is around 16 times larger than a DRAM cell. This means that given a certain
amount of silicon, we can save 160 times more data if we use DRAM cells. However, DRAM
memory is also 200 times slower (if we consider a representative array of DRAM cells). Clearly,
there is a tradeoff between capacity, and speed. The sad part is that we actually need both.

Let us consider the issue of capacity first. Due to several constraints in technology and
manufacturability, as of 2012, it is not possible to manufacture chips with an area more than

471 c© Smruti R. Sarangi

400-500mm2 [ITRS, 2011]. Consequently, the total amount of memory that we can have on
chip is limited. It is definitely possible to supplement the amount of available memory with
additional chips exclusively containing memory cells. Keep in mind that off-chip memory is
slow, and it takes tens of cycles for the processor to access such memory modules. To achieve our
goal of having a 1-cycle memory access, we need to use the relatively faster on-chip memory
most of the time. Here, also our options are limited. We cannot afford to have a memory
system consisting exclusively of latches. For a large number of programs, we will not be able
to fit all our data in memory. For example, modern programs typically require hundreds of
megabytes of memory. Moreover, some large scientific programs require gigabytes of memory.
Second, it is difficult to integrate large DRAM arrays along with a processor on the same chip
due to technological constraints. Hence, designers are compelled to use large SRAM arrays for
on-chip memories. As shown in Table 10.1 SRAM cells(arrays) are much larger than DRAM
cells(arrays), and thus have much less capacity.

There is a conflicting requirement of latency. Let us assume that we decide to maximise
storage, and make our memory entirely consisting of DRAM cells. Let us assume a 100 cy-
cle latency for accessing DRAM. If we assume that a third of our instructions are memory
instructions, then the effective CPI of a perfect 5 stage SimpleRisc pipeline is calculated to
be 1 + 1/3 × (100 − 1) = 34. The point to note is that our CPI increases by 34X, which is
completely unacceptable.

Hence, we need to make an equitable tradeoff between latency and storage. We want to
store as much of data as possible, but not at the cost of a very low IPC. Unfortunately, there is
no way out of this situation, if we assume that our memory accesses are completely random. If
there is some pattern in memory accesses, then we can possibly do something better such that
we can get the best of both worlds – high storage capacity, and low latency.

10.1.2 Memory Access Patterns

Before considering the technical topic of patterns in memory accesses, let us consider a simple
practical problem that your author is facing at this point of time. He unfortunately, has a lot of
books on his desk that are not organised. Not only are these books cluttering up his desk, it is
also hard to search for a book when required. Hence, he needs to organise his books better and
also keep his desk clean. He observes that he does not require all the books all the time. For
example, he needs books on computer architecture very frequently; however, he rarely reads his
books on distributed systems. Hence, it makes sense for him to move his books on distributed
systems to the shelf beside his desk. Unfortunately, it is a small shelf, and there are still a lot
of books on his desk. He observes that he can further classify the books in the small shelf. He
has some books on philosophy that he never reads. These can be moved to the large cabinet
in the corner of the room. This will create more space in the shelf, and also help him clean up
his desk. What is the fundamental insight here? It is that your author does not read all his
books with the same frequency. There are some books that he reads very frequently; hence,
they need to be on his desk. Then there is another class of books that he reads infrequently;
hence, they need to be in the small shelf beside his desk. Lastly, he has a large number of books
that he reads extremely infrequently. He can safely keep them in the large cabinet. Pattern
1:He reads a small set of books very frequently, and the rest of the books rather
infrequently. Hence, if he keeps the frequently accessed set of books on computer architecture

c© Smruti R. Sarangi 472

on his desk, and the large infrequent set of books in the shelf and the cabinet, he has solved
his problems.

Well, not quite. This was true for last semester, when he was teaching the computer
architecture course. However, in the current semester, he is teaching a course on distributed
systems. Hence, he does not refer to his architecture books anymore. It thus makes sense for
him to bring his distributed systems books to his desk. However, there is a problem. What
happens to his architecture books that are already there on his desk. Well, the simple answer
is that they need to be moved to the shelf and they will occupy the slots vacated by the
distributed systems books. In the interest of time, it makes sense for your author to bring a
set of distributed systems books on to his desk, because in very high likelihood, he will need
to refer to numerous books in that area. It does not make sense to fetch just one book on
distributed systems. Hence, as a general rule we can conclude that if we require a certain book,
then most likely we will require other books in the same subject. Pattern 2:If your author
requires a certain book, then most likely he will require other books in the same
subject area in the near future.

We can think of patterns 1 and 2, as general laws that are applicable to everybody. Instead
of books, if we consider TV channels, then also both the patterns apply. We do not watch all
TV channels equally frequently. Secondly, if a user has tuned in to a news channel, then most
likely she will browse through other news channels in the near future. In fact this is how retail
stores work. They typically keep spices and seasonings close to vegetables. This is because it is
highly likely that a user who has just bought vegetables will want to buy spices also. However,
they keep bathroom supplies and electronics far away.

Pattern 1 is called temporal locality. This means that users will tend to reuse the same item
in a given time interval. Pattern 2 is called spatial locality. It means that if a user has used a
certain item, then she will tend to use similar items in the near future.

Definition 97

Temporal Locality It is a concept that states that if a resource is accessed at some point
of time, then most likely it will be accessed again in a short time interval.

Spatial Locality It is a concept that states that if a resource is accessed at some point of
time, then most likely similar resources will be accessed in the near future.

The question that we need to ask is – “Is there temporal and spatial locality in memory
accesses?”. If there is some degree of temporal and spatial locality, then we can possibly do some
critical optimisations that will help us solve the twin problems of large memory requirement,
and low latency. In computer architecture, we typically rely on such properties such as temporal
and spatial locality to solve our problems.

473 c© Smruti R. Sarangi

10.1.3 Temporal and Spatial Locality of Instruction Accesses

The standard approach for tackling this problem, is to measure and characterise locality in a
representative set of programs such as the SPEC benchmarks(see Section 9.9.4). Let us first
start out by dividing memory accesses into two broad types – instruction and data. Instruction
accesses are much easier to analyse informally. Hence, let us look at it first.

Let us consider a typical program. It has assignment statements, decision statements
(if,else), and loops. Most of the code in large programs is part of loops or some pieces of
common code. There is a standard rule of thumb in computer architecture, which states that
90% of the code runs for 10% of time, and 10% of the code runs for 90% of the time. Let us
consider a word processor. The code to process the user’s input, and show the result on the
screen runs much more frequently than the code for showing the help screen. Similarly, for
scientific applications, most of the time is spent in a few loops in the program. In fact for most
common applications, we find this pattern. Hence, computer architects have concluded that
temporal locality for instruction accesses holds for an overwhelming majority of programs.

Let us now consider spatial locality for instruction accesses. If there are no branch state-
ments, then the next program counter is the current program counter plus 4 bytes for an ISA
such as SimpleRisc . We consider two accesses to be “similar”, if their memory addresses are
close to each other. Clearly, we have spatial locality here. A majority of the instructions in
programs are non-branches; hence, spatial locality holds. Moreover, a nice pattern in branches
in most programs is that the branch target is actually not very far away. If we consider a simple
if-then statement or for loop then the distance of the branch target is equal to the length of
the loop or the if part of the statement. In most programs this is typically 10 to 100 instruc-
tions long, definitely not thousands of instructions long. Hence, architects have concluded that
instruction memory accesses exhibit a good amount of spatial locality also.

The situation for data accesses is slightly more complicated; however, not very different.
For data accesses also we tend to reuse the same data, and access similar data items. Let us
look at this in more detail.

10.1.4 Characterising Temporal Locality

Let us describe a method called the method of stack distances to characterise temporal locality
in programs.

Stack Distance

We maintain a stack of accessed data addresses For each memory instruction (load/store), we
search for the corresponding address in the stack. The position at which the entry is found (if
found) is termed the ”stack distance”. Here, the distance is measured from the top of the stack.
The top of the stack has distance equal to zero, whereas the 100th entry has a stack distance
equal to 99. Whenever, we detect an entry in the stack we remove it, and push it to the top of
the stack.

If the memory address is not found, then we make a new entry and push it to the top of
the stack. Typically, the depth of the stack is bounded. It has length, L. If the number of
entries in the stack exceeds L because of the addition of a new entry, then we need to remove
the entry at the bottom of the stack. Secondly, while adding a new entry, the stack distance

c© Smruti R. Sarangi 474

is not defined. Note that since we consider bounded stacks, there is no way of differentiating
between a new entry, and an entry that was there in the stack, but had to be removed because
it was at the bottom of the stack. Hence, in this case we take the stack distance to be equal to
L (bound on the depth of the stack).

Note that the notion of stack distance gives us an indication of temporal locality. If the
accesses have high temporal locality, then the mean stack distance is expected to be lower.
Conversely, if memory accesses have low temporal locality, then the mean stack distance will
be high. We can thus use the distribution of stack distances as a measure of the amount of
temporal locality in a program.

Experiment to Measure Stack Distance

We perform a simple experiment with the SPEC2006 benchmark, Perlbench, which runs differ-
ent Perl programs 1. We maintain counters to keep track of the stack distance. The first million
memory accesses serve as a warm-up period. During this time the stack is maintained, but the
counters are not incremented. For the next million memory accesses, the stack is maintained,
and the counters are also incremented. Figure 10.1 shows a histogram of the stack distance.
The size of the stack is limited to 1000 entries. It is sufficient to capture an overwhelming
majority of memory accesses.

0 50 100 150 200 250

stack distance
0.00

0.05

0.10

0.15

0.20

0.25

0.30

p
ro

b
a
b
ili

ty

Figure 10.1: Stack distance distribution

We observe that most of the accesses have a very low stack distance. A stack distance
between 0-9 is the most common value. Approximately 27% of all the accesses are in this bin.
In fact, more than two thirds of the memory accesses have a stack distance less than 100. Beyond
100, the distribution tapers off, yet remains fairly steady. The distribution of stack distances is

1Dataset size ’ref’, input ’split-mail’

475 c© Smruti R. Sarangi

typically said to follow a heavy tailed distribution. This means that the distribution is heavily
skewed towards smaller stack distances; however, large stack distances are not uncommon. The
tail of the distribution continues to be non-zero for large stack distances. We observe a similar
behavior here.

Trivia 3 Researchers have tried to approximate the stack distance using the log-normal
distribution.

f(x) =
1

xσ
√

2π
e−

(ln(x)−µ)2

2σ2

10.1.5 Characterising Spatial Locality

Address Distance

Akin to stack distance, we define the term address distance. The ith address distance is the
difference in the memory address of the ith memory access, and the closest address in the set
of the last K memory accesses. Here, a memory access can be either a load or a store. There
is an intuitive reason for defining address distance in this manner. Programs typically access
different regions of main memory in the same time interval. For example, an operation on
arrays, accesses an array item, then accesses some constants, performs an operation, saves the
result, and then moves on the next array entry using a for loop. There is clearly spatial locality
here, in the sense that consecutive iterations of a for loop access proximate addresses in an
array. However, to quantify it, we need to search for the closest access (in terms of memory
addresses) over the last K accesses. Here, K is the number of memory accesses in each iteration
of the enclosing loop. We can readily observe that in this case that the address distance turns
out to be a small value, and is indicative of high spatial locality. However, K needs to be well
chosen. It should not be too small, nor too large. We have empirically found K = 10 to be an
appropriate value for a large set of programs.

To summarise, we can conclude that if the average address distance is small, then it means
that we have high spatial locality in the program. The program tends to access nearby memory
addresses with high likelihood in the same time interval. Conversely, if the address distances
are high, then the accesses are far apart from each other, and the program does not exhibit
spatial locality.

Experiment to Characterise Address Distance

Here, we repeat the same experiment as described in Section 10.1.4 with the SPEC2006 bench-
mark, Perlbench. We profile the address distance distribution for the first 1 million accesses.
Figure 10.2 shows the address distance distribution.

Here also, more than a quarter of the accesses have an address distance between -5 and
+5, and more than two thirds of the accesses have an address distance between -25 and +25.
Beyond ±50, the address distance distribution tapers off. Empirically, this distribution also
has a heavy tailed nature.

c© Smruti R. Sarangi 476

100 50 0 50 100

address distance
0.00

0.05

0.10

0.15

0.20

0.25

0.30

p
ro

b
a
b
ili

ty

Figure 10.2: Address distance distribution

10.1.6 Utilising Spatial and Temporal Locality

Section 10.1.4 and 10.1.5 showed the stack and address distance distributions for a sample
program. Similar experiments have been performed for thousands of programs that users use
in their daily lives. These programs include computer games, word processors, databases,
spreadsheet applications, weather simulation programs, financial applications, and software
applications that run on mobile computers. Almost all of them exhibit a very high degree of
temporal and spatial locality. In other words, temporal and spatial locality, are basic human
traits. Whatever we do, including fetching books, or writing programs, these properties tend
to hold. Note that these are just mere empirical observations. It is always possible to write
a program that does not exhibit any form of temporal and spatial locality. Additionally, it
is always possible to find regions of code in commercial programs that do not exhibit these
properties. However, these examples are exceptions. They are not the norm. We need to
design computer systems for the norm, and not for the exceptions. This is how we can boost
performance for a large majority of programs that users are expected to run.

From now on, let us take temporal and spatial locality for granted, and see what can be done
to boost the performance of the memory system, without compromising on storage capacity.
Let us look at temporal locality first.

10.1.7 Exploiting Temporal Locality – Hierarchical Memory System

Let us reconsider the way in which we tried to exploit temporal locality for our simple example
with books. If your author decides to look at a new topic, then he brings the set of books
associated with that topic to his desk. The books that were already there on his desk, are
moved to the shelf, and to create space in the shelf, some books are shifted to the cabinet. This

477 c© Smruti R. Sarangi

behavior is completely consistent with the notion of stack distance as shown in Figure 10.1.
We can do the same with memory systems also. Akin to a desk, shelf, and cabinet, let us

define a storage location for memory values. Let us call it a cache. Each entry in the cache
conceptually contains two fields – memory address, and value. Like your author’s office, let us
define a hierarchy of caches as shown in Figure 10.3.

Definition 98
A cache contains a set of values for different memory locations.

L1 cache

L2 cache

Main memory

Cache hierarchy

Figure 10.3: Memory hierarchy

Definition 99 The main memory(physical memory) is a large DRAM array that contains
values for all the memory locations used by the processor.

The L1 cache corresponds to the desk, the L2 cache corresponds to the shelf, and the main
memory corresponds to the cabinet. The L1 cache is typically a small SRAM array (8-64 KB).
The L2 cache is a larger SRAM array (128 KB - 4 MB). Some processors such as the Intel
Sandybridge processor have another level of caches called the L3 cache (4MB+). Below the
L2/L3 cache, there is a large DRAM array containing all the memory locations. This is known
as the main memory or physical memory. Note that in the example with books, a book could
either exclusively belong to the shelf or the cabinet. However, in the case of memory values,
we need not follow this rule. In fact, we shall see later that it is easier to maintain a subset of
values of the L2 cache in the L1 cache, and so on. This is known as a system with inclusive
caches. We thus have – values(L1) ⊂ values(L2) ⊂ values(main memory) – for an inclusive
cache hierarchy. Alternatively, we can have exclusive caches, where a higher level cache does
not necessarily contain a subset of values in the lower level cache. Inclusive caches are by far
used universally in all processors. This is because of the ease of design, simplicity, and some
subtle correctness issues that we shall discuss in Chapter 11. There are some research level

c© Smruti R. Sarangi 478

proposals that advocate exclusive caches. However, their utility for general purpose processors
has not been established as of 2012.

Definition 100 A memory system in which the set of memory values contained in the
cache at the nth level is a subset of all the values contained in the cache at the (n + 1)th

level, is known as an inclusive cache hierarchy. A memory system that does not follow strict
inclusion is referred to as an exclusive cache hierarchy.

Let us now consider the cache hierarchy as shown in Figure 10.3. Since the L1 cache is
small, it is faster to access. The access time is typically 1-2 cycles. The L2 cache is larger and
typically takes 5-15 cycles to access. The main memory is much slower because of its large
size and use of DRAM cells. The access times are typically very high and are between 100-300
cycles. The memory access protocol is similar to the way your author accesses his books.

The memory access protocol is as follows. Whenever, there is a memory access (load or
store), the processor first checks in the L1 cache. Note that each entry in the cache conceptually
contains both the memory address and value. If the data item is present in the L1 cache, we
declare a cache hit, otherwise we declare a cache miss. If there is a cache hit, and the memory
request is a read, then we need to just return the value to the processor. If the memory request
is a write, then the processor writes the new value to the cache entry. It can then propagate the
changes to the lower levels, or resume processing. We shall look at these the different methods
of performing a cache write in detail, when we discuss different write policies in Section 10.2.3.
However, if there is a cache miss, then further processing is required.

Definition 101

Cache hit Whenever a memory location is present in a cache, the event is known as a
cache hit.

Cache miss Whenever a memory location is not present in a cache, the event is known as
a cache miss.

In the event of an L1 cache miss, the processor needs to access the L2 cache and search for
the data item. If an item is found (cache hit), then the protocol is the same as the L1 cache.
Since, we consider inclusive caches in this book, it is necessary to fetch the data item to the
L1 cache. If there is an L2 miss, then we need to access the lower level. The lower level can
be another L3 cache, or can be the main memory. At the lowest level, i.e., the main memory,
we are guaranteed to not have a miss, because we assume that the main memory contains an
entry for all the memory locations.

479 c© Smruti R. Sarangi

Performance Benefit of a Hierarchical Memory System

Instead of having a single flat memory system, processors use a hierarchical memory system
to maximise performance. A hierarchical memory system is meant to provide the illusion of a
large memory with an ideal single cycle latency.

Example 119 Find the average memory access latency for the following configurations.

Configuration 1

Level Miss Rate(%) Latency

L1 10 1
L2 10 10

Main Memory 0 100

Configuration 2

Main Memory 0 100

Answer: Let us consider the first configuration. Here, 90% of the accesses hit in the L1
cache. Hence, their memory access time is 1 cycle. Note that even the accesses that miss
in the L1 cache still incur the 1 cycle delay, because we do not know if an access will hit
or miss in the cache. Subsequently, 90% of the accesses that go to the L2 cache hit in the
cache. They incur a 10-cycle delay. Finally, the remaining accesses (1%) hit in the main
memory, and incur an additional delay. The average memory access time(T) is thus:

T = 1 + 0.1 ∗ (10 + 0.1 ∗ 100) = 1 + 1 + 1 = 3

Thus, the average memory latency of a hierarchical memory system such as configuration
1 is 3 cycles.

Configuration 2 is a flat hierarchy, which uses the main memory for all its accesses.
The average memory access time is 100 cycles.

There is thus a speedup of 100/3 = 33.3 times using a hierarchical memory system.

Let us consider an example (see Example 119). It shows that the performance gain using
a hierarchical memory system is 33.33 times that of a flat memory system with a single level
hierarchy. The performance improvement is a function of the hit rates of different caches and
their latencies. Moreover, the hit rate of a cache is dependent on the stack distance profile of the
program, and the cache management policies. Likewise the cache access latency is dependent on
the cache manufacturing technology, design of the cache, and the cache management schemes.
We need to mention that optimising cache accesses has been a very important topic in computer
architecture research for the past two decades. Researchers have published thousands of papers
in this area. We shall only cover some basic mechanisms in this book. The interested reader
can take a look at Section 10.5.2 for appropriate references.

c© Smruti R. Sarangi 480

10.1.8 Exploiting Spatial Locality – Cache Blocks

Let us now consider spatial locality. We observe in Figure 10.2 that a majority of accesses
have an address distance within ±25 bytes. Recall that the address distance is defined as the
difference in memory addresses between the current address and the closest address among the
last K addresses. The address distance distribution suggests that if we group a set of memory
locations into one block, and fetch it at one go from the lower level, then we can increase the
number of cache hits because there is a high degree of spatial locality in accesses. This approach
is similar to the way we decided to fetch all the architecture books at the same time from the
shelf in Section 10.1.2.

Consequently, almost all processors create blocks of contiguous addresses, and the cache
treats each block as an atomic unit. The entire block is fetched at once from the lower level,
and also an entire block is evicted from the cache if required. A cache block is also known as a
cache line. A typical cache block or a line is 32-128 bytes long. For ease of addressing, its size
needs to be a strict power of 2.

Definition 102
A cache block or a line is a contiguous set of memory locations. It is treated as an atomic
unit of data in a cache.

Thus, we need to slightly redefine the notion of a cache entry. Instead of having an entry
for each memory address, we have a separate entry for each cache line. Note that in this book,
we shall use the terms cache line and block synonymously. Also note that it is not necessary
to have the same cache line size in the L1 cache and the L2 cache. They can be different.
However, for maintaining the property of inclusiveness of caches, and minimising additional
memory accesses, it is typically necessary to use an equal or larger block size in the L2 cache
as compared to the L1 cache.

Way Point 9
Here is what we have learnt up till now.

1. Temporal and spatial locality are properties inherent to most human actions. They
apply equally well to reading books and writing computer programs.

2. Temporal locality can be quantified by the stack distance, and spatial locality can be
quantified by the address distance.

3. We need to design memory systems to take advantage of temporal and spatial locality.

4. To take advantage of temporal locality, we use a hierarchical memory system consisting
of a set of caches. The L1 cache is typically a small and fast structure that is meant
to satisfy most of the memory accesses quickly. The lower level of the caches store
larger amounts of data, are accessed infrequently, and have larger access times.

481 c© Smruti R. Sarangi

5. To take advantage of spatial locality, we group sets of contiguous memory locations
into blocks (also known as lines). A block is treated as an atomic unit of data in a
cache.

Given that we have studied the requirements of a cache qualitatively, we shall proceed to
discuss the design of caches.

10.2 Caches

10.2.1 Overview of a Basic Cache

Let us consider a cache as a black box as shown in Figure 10.4. In the case of a load operation,
the input is the memory address, and the output is the value of the memory location if there is
a cache hit. We envision the cache having a status line that indicates if the request suffered a
hit or miss. If the operation is a store, then the cache takes two inputs – memory address, and
value. The cache stores the value in the entry corresponding to the memory location if there is
a cache hit. Otherwise, it indicates that there is a cache miss.

Memory
address

Store value

Load value

Cache
Hit/Miss

Figure 10.4: A cache as a black box

Let us now look at methods to practically implement this black box. We shall use an SRAM
array as the building block (see Section 6.4). The reader might wish to revisit that section to
recapitulate her knowledge on memory structures.

To motivate a design, let us consider an example. Let us consider a 32-bit machine with a
block size of 64 bytes. In this machine, we thus have 226 blocks. Let the size of the L1 cache
be 8 KB. It contains 27 or 128 blocks. We can thus visualise the L1 cache at any point of time
as a very small subset of the entire memory address space. It contains at the most 128 out of
226 blocks. To find out if a given block is there in the L1 cache, we need to see if any of the
128 entries contains it.

We assume that our L1 cache, is a part of a memory hierarchy. The memory hierarchy as a
whole supports two basic requests – read and write. However, we shall see that at the level of
a cache, we require many basic operations to implement these two high level operations.

Basic Cache Operations

Akin to a memory address, let us define a block address as the 26 MSB bits of the memory
address. The first problem is to find if a block with the given block address is present in the

c© Smruti R. Sarangi 482

cache. We need to perform a lookup operation that returns a pointer to the block if it is present
in the cache. If the block is present in the cache then we can declare a cache hit and service
the request. For a cache hit, we need two basic operations to service the request namely data
read, and data write. They read or write the contents of the block, and require the pointer to
the block as an argument.

If there is a cache miss, then we need to fetch the block from the lower levels of the memory
hierarchy and insert it in the cache. The procedure of fetching a block from the lower levels
of the memory hierarchy, and inserting it into a cache, is known as a fill operation. The fill
operation is a complex operation, and uses many atomic sub-operations. We need to first send
a load request to the lower level cache to fetch the block, and then we need to insert in into the
L1 cache.

The process of insertion is also a complex process. We need to first check, if we have space
to insert a new block in a given set of blocks. If we have sufficient space in a set, then we can
populate one of the entries using an insert operation. However, if all the locations at which we
want to insert a block in the cache are already busy, then we need to evict an already existing
block from the cache. We thus need to invoke a replace operation to find the cache block that
needs to be evicted. Once, we have found an appropriate candidate block for replacement, we
need to evict it from the cache using an evict operation.

Thus, to summarise the discussion up till now, we can conclude that we broadly need these
basic operations to implement a cache – lookup, data read, data write, insert, replace, and evict.
The fill operation is just a sequence of lookup, insert, and replace operations at different levels
of the memory hierarchy. Likewise, the read operation is either primarily a lookup operation,
or the combination of a lookup and fill operation.

10.2.2 Cache Lookup and Cache Design

As outlined in Section 10.2.1, we wish to design a 8 KB cache with a block size of 64 bytes
for a 32-bit system. To do an efficient cache lookup, we need to find an efficient way to find
out if the 26 bit block address exists among the 128 entries in the cache. There are thus two
problems here. The first problem is to quickly locate a given entry, and the second is to perform
a read/write operation. Instead of using a single SRAM array to solve both the problems, it is
a better idea to split it into two arrays as shown in Figure 10.5.

In a typical design, a cache entry is saved in two SRAM based arrays. One SRAM array
known as the tag array, contains information pertaining to the block address, and the other
SRAM array known as the data array contains the data for the block. The tag array contains
a tag that uniquely identifies a block. The tag is typically a part of the block address, and
depends on the type of the cache. Along with the tag and data arrays, there is a dedicated
cache controller that executes the cache access algorithm.

Fully Associative(FA) Cache

Let us first consider a very simple way of locating a block. We can check each of the 128 entries
in the cache possibly simultaneously to see if the block address is equal to the block address in
the cache entry. This cache is known as a fully associative cache or a content addressable cache.
The phrase “fully associative” means that a given block can be associated with any entry in
the cache.

483 c© Smruti R. Sarangi

Tag array

Address

Data array

Cache controller
Store
value

Load
value

Hit / Miss

Figure 10.5: Structure of a cache

Tag array
(CAM cells)

Tag

E
n
co

d
er

Hit/Miss

Index of the
matching entry

Data array

Tag Offset
Address format

Figure 10.6: A fully associative cache

Each cache entry in a fully associative(FA) cache thus needs to contain two fields – tag and
data. In this case, we can set the tag to be equal to the block address. Since the block address
is unique to each block, it fits the definition of a tag. Block data refers to the contents of the
block (64 bytes in this case). The block address requires 26 bits, and the block data requires 64
bytes, in our running example. The search operation needs to span the entire cache, and once

c© Smruti R. Sarangi 484

an entry is located, we need to either read out the data, or write a new value.

Let us first take a look at the tag array. Each tag in this case is equal to the 26 bit block
address. After a memory request reaches a cache, the first step is to compute the tag by
extracting the 26 most significant bits. Then, we need to match the extracted tag with each
entry in the tag array using a set of comparators. If there is no match, then we can declare a
cache miss and do further processing. However, if there is a cache hit, then we need to use the
number of the entry that matches the tag to access the data entry. For example, in our 8 KB
cache that contains 128 entries, it is possible that the 53rd entry in the tag array matches the
tag. In this case, the cache controller needs to fetch the 53rd entry from the data array in the
case of a read access, or write to the 53rd entry in the case of a write access..

There are two ways to implement the tag array in a fully associative cache. Either we can
design it as a normal SRAM array in which the cache controller iterates through each entry,
and compares it with the given tag. Or, we can use a CAM array (see Section 6.4.2) that has
comparators in every row. They can compare the value of the tag with the data stored in the
row and produce an output (1 or 0) depending on the result of the comparison. A CAM array
typically uses an encoder to compute the number of the row that matches the result. A CAM
implementation of the tag array of a fully associative cache is more common, primarily because
sequentially iterating through the array is very time consuming.

Figure 10.6 illustrates this concept. We enable each row of the CAM array by setting
the corresponding word line to 1. Subsequently, the embedded comparators in the CAM cells
compare the contents of each row with the tag, and generate an output. We use an OR gate
to determine if any of the outputs is equal to 1. If any of the outputs is 1, then we have a
cache hit, otherwise, we have a cache miss. Each of these output wires are also connected to
an encoder that generates the index of the row that has a match. We use this index to access
the data array and read the data for the block. In the case of a write, we write to the block,
instead of reading it.

A fully associative cache is very useful for small structures (typically 2-32) entries. However,
it is not possible to use CAM arrays for larger structures. The area and power overheads of
comparison, and encoding are very high. It is also not possible to sequentially iterate through
every entry of an SRAM implementation of the tag array. This is very time consuming. Hence,
we need to find a better way for locating data in larger structures.

Direct Mapped(DM) Cache

We saw that in a fully associative cache, we can store any block at any location in the cache.
This scheme is very flexible; however, it cannot be used when the cache has a large number of
entries primarily because of prohibitive area and power overheads. Instead of allowing a block
to be stored anywhere in the cache, let us assign only one fixed location for a given block. This
can be done as follows.

In our running example, we have a 8 KB cache with 128 entries. Let us restrict the placement
of 64 byte blocks in the cache. For each block, let us assign a unique location in the tag array
at which the tag corresponding to its address can be stored. We can generate such a unique
location as follows. Let us consider the address of a block A, and the number of entries in our
cache (128), and compute A%128. The % operator computes the remainder of the division of
A by 128. Since A is a binary value, and 128 is a power of 2, computing the remainder is very

485 c© Smruti R. Sarangi

easy. We need to just extract the 7 LSB bits out of the 26-bit block address. These 7 bits can
then be used to access the tag array. We can then compare the value of the tag saved in the tag
array with the tag computed from the block address to determine if we have a hit or a miss.

Instead of saving the block address in the tag array as we did for a fully associative cache,
we can slightly optimise its design. We observe that 7 out of the 26 bits in the block address
are used to access the tag in the tag array. This means that all the blocks that can possibly be
mapped to a given entry in the tag array will have their last 7 bits common. Hence, these 7 bits
need not explicitly be saved as a part of the tag. We need to only save the remaining 19 bits of
the block address that can vary across blocks. Thus a tag in a direct mapped implementation
of our cache needs to contain 19 bits only.

Tag(19) Index(7) Offset(6)

Address format

Tag array Data array

Hit/Miss

Index

Tag

Index

Figure 10.7: A direct mapped cache

Figure 10.7 describes this concept graphically. We divide a 32-bit address into three parts.
The most significant 19 bits comprise the tag, the next 7 bits are referred to as the index (index
in the tag array), and the remaining 6 bits point to the offset of the byte in the block. The rest
of the access protocol is conceptually similar to that of a fully associative cache. In this case, we
use the index to access the corresponding location in the tag array. We read the contents and
compare it with the computed tag. If they are equal, then we declare a cache hit, otherwise,
we declare a cache miss. Subsequently, in the case of a cache hit, we use the index to access
the data array. In this case, we use the cache hit/miss result, to enable/disable the data array.

Way Point 10
Up till now we have taken a look at the fully associative and direct mapped caches.

• The fully associative cache is a very flexible structure since a block can be saved in
any entry in the cache. However, it has higher latency and power consumption. Since

c© Smruti R. Sarangi 486

a given block can potentially be allocated in more entries of the cache, it has a higher
hit rate than the direct mapped cache.

• The direct mapped cache on the other hand is a faster and less power consuming
structure. Here, a block can reside in only one entry in the cache. Thus, the expected
hit rate of this cache is less than that of a fully associative cache.

We thus observe that there is a tradeoff between power, latency, and hit rate between the
fully associative and direct mapped caches.

Set Associative Cache

A fully associative cache is more power consuming because we need to search for a block in
all the entries of the cache. In comparison, a direct mapped cache is faster and power efficient
because we need to check just one entry. However, it clearly has a lower hit rate, and that is
not acceptable either. Hence, let us try to combine both the paradigms.

Let us design a cache in which a block can potentially reside in any one of a set of multiple
entries in a cache. Let us associate a set of entries in the cache with a block address. Like a
fully associative cache, we will have to check all the entries in the set before declaring a hit
or a miss. This approach combines the advantages of both the fully associative and direct
mapped schemes. If a set contains 4 or 8 entries, then we do not have to use an expensive CAM
structure, nor, do we have to sequentially iterate through all the entries. We can simply read
out all the entries of the set from the tag array in parallel and compare all of them with the tag
part of the block address in parallel. If there is a match, then we can read the corresponding
entry from the data array. Since multiple blocks can be associated with a set, we call this
design a set associative cache. The number of blocks in a set is known as the associativity of
the cache. Secondly, each entry in a set is known as a way.

Definition 103

Associativity The number of blocks contained in a set is defined as the associativity of
the cache.

Way Each entry in a set is known as also known as a way.

Let us now describe a simple method to group cache entries into sets for our simple example,
in which we considered a 32-bit memory system with an 8-KB cache and 64-byte blocks. As
shown in Figure 10.8, we first remove the lowest 6 bits from the 32-bit address because these
specify the address of a byte within a block. The remaining 26 bits specify the block address.
Our 8-KB cache has a total of 128 entries. If we want to create sets containing 4 entries each,

487 c© Smruti R. Sarangi

Tag

19 2 5
Index

6
Block

Figure 10.8: Division of a block address into sets

then we need to divide all the cache entries into sets of 4 entries. There will be 32(25) such
sets.

In a direct mapped cache, we devoted the lowest 7 bits out of the 26 bit block address to
specify the index of the entry in the cache. We can now split these 7 bits into two parts as
shown in Figure 10.8. One part contains 5 bits and indicates the address of the set, and the
second part containing 2 bits is ignored. The group of 5 bits indicating the address of the set
is known as the set index.

After computing the set index, i, we need to access all the elements belonging to the set in
the tag array. We can arrange the tag array as follows. If the number of blocks in a set is S,
then we can group all the entries belonging to a set contiguously. For the ith set, we need to
access the elements iS, (iS + 1) . . . (iS + S − 1) in the tag array.

For each entry in the tag array, we need to compare the tag saved in the entry to the tag
part of the block address. If there is a match, then we can declare a hit. The notion of a tag
in a set associative cache is rather tricky. As shown in Figure 10.8, it consists of the bits that
are not a part of the index. In the case of our running example, it is the (21=26-5) MSB bits
of the block address. The logic for deciding the number of tag bits is as follows.

Each set is specified by a 5-bit set index. These 5 bits are common to all the blocks that
can be potentially mapped to the given set. We need to use the rest of the bits (26-5=21) to
distinguish between the different blocks that are mapped to the same set. Thus, a tag in a set
associative cache has a size between that of a direct mapped cache (19) and a fully associative
cache (26).

Figure 10.9 shows the design of a set associative cache. We first compute the set index from
the address of the block. For our running example, we use bits 7-11. Subsequently, we use the
set index to generate the indices of its corresponding four entries in the tag array using the
tag array index generator. Then, we access all the four entries in the tag array in parallel, and
read their values. It is not necessary to use a CAM array here. We can use a single multi-
port (multiple input, output) SRAM array. Next, we compare each element with the tag, and
generate an output (0 or 1). If any of the outputs is equal to 1 (determined by an OR gate),
then we have a cache hit. Otherwise, we have a cache miss. We use an encoder to find the
index of the tag in the set that matched. Since, we are assuming a 4 way associative cache,
the output of the encoder is between 00 to 11. Subsequently, we use a multiplexer to choose
the index of the matching entry in the tag array. This index, can now be used to access the
data array. The corresponding entry in the data array contains the data for the block. We can
either read it or write to it.

We can perform a small optimisation here, for read operations. Note that in the case of a
read operation, the access to the data array and tag array can proceed in parallel. If a set has

c© Smruti R. Sarangi 488

Tag array

Set index

Tag array index
generator

Tag

E
n
co

d
er

Hit/Miss

Index of the
matched entry

Data array

Figure 10.9: A set associative cache

4 ways, then while we are computing a tag match, we can read the 4 data blocks corresponding
to the 4 ways of the set. Subsequently, in the case of a cache hit, and after we have computed
the matching entry in the tag array, we can choose the right data block using a multiplexer. In
this case, we are effectively overlapping some or all of the time required to read the blocks from
the data array with the tag computation, tag array access, and match operations. We leave the
resulting circuit as an exercise to the reader.

To conclude, we note that the set associative cache is by far the most common design for
caches. It has acceptable power consumption values and latencies for even very large caches.
The associativity of a set associative cache is typically 2, 4 or 8. A set with an associativity of
K is also known as a K − way associative cache.

Important Point 16 We need to answer a profound question while designing a set asso-
ciative cache. What should be the relative ordering of the set index bits and the ignored
bits? Should the ignored bits be towards the left (MSB) of the index bits, or towards the
right (LSB) of the index bits? In Figure 10.8, we have chosen the former option. What is
the logic behind this?
Answer: If we have the ignored bits to the left(MSB) of the index bits, then contiguous
blocks map to different sets. However, for the reverse case in which the ignored bits are to the
right(LSB) of the index bits, contiguous blocks map to the same set. Let us call the former
scheme NON-CONT, and the latter scheme CONT. We have chosen NON-CONT in
our design.

Let us consider two arrays, A, and B. Let the sizes of A and B be significantly smaller
than the size of the cache. Moreover, let some of their constituent blocks map to the same
group of sets. The figure below shows a conceptual map of the regions of the cache that store
both the arrays for the CONT and NON-CONT schemes. We observe that even though,
we have sufficient space in the cache, it is not possible to save both the arrays in the cache

489 c© Smruti R. Sarangi

concurrently using the CONT scheme. Their memory footprints overlap in a region of the
cache, and it is not possible to save data for both the programs simultaneously in the cache.
However, the NON-CONT scheme tries to uniformly distribute the blocks across all the
sets. Thus, it is possible to save both the arrays in the cache at the same time.

Conflict

Cache locations occupied by A

Cache locations occupied by B

Ca
ch

e
lo

ca
tio

ns

This is a frequently occurring pattern in programs. The CONT scheme reserves an
entire area of the cache and thus it is not possible to accommodate other data structures
that map to conflicting sets. However, if we distribute the data in the cache, then we can
accommodate many more data structures and reduce conflicts.

Example 120
A cache has the following parameters in a 32-bit system.

Parameter Value

Size N
Associativity K
Block Size B

What is the size of the tag?
Answer:

• The number of bits required to specify a byte within a block is log(B).

• The number of blocks is equal to N/B, and the number of sets is equal to N/(BK).

• Thus, the number of set index bits is equal to: log(N)− log(B)− log(K).

c© Smruti R. Sarangi 490

• The remaining number of bits are tag bits. It is equal to: 32 − (log(N) − log(B) −
log(K) + log(B)) = 32− log(N) + log(K).

10.2.3 Data read and data write Operations

The data read Operation

Once, we have established that a given block is present in a cache, we use the basic read operation
to get the value of the memory location from the data array. We establish the presence of a
block in a cache if the lookup operation returns a cache hit. If there is a miss in the cache, then
the cache controller needs to raise a read request to the lower level cache, and fetch the block.
The data read operation can start as soon as data is available.

The first step is to read out the block in the data array that corresponds to the matched tag
entry. Then, we need to choose the appropriate set of bytes out of all the bytes in the block.
We can use a set of multiplexers to achieve this. The exact details of the circuit are left to the
reader as an exercise.

Secondly, as described in Section 10.2.2, it is not strictly necessary to start the data read
operation after the lookup operation. We can have a significant overlap between the operations.
For example, we can read the tag array and data array in parallel. We can subsequently select
the right set of values using multiplexers after the matching tag has been computed.

The data write Operation

Before, we can write a value, we need to ensure that the entire block is already present
in the cache. This is a very important concept. Note that we cannot make an argument that
since we are creating new data, we do not need the previous value of the block. The reason
is as follows. We typically write 4 bytes or at the most 8 bytes for a single memory access.
However, a block is at least 32 or 64 bytes long. A block is an atomic unit in our cache. Hence,
we cannot have different parts of it at different places. For example, we cannot save 4 bytes of
a block in the L1 cache, and the rest of the bytes in the L2 cache. Secondly, for doing so, we
need to maintain additional state that keeps track of the bytes that have been updated with
writes. Hence, in the interest of simplicity, even if we wish to write just 1 byte, we need to
populate the cache with the entire block.

After that we need to write the new values in the data array by enabling the appropriate
set of word lines and bit lines. We can design a simple circuit to achieve this using a set of
demultiplexers. The details are left to the reader.

There are two methods of performing a data write – write-back and write-through. Write-
through is a relatively simpler scheme. In this approach, whenever we write a value into the
data array, we also send a write operation to the lower level cache. This approach increases
the amount of cache traffic. However, it is simpler to implement the cache because we do not
have to keep track of the blocks that have been modified after they were brought into the
cache. We can thus seamlessly evict a line from the cache if required. Here cache evictions and
replacements are simple, at the cost of writes. We shall also see in Chapter 11 that it is easy
to implement caches for mutiprocessors if the L1 caches follow a write-through protocol.

491 c© Smruti R. Sarangi

In the write-back scheme, we explicitly keep track of blocks that have been modified using
write operations. We can maintain this information by using an additional bit in the tag array.
This bit is typically known as the modified bit. Whenever, we get a block from the lower level
of the memory hierarchy, the modified bit is 0. However, when we do a data write and update
the data array, we set the modified bit in the tag array to 1. Evicting a line requires us to
do extra processing that we shall describe in Section 10.2.6. For a write-back protocol, writes
are cheap, and evict operations are more expensive. The tradeoff here is the reverse of that in
write-through caches.

The structure of an entry in the tag array with the additional modified bit is shown in
Figure 10.10.

TagModified
 bit

Figure 10.10: An entry in the tag array with the modified bit

10.2.4 The insert Operation

In this section, we shall discuss the protocol to insert a block in a cache. This operation is
invoked when a block arrives from a lower level. We need to first take a look at all the ways
of the set that a given block is mapped to, and see if there are any empty entries. If there
are empty entries then we can choose one of the entries arbitrarily, and populate it with the
contents of the given block. If we do not find any empty entries, we need to invoke the replace
and evict operations to choose and remove an already existing block from the set.

We need to maintain some extra status information to figure out if a given entry is empty
or non-empty. In computer architecture parlance, these states are also known as invalid and
valid respectively. We need to store just 1 extra bit in the tag array to indicate the status of a
block. It is known as the valid bit. We shall use the tag array for saving additional information
regarding an entry, because it is smaller and typically faster than the data array.

The structure of an entry in the tag array with the addition of the valid bit is shown in
Figure 10.11.

The cache controller needs to check the valid bits of each of the tags while searching for
invalid entries. Note that all the entries of a cache are invalid initially. If an invalid entry is
found, then the corresponding entry in the data array can be populated with the contents of
the block. The entry subsequently becomes valid. However, if there is no invalid entry, then
we need to replace one entry with the given block that needs to be inserted into the cache.

10.2.5 The replace Operation

The task is here to find an entry in the set that can be replaced by a new entry. We do not
wish to replace an element that is accessed very frequently. This will increase the number of
cache misses. We ideally want to replace an element that has the least probability of being

c© Smruti R. Sarangi 492

TagModified
 bit

Valid bit

Figure 10.11: An entry in the tag array with the modified, and valid bits

accessed in the future. However, it is difficult to predict future events. Hence, we need to make
reasonable guesses based on past behavior. We can have different policies for the replacement
of blocks in a cache. These are known as replacement schemes or replacement policies.

Definition 104
A cache replacement scheme or replacement policy is a method to replace an entry in the
set by a new entry.

Random Replacement Policy

The most trivial replacement policy is known as the random replacement policy. Here, we pick
a block at random and replace it. This scheme is very simple to implement. However, it is not
very optimal in terms of performance, because it does not take into account the behaviour of
the program and the nature of the memory access pattern. This scheme ends up often replacing
very frequently accessed blocks.

FIFO Replacement Policy

The next scheme is slightly more complicated, and is known as the FIFO (first in first out)
replacement policy. Here, the assumption is that the block that was brought into the cache at
the earliest point of time, is the least likely to be accessed in the future. To implement the
FIFO replacement policy, we need to add a counter to the tag array. Whenever, we bring in a
block, we assign it a counter value equal to 0. We increment the counter values for the rest of
the blocks. The larger is the counter, the earlier the block was brought into the cache.

Now to find a candidate for replacement, we need to find an entry with the largest value of
the counter. This must be the earliest block. Unfortunately, the FIFO scheme does not strictly
align with our principles of temporal locality. It penalises blocks that are present in the cache
for a long time. However, they may also be very frequently accessed blocks, and should not be
evicted in the first place.

Let us now consider the practical aspects of implementing a FIFO replacement policy. The
maximum size of the counter needs to be equal to the number of elements in a set, i.e., the

493 c© Smruti R. Sarangi

associativity of the cache. For example, if the associativity of a cache is 8, we need to have a 3
bit counter. The entry that needs to be replaced should have the largest counter value.

Note that in this case, the process of bringing in a new value into the cache is rather expen-
sive. We need to increment the counters of all the elements in the set except one. However, cache
misses, are more infrequent as compared to cache hits. Hence, the overhead is not significant
in practice, and this scheme can be implemented without large performance overheads.

LRU Replacement Policy

The LRU (least recently used) replacement policy is known to be as one of the most efficient
schemes. The LRU scheme follows directly from the definition of stack distance. We ideally
want to replace a block that has the lowest chance of being accessed in the future. According
to the notion of stack distance, the probability of being accessed in the future is related to the
probability of accesses in the recent past. If a processor has been accessing a block frequently
in the last window of n (n is not a very large number) accesses, then there is a high probability
that the block will be accessed in the immediate future. However, if the last time that a block
was accessed is long back in the past, then the chances are unlikely that it will be accessed
soon.

In the LRU replacement policy, we maintain the time that a block was last accessed. We
choose the block that was last accessed at the earliest point of time as a candidate for replace-
ment. In a hypothetical implementation of a LRU replacement policy, we maintain a timestamp
for every block. Any time that a block is accessed, its timestamp is updated to match the cur-
rent time. For finding an appropriate candidate for replacement, we need to find the entry with
the smallest timestamp in a set.

Let us now consider the implementation of an LRU scheme. The biggest issue is that
we need to do additional work for every read and write access to the cache. There will be
a significant performance impact because typically 1 in 3 instructions are memory accesses.
Secondly, we need to dedicate bits to save a timestamp that is sufficiently large. Otherwise,
we need to frequently reset the timestamps of every block in a set. This process will induce
a further slowdown, and additional complexity in the cache controller. Implementing an LRU
scheme that is as close to an ideal LRU implementation as possible, and that does not have
significant overheads, is thus a difficult task.

Hence, let us try to design LRU schemes that use small timestamps (typically 1-3 bits), and
approximately follow the LRU policy. Such kind of schemes are called pseudo-LRU schemes.
Let us outline a simple method for implementing a basic pseudo-LRU scheme. Note that we can
have many such approaches, and the reader is invited to try different approaches and test them
on a cache simulator such as Dinero [Edler and Hill, 1999], or sim-cache [Austin et al., 2002].
Instead of trying to explicitly mark the least recently used element, let us try to mark the more
recently used elements. The elements that are not marked will automatically get classified as
the least recently used elements.

Let us start out by associating a counter with each block in the tag array. Whenever, a
block is accessed (read/write), we increment the counter. However, once the counter reaches the
maximum value, we stop incrementing it further. For example, if we use a 2-bit counter, then
we stop incrementing the counter beyond 3. Now, we need to do something more. Otherwise,
the counter associated with every block will ultimately reach 3 and stay there. To solve this

c© Smruti R. Sarangi 494

problem, we can periodically decrement the counters of every block in a set by 1, or we can even
reset them to 0. Subsequently, some of the counters will start increasing again. This procedure
will ensure that for most of the time, we can identify the least recently used blocks by taking a
look at the value of counters. The block associated with the lowest value of the counter is one
of the least recently used blocks, and most likely “the most least recently used block”. Note
that this approach does involve some amount of activity per access. However, incrementing a
small counter has little additional overhead. Secondly, it is not in the critical path in terms of
timing. It can be done in parallel or sometime later also. Finding a candidate for replacement
involves looking at all the counters in a set, and finding the block with the lowest value of the
counter. After we replace the block with a new block, most processors typically set the counter
of the new block to the largest possible value. This indicates to the cache controller, that the
new block should have the least priority with respect to being a candidate for replacement.

10.2.6 The evict Operation

Lastly, let us take a look at the evict operation. If the cache follows a write-through policy,
then nothing much needs to be done. The block can simply be discarded. However, if the cache
follows a write-back policy, then we need to take a look at the modified bit. If the data is not
modified, then it can be seamlessly evicted. However, if the data has been modified, then it
needs to written back to the lower level cache.

10.2.7 Putting all the Pieces Together

Cache Read Operation

lookup

data read

lookup

miss

Lower level
cache

hit

replaceinsert evict

read block

insert

Time

Lower level
cache

if write
back cache

Figure 10.12: The read operation

The sequence of steps in a cache read operation is shown in Figure 10.12. We start with a
lookup operation. As mentioned in Section 10.2.2, we can have a partial overlap between the
lookup and data read operations. If there is a cache hit, then the cache returns the value to the
processor, or the higher level cache (whichever might be the case). However, if there is a cache
miss, then we need to cancel the data read operation, and send a request to the lower level
cache. The lower level cache will perform the same sequence of accesses, and return the entire
cache block (not just 4 bytes). The cache controller can then extract the requested data from

495 c© Smruti R. Sarangi

the block, and send it to the processor. Simultaneously, the cache controller invokes the insert
operation to insert the block into the cache. If there is an invalid entry in the set, then we can
replace it with the given block. However, if all the ways in a set are valid, it is necessary to
invoke the replace operation to find a candidate for replacement. The figure appends a question
mark with this operation, because this operation is not invoked all the time (only when all the
ways of a set contain valid data). Then, we need to evict the block, and possibly write it to
the lower level cache if the line is modified, and we are using a write-back cache. The cache
controller then invokes the insert operation. This time it is guaranteed to be successful.

Cache Write Operation (write-back Cache)

lookup

data writehit

lookup

miss

Lower level
cache

replaceinsert evict

Lower level
cache

insert
write
block

Time

Figure 10.13: The write operation (write-back Cache)

Figure 10.13 shows the sequence of operations for a cache write operation for a write-back
cache. The sequence of operations are roughly similar to that of a cache read. If there is a
cache hit, then we invoke a data write operation, and set the modified bit to 1. Otherwise,
we issue a read request for the block to the lower level cache. After the block arrives, most
cache controllers typically store it in a small temporary buffer. At this point, we write the
4 bytes (that we are interested in) to the buffer, and return. In some processors, the cache
controller might wait till all the sub-operations complete. After writing into the temporary
buffer (write block operation in Figure 10.13), we invoke the insert operation for writing the
contents (modified) of the block. If this operation is not successful (because all the ways are
valid), then we follow the same sequence of steps as the read operation (replace, evict, and
insert).

Cache Write Operation (write-through Cache)

Figure 10.14 shows the sequence of operations for a write-through cache. The first point of
difference is that we write the block to the lower level, even if the request hits in the cache.
The second point of difference is that after we write the value into the temporary buffer (after
a miss), we write back the new contents of the block to the lower level cache also. The rest of
the steps are similar to the sequence of steps that we followed for the write-back cache.

c© Smruti R. Sarangi 496

lookup

data writehit lookup

miss

Lower level
cache

replaceinsert evict

Lower level
cache

insert
write
block

Time

Figure 10.14: The write operation (write-through Cache)

10.3 The Memory System

We now have a fair understanding of the working of a cache, and all its constituent operations.
A memory system is built using a hierarchy of caches as mentioned in Section 10.1.7. The
memory system as a whole supports two basic operations: read, and write, or alternatively, load
and store.

L1 Data
cache

L2 cache

Main memory

Memory system

Instruction
cache

Figure 10.15: The memory system

We have two caches at the highest level – The data cache (also referred to as the L1 cache),
and the instruction cache (also referred to as the I Cache). Almost all the time both of them
contain different sets of memory locations. The protocol for accessing the I Cache and L1 cache
is the same. Hence, to avoid repetition let us just focus on the L1 cache from now on. The
reader needs to just remember that accesses to the instruction cache follow the same sequence
of steps.

The processor starts by accessing the L1 cache. If there is a L1 hit, then it typically receives
the value within 1-2 cycles. Otherwise, the request needs to go to the L2 cache, or possibly
even lower levels such as the main memory. In this case, the request can take tens or hundreds
of cycles. In this section, we shall look at the system of caches in totality, and treat them as
one single black box referred to as the memory system.

497 c© Smruti R. Sarangi

If we consider inclusive caches, which is the convention in most commercial systems, the total
size of the memory system is equal to the size of the main memory. For example, if a system has
1 GB of main memory, then the size of the memory system is equal to 1 GB. It is possible that
internally, the memory system might have a hierarchy of caches for improving performance.
However, they do not add to the total storage capacity, because they only contain subsets of
the data contained in main memory. Moreover, the memory access logic of the processor also
views the entire memory system as a single unit, conceptually modelled as a large array of
bytes. This is also known as the physical memory system, or the physical address space.

Definition 105
The physical address space comprises of the set of all memory locations contained in the
caches, and main memory.

10.3.1 Mathematical Model of the Memory System

Performance

The memory system can be thought of as a black box that just services read and write requests.
The time a request takes is variable. It depends on the level of the memory system at which
the request hits. The pipeline is attached to the memory system in the memory access (MA)
stage, and issues requests to it. If the reply does not come within a single cycle, then additional
pipeline bubbles need to be introduced in our 5 stage SimpleRisc in-order pipeline.

Let the average memory access time be AMAT (measured in cycles), and the fraction of
load/store instructions be fmem. Then the CPI can be expressed as:

CPI = CPIideal + stall rate ∗ stall cycles
= CPIideal + fmem × (AMAT − 1)

(10.1)

CPIideal is the CPI assuming a perfect memory system having a 1 cycle latency for all
accesses. Note that in our 5 stage in-order pipeline the ideal instruction throughput is 1
instruction per cycle, and the memory stage is allotted 1 cycle. In practice, if a memory
access takes n cycles, then we have n − 1 stall cycles, and they need to be accounted for by
Equation 10.1. In this equation, we implicitly assume that every memory access suffers a stall
for AMAT − 1 cycles. In practice this is not the case since most of the instructions will hit in
the L1 cache, and the L1 cache typically has a 1 cycle latency. Hence, accesses that hit in the
L1 cache will not stall. However, long stall cycles will be introduced by accesses that miss in
the L1 and L2 caches.

Nonetheless, Equation 10.1 still holds because we are only interested in the average CPI for
a large number of instructions. We can derive this equation by considering a large number of
instructions, summing up all the memory stall cycles, and computing the average number of
cycles per instruction.

c© Smruti R. Sarangi 498

Average Memory Access Time

In Equation 10.1, CPIideal is determined by the nature of the program and the nature of the
other stages (other than MA) of the pipeline. fmem is also an inherent property of the program
running on the processor. We need a formula to compute AMAT . We can compute it in a way
similar to Equation 10.1.

Assuming, a memory system with an L1 and L2 cache, we have:

AMAT = L1hit time + L1miss rate × L1miss penalty

= L1hit time + L1miss rate × (L2hit time + L2miss rate × L2miss penalty)
(10.2)

All the memory accesses need to access the L1 cache irrespective of a hit or a miss. Hence,
they need to incur a delay equal to L1hit time. A fraction of accesses, L1miss rate, will miss in
the L1 cache, and move to the L2 cache. Here also, irrespective of a hit or a miss, we need
to incur a delay of L2hit time cycles. If a fraction of accesses (L2miss rate) miss in the L2 cache,
then they need to proceed to main memory. We have assumed that all the accesses hit in the
main memory. Hence, the L2miss penalty is equal to the main memory access time.

Now, if we assume that we have a n level memory system where the first level is the L1
cache, and the last level is the main memory, then we can use a similar equation.

AMAT = L1hit time + L1miss rate × L1miss penalty

L1miss penalty = L2hit time + L2miss rate × L2miss penalty

L2miss penalty = L3hit time + L3miss rate × L3miss penalty

. . . = . . .

L(n− 1)miss penalty = Lnhit time

(10.3)

We need to note that the miss rate used in these equations for a certain level i is equal to
the number of accesses that miss at that level divided by the total number of accesses to that
level. This is known as the local miss rate. In comparison, we can define a global miss rate for
level i, which is equal to the number of misses at level i divided by the total number of memory
accesses.

Definition 106

local miss rate It is equal to the number of misses in a cache at level i divided by the total
number of accesses at level i.

global miss rate It is equal to the number of misses in a cache at level i divided by the
total number of memory accesses.

Let us take a deeper look at Equation 10.1. We observe that we can increase the performance
of a system by either reducing the miss rate, the miss penalty or by decreasing the hit time.
Let us first look at the miss rate.

499 c© Smruti R. Sarangi

10.3.2 Cache Misses

Classification of Cache Misses

Let us first try to categorise the different kinds of misses in a cache.

The first category of misses are known as compulsory misses or cold misses. These misses
happen, when data is loaded into a cache for the first time. Since the data values are not there
in the cache, a miss is bound to happen. The second category of cache misses are known as
capacity misses. We have a capacity miss, when the amount of memory required by a program
is more than the size of the cache. For example, let us assume that a program repeatedly
accesses all the elements of an array. The size of the array is equal to 1 MB, and the size of
the L2 cache is 512 KB. In this case, there will be capacity misses in the L2 cache, because
it is too small to hold all the data. The set of blocks that a program accesses in a typical
interval of time is known as its working set. We can thus alternatively say that conflict misses
happen when the size of the cache is smaller than the working set of the program. Note that the
definition of the working set is slightly imprecise because the length of the interval is considered
rather subjectively. However, the connotation of the time interval is that it is a small interval
compared to the total time of execution of the program. Nevertheless, it is large enough to
ensure that the behaviour of the system achieves a steady state. The last category of misses
are known as conflict misses. These misses occur in direct mapped and set associative caches.
Let us consider a 4 way set associative cache. If there are 5 blocks that map to the same set
in the working set of a program, then we are bound to have cache misses. This is because the
number of blocks accessed is larger than the maximum number of entries that can be part of a
set. These misses are known as conflict misses.

Definition 107
The memory locations accessed by a program in a short interval of time comprise the working
set of the program at that point of time.

The categorisation of misses into these three categories – compulsory, capacity, and conflict
– is also known as the three ’C’s.

Reduction of the Miss Rate

To sustain a high IPC, it is necessary to reduce the cache miss rate. We need to adopt different
strategies to reduce the different kinds of cache misses.

Let us start out with compulsory misses. We need a method to predict the blocks that will be
accessed in the future, and fetch the blocks in advance. Typically schemes that leverage spatial
locality serve as effective predictors. Hence, increasing the block size should prove beneficial in
reducing the number of compulsory misses. However, increasing the block size beyond a certain
limit can have negative consequences also. It reduces the number of blocks that can be saved
in a cache, and secondly the additional benefit might be marginal. Lastly, it will take more
time to read and transfer bigger blocks from the lower levels of the memory system. Hence,
designers avoid very large block sizes. Any value between 32-128 bytes is reasonable.

c© Smruti R. Sarangi 500

Modern processors typically have sophisticated predictors that try to predict the addresses
of blocks that might be accessed in the future based on the current access pattern. They
subsequently fetch the predicted blocks from the lower levels of the memory hierarchy in an
attempt to reduce the miss rate. For example, if we are sequentially accessing the elements
of a large array, then it is possible to predict the future accesses based on the access pattern.
Sometimes we access elements in an array, where the indices differ by a fixed value. For example,
we might have an algorithm that accesses every fourth element in an array. In this case also, it is
possible to analyse the pattern and predict future accesses because the addresses of consecutive
accesses differ by the same value. Such kind of a unit is known as a hardware prefetcher. It
is present in most modern processors, and uses sophisticated algorithms to “prefetch” blocks
and consequently reduce the miss rate. Note that the hardware prefetcher should not be very
aggressive. Otherwise, it will tend to displace more useful data from the cache than it brings
in.

Definition 108
A hardware prefetcher is a dedicated hardware unit that predicts the memory accesses in the
near future, and fetches them from the lower levels of the memory system.

Let us now consider capacity misses. The only effective solution is to increase the size of the
cache. Unfortunately, the cache design that we have presented in this book requires the size of
the cache to be equal to a power of two (in bytes). It is possible to violate this rule by using
some advanced techniques. However, by and large most of the caches in commercial processors
have a size that is a power of two. Hence, increasing the size of a cache is tantamount to at
least doubling its size. Doubling the size of a cache requires twice the area, slows it down, and
increases the power consumption. Here again, prefetching can help if used intelligently and
judiciously.

The classical solution to reduce the number of conflict misses is to increase the associativity
of a cache. However, increasing the associativity of a cache increases the latency and power
consumption of the cache also. Consequently, it is necessary for designers to carefully balance
the additional hit rate of a set associative cache, with the additional latency. Sometimes, it is
the case that there are conflict misses in a few sets in the cache. In this case, we can have a
small fully associative cache known as the victim cache along with the main cache. Any block
that is displaced from the main cache, can be written to the victim cache. The cache controller
needs to first check the main cache, and if there is a miss, then it needs to check the victim
cache, before proceeding to the lower level. A victim cache at level i can thus filter out some
of the requests that go to level (i+ 1).

Note that along with hardware techniques, it is possible to write programs in a “cache
friendly” way. These methods can maximise temporal and spatial locality. It is also possible
for the compiler to optimise the code for a given memory system. Secondly, the compiler can
insert prefetching code such that blocks can be prefetched into the cache before they are actually
used. Discussion of such techniques are beyond the scope of this book.

Let us now quickly mention two rules of thumb. Note that these rules are found to approx-
imately hold empirically, and are by no means fully theoretically justified. The first is known

501 c© Smruti R. Sarangi

as the Square Root Rule [Hartstein et al., 2006]. It says that the miss rate is proportional to
the square root of the cache size.

miss rate ∝ 1√
cache size

[Square Root Rule] (10.4)

Hartstein et. al. [Hartstein et al., 2006] try to find a theoretical justification for this rule, and
explain the basis of this rule by using results from probability theory. From their experimental
results, they arrive at a generic version of this rule that says that the exponent of the cache
size in the Square Root Rule varies from -0.3 to -0.7.

The other rule is known as the “Associativity Rule”. It states that the effect of doubling
associativity is almost the same as doubling the cache size with the original associativity. For
example, the miss rate of a 64 KB 4-way associative cache is almost the same as that of a 128
KB 2-way associative cache.

We would further like to caution the reader that the Associativity Rule and the Square
Root Rule are just thumb rules, and do not hold exactly. They can be used as mere conceptual
aids. We can always construct examples that violate these rules.

10.3.3 Reduction of Hit Time and Miss Penalty

Hit Time

The average memory access time can also be reduced by reducing the hit time and the miss
penalty. To reduce the hit time, we need to use small and simple caches. However, by doing
so, we increase the miss rate also.

Miss Penalty

Processor

L1 cache Write
buffer

L2 cache

Figure 10.16: Write buffer

Let us now discuss ways to reduce the miss penalty. Note that the miss penalty at level i,
is equal to the memory latency of the memory system starting at level (i+ 1). The traditional

c© Smruti R. Sarangi 502

methods for reducing hit time, and miss rate can always be used to reduce the miss penalty at a
given level. However, we are looking at methods that are exclusively targeted towards reducing
the miss penalty. Let us first look at write misses in the L1 cache. In this case the entire block
has to be brought into the cache from the L2 cache. This takes time (> 10 cycles), and secondly
unless the write has completed, the pipeline cannot resume. Hence, processor designers use a
small set associative cache known as a write buffer as shown in Figure 10.16. The processor
can write the value to the write buffer, and then resume, or alternatively, it can write to the
write buffer only if there is a miss in the L1 cache (as we have assumed). Any subsequent read
needs to check the write buffer along with accessing the L1 cache. This structure is typically
very small and fast (4-8 entries). Once, the data arrives in the L1 cache, the corresponding
entry can be removed from the write buffer. Note that if a free entry is not available in the
write buffer, then the pipeline needs to stall. Secondly, before the write miss has been serviced
from the lower levels of the cache, it is possible that there might be another write to the same
address. This can be seamlessly handled by writing to the allocated entry for the given address
in the write buffer.

Let us now take a look at read misses. Let us start out by observing that the processor
is typically interested in only up to 4 bytes per memory access. The pipeline can resume if it
is provided those crucial 4 bytes. However, the memory system needs to fill the entire block
before the operation can complete. The size of a block is typically between 32-128 bytes. It
is thus possible to introduce an optimisation here, if the memory system is aware of the exact
set of bytes that the processor requires. In this case, the memory system can first fetch the
memory word (4 bytes) that is required. Subsequently, or in parallel it can fetch the rest of
the block. This optimisation is known as critical word first. Then, this data can be quickly
sent to the pipeline such that it can resume its operation. This optimisation is known as early
restart. Implementing both of these optimisations increases the complexity of the memory
system. However, critical word first and early restart are fairly effective in reducing the miss
penalty.

10.3.4 Summary of Memory System Optimisation Techniques

Table 10.2 shows a summary of the different techniques that we have introduced to optimise
the memory system. Note that every technique has some negative side effects. If a technique
improves the memory system in one aspect, then it is detrimental in some other aspect. For
example, by increasing the cache size we reduce the number of capacity misses. However, we
also increase the area, latency, and power.

To summarise, we can conclude that it is necessary to design the memory system very
carefully. The requirements of the target workload have to be carefully balanced with the
constraints placed by the designers, and the limits of manufacturing technology. We need
to maximise performance, and at the same time be mindful of power, area, and complexity
constraints.

10.4 Virtual Memory

Up till now, we have considered only one program in our system. We have designed our
entire system using this assumption. However, this assumption is not correct. For example,

503 c© Smruti R. Sarangi

Technique Application Disadvantages

large block size compulsory
misses

reduces the number of blocks
in the cache

prefetching compulsory
misses, capacity
misses

extra complexity and the
risk of displacing useful data
from the cache

large cache size capacity misses high latency, high power,
more area

increased associativity conflict misses high latency, high power

victim cache conflict misses extra complexity

compiler based all types of misses not very generic
techniques

small and simple cache hit time high miss rate

write buffer miss penalty extra complexity

critical word first miss penalty extra complexity and state

early restart miss penalty extra complexity

Table 10.2: Summary of different memory system optimisation techniques

at the moment there are 232 programs running on your author’s workstation. The reader can
easily find out the number of programs running on her system by opening the Task Manger
on Windows, or by entering the command “ps -ef” on a Linux or a Macintosh system. It is
possible for one processor to run multiple programs by switching between different programs
very quickly. For example, while a user is playing a game, her processor might be fetching her
new email. The reason she does not feel any interruption, is because the time scale at which the
processor switches back and forth between programs (typically several milliseconds) is much
smaller than what humans can perceive.

Secondly, we have assumed up till now that all the data that a program needs is resident in
main memory. However, this assumption is also not correct. Back in the old days, the size of
main memory used to be several megabytes, whereas, users could run very large programs that
needed hundreds of megabytes of data. Even now, it is possible to work with data that is much
larger than the amount of main memory. Readers can easily verify this statement, by writing
a C program that creates data structures that are larger than the amount of physical memory
contained in their machine. In most systems, this C program will compile and run successfully.

We shall see in this section that by making a small change in the memory system, we can
satisfy both of these requirements.

10.4.1 Process – A Running Instance of a Program

Up till now, we have assumed the existence of only one program in the system. We assumed
that it was in complete control of the memory system, and the processor pipeline. However,
this is not the case in practice.

Let us first start out by accurately defining the notion of a process and differentiating it from
a program. Up till now we have been loosely using the term – program – and sometimes using

c© Smruti R. Sarangi 504

it in place of a process. A program is an array of bytes and is saved as a file in the file system.
The file is typically known as a binary or as an executable. The executable contains some meta
data about the program such that its name and type, the constants used by the program, and
the set of instructions. In comparison, a process is a running instance of a program. If we run
one program several times, we create multiple processes. A process has access to the processor,
peripheral devices, and the memory system. There is a dedicated area in the memory system
that contains the data and code of the process. The program counter of the processor points
to a given location in the code region of the process in memory when the process is executing.
Memory values required by the process are obtained from its data region in the memory system.
The operating system starts and ends a process, and manages it throughout its lifetime.

Definition 109
A process is a running instance of a program.

Operating System

Most of our readers must have heard of the term operating system. Most people mostly view
an operating system such as Windows, Linux, or Mac OS X from the point of view of its user
interface. However, this is a minor aspect of the operating system. It does many more things
invisibly. Let us look at some of its important functionalities.

The operating system consists of a set of dedicated programs that manage the machine,
peripheral devices, and all the processes running on the machine. Furthermore, the operating
system facilitates efficient transfer of information between the hardware and software compo-
nents of a computer system. The core component of an operating system is known as the kernel.
Its main role is to manage the execution of processes, and manage memory. We shall look at
the memory management aspect in Section 10.4.5. Let us now look at the process management
aspect.

To run a program, a user needs to compile the program, and then either double click the
program, or write the name of the program in the command line, and click the “enter” button.
Once, this is done, the control passes to the operating system kernel. A component of the
kernel known as the loader reads the content of the program, and copies it to a region in the
memory system. Notably, it copies all the instructions in the text section, allocates space for all
the data, and initialises memory with all the constants that a program will require during its
execution. Subsequently, it initialises the values of registers, copies command line arguments
to the stack, possibly initialises the stack pointer, and jumps to the entry point of the program.
The user program can then begin to execute, in the context of a running process. Every process
has a unique number associated with it. It is known as the pid (process id). After completion,
it is the kernel’s job to tear down the process, and reclaim all of its memory.

The other important aspect of process management is scheduling. A dedicated component
of the kernel manages all the processes, including the kernel itself, which is a special process.
It typically runs each process for a certain amount of time, and then switches to another
process. As a user, we typically do not perceive this because every second, the kernel switches
between processes hundreds of times. The time interval is too small for us to detect. However,

505 c© Smruti R. Sarangi

behind the scenes, the kernel is busy at work. For example, it might be running a game for
sometime, running a program to fetch data from the network for some time, and then running
some of its own tasks for sometime. The kernel also manages aspects of the file system, inter-
process communication, and security. The discussion of such topics is beyond the scope of
this book. The reader is referred to textbooks on operating systems such as the book by
Tanenbaum [Tanenbaum, 2007] or Silbserchatz and Galvin [Silberschatz et al., 2008].

The other important components in an operating system are device drivers, and system
utilities. Device drivers are dedicated programs that communicate with dedicated devices and
ensure the seamless flow of information between them and user processes. For example, a
printer and scanner have dedicated device drivers that make it possible to print and scan
documents, respectively. Network interfaces have dedicated device drivers that allow us to
exchange messages over the internet. Lastly, system utilities provide generic services to all
the processes such as file management, device management (Control Panel in Windows), and
security.

Definition 110

Operating System The operating system consists of a set of dedicated programs that man-
age the machine, peripheral devices, and the processes running on it. It facilitates the
transfer of information between the hardware and software components of a computer
system.

Kernel The kernel is a program that is the core of the operating system. It has complete
control over the rest of the processes in the operating system, the user processes, the
processor, and all external devices. It mainly performs the task of managing multiple
processes, devices, and filesystems.

Process Management The two important components in the kernel to perform process
management are the loader, and the scheduler. The loader creates a process out of
a program by transferring its contents to memory, and setting up the appropriate
execution environment. The scheduler schedules the execution of multiple processes
including that of the kernel itself.

Device Drivers These dedicated programs help the kernel and user processes communicate
with devices.

System Utilities These are generic services provided by the operating system such as the
print queue manager and file manager. They can be used by all the processes in the
system.

c© Smruti R. Sarangi 506

Virtual ‘View’ of Memory

Since multiple processes are live at the same point of time. It is necessary to partition the
memory between processes. If this is not done, then it is possible that processes might end
up modifying each others’ values. At the same time, we do not want the programmer or
the compiler to be aware of the existence of multiple processes. This introduces unwanted
complexity. Secondly, if a given program is compiled with a certain memory map, it might not
run on another machine that has a process with an overlapping memory map. Even worse, it
will not be possible to run two copies of the same program. Hence, it is essential that each
program sees a virtual view of memory, in which it assumes that it owns the entire memory
system.

As we can observe, there are two conflicting requirements. The memory system, and the
operating system want different processes to access different memory addresses, whereas, the
programmer and the compiler do not want to be aware of this requirement. Additionally, the
programmer wishes to layout her memory map according to her wish. It turns out that there
is a method to make both the programmer and the operating system happy.

We need to define a virtual and a physical view of of memory. In the physical view of
memory, different processes operate in non-overlapping regions of the memory space. However,
in the virtual view, every process accesses any address that it wishes to access, and the virtual
views of different processes can overlap. The solution is obtained through a method called
paging that we shall explain in Section 10.4.3. However, before proceeding to the solution, let
us discuss the virtual view of memory that a process typically sees. The virtual view of memory,
is also referred to as virtual memory. It is defined as a hypothetical memory system, in which
a process assumes that it owns the entire memory space, and there is no interference from any
other process.

Definition 111
The virtual memory system is defined as a hypothetical memory system, in which a process
assumes that it owns the entire memory space, and there is no interference from any other
process. The size of the memory is as large as the total addressable memory of the system.
For example, in a 32-bit system, the size of virtual memory is 232 bytes (4 GB). The set of
all memory locations in virtual memory is known as the virtual address space.

In the virtual memory space, the operating system lays out the code and data in different
regions. This arrangement of code, data, constants, and other information pertaining to a
process is known as the memory map.

Definition 112
The memory map of a process refers to the way an operating system lays out the code and
data in memory.

507 c© Smruti R. Sarangi

Memory Map of a Process

Header
0

0x08048000

Text

Data
Static variables

with initial values

Bss
Static variables not

initialised, filled with zeros

Heap

Memory mapping
segment

Stack
0xC0000000

Figure 10.17: Memory map of a process in the Linux operating system (32 bits)

Figure 10.17 shows a simplified view of the memory map of a process in the 32-bit Linux
operating system. Let us start from the bottom (lowest address). The first section contains
the header. It starts out with details about the process, its format, and the target machine.
Subsequently, the header contains the details of each section in the memory map. For example,
it contains the details of the text section that contains the code of the program including its
size, starting address, and additional attributes. The text section starts after the header. The
operating system sets the program counter to the start of the text section while loading a
program. All the instructions in a program are typically contained within the text section.
The text section is followed by two more sections that are meant to contain static and global
variables. Optionally some operating systems, also have an additional area to contain read only
data such as constants.

The text section is typically followed by the data section. It contains all the static/global
variables that have been initialised by the programmer. Let us consider a declaration of the
form (in C or C++):

static int val = 5;

Here the 4 bytes corresponding to the variable – val – are saved in the data section. The
data section is followed by the bss section. The bss section saves static and global variables

c© Smruti R. Sarangi 508

that have not been explicitly initialised by the programmer. Most operating systems, fill the
memory area corresponding to the bss section with zeros. This needs to be done in the interest
of security. Let us assume that program A runs and writes its values in the bss section.
Subsequently, program B runs. Before, writing to a variable in the bss section, B can always
try to read its value. In this case, it will get the value written by program A. However, this
is not desirable behavior. Program A might have saved some sensitive data in the bss section
such as a password or a credit card number. Program B can thus gain access to this sensitive
data without program A’s knowledge, and possibly misuse the data. Hence, it is necessary to
fill up the bss section with zeros such that such kind of security lapses do not happen.

The bss section is followed by a memory area known as the heap. The heap area is used
to save dynamically allocated variables in a program. C programs typically allocate new data
with the malloc call. Java and C++ use the new operator. Let us look at some examples.

int *intarray = (int *)malloc(10 * sizeof(int)); [C]

int *intarray = new int[10]; [C++]

int[] intarray = new int[10]; [Java]

Note that in these languages, dynamically allocating arrays is very useful because their sizes
are not known at compile time. The other advantage of having data in the heap is that they
survive across function calls. The data in the stack remains valid for only the duration of the
function call. After that it gets deleted. However, data in the heap stays for the entire life
of the program. It can be used by all the functions in the program, and pointers to different
data structures in the heap can be shared across functions. Note that the heap grows upward
(towards higher addresses). Secondly, managing the memory in a heap is a fairly difficult task.
This is because dynamically, regions of the heap are allocated with malloc/new calls and freed
with the free/delete calls in high level languages. Once an allocated memory region is freed, a
hole gets created in the memory map. It is possible to allocate some other data structure in the
hole if its size is less than the size of the hole. In this case, another smaller hole gets created in
the memory map. Over time as more and more data structures are allocated and de-allocated,
the number of holes tend to increase. This is known as fragmentation. Hence, it is necessary
to have an efficient memory manager that can reduce the number of holes in the heap. A view
of the heap with holes, and allocated memory is shown in Figure 10.18.

The next segment is reserved for storing data corresponding to memory mapped files, and
dynamically linked libraries. Most of the time, operating systems transfer the contents of a file
(such as a music, text, or video file) to a memory region, and treat the contents of the file as a
regular array. This memory region is referred to as a memory mapped file. Secondly, programs
might occasionally read the contents of other programs (referred to as libraries) dynamically,
and transfer the contents of their text sections to their memory map. Such libraries are known
as dynamically linked libraries, or dlls. The contents of such memory mapped structures are
stored in a dedicated section in the process’s memory map.

The next section is the stack, which starts from the top of the memory map and grows
downwards (towards smaller addresses) as discussed in Section 3.3.10. The stack continuously
grows and shrinks depending on the behavior of the program. Note that Figure 10.17 is not
drawn to scale. If we consider a 32-bit memory system, then the total amount of virtual memory
is 4 GB. However, the total amount of memory that a program might use is typically limited to

509 c© Smruti R. Sarangi

Heap

Allocated
memory regions

Figure 10.18: The memory map of a heap

hundreds of megabytes. Hence, there is a massive empty region in the map between the start
of the heap and stack sections.

Note that the operating system needs to run very frequently. It needs to service device
requests, and perform process management. As we shall see in Section 10.4.3 changing the
virtual view of memory from process to process is slightly expensive. Hence, most operating
systems partition the virtual memory between a user process and the kernel. For example,
Linux gives the lower 3GB to a user process, and keeps the upper 1 GB for the kernel. Similarly,
Windows keeps the upper 2GB for the kernel, and the lower 2 GB for user processes. Hence, it
is not necessary to change the view of memory as the processor transitions from the user process
to the kernel. Secondly, this small modification does not greatly impair the performance of a
program because 2GB or 3GB is much more than the typical memory footprint of a program.
Moreover, this trick does not also conflict with our notion of virtual memory. A program just
needs to assume that it has a reduced memory space (reduced from 4GB to 3GB in the case of
Linux). Refer to Figure 10.19.

User programs

OS kernel

3 GB

1 GB

User programs

OS kernel

2 GB

2 GB

Linux Windows

Figure 10.19: The memory map – user and kernel

c© Smruti R. Sarangi 510

10.4.2 The “Overlap” and “Size” Problems

Let us summarise all our discussion up till now. We basically want to solve two problems.

Overlap Problem Programmers and compilers write a program assuming that they own the
entire memory space and they can write to any location at will. Unfortunately, the same
assumption is made by all processes that are simultaneously active. Unless steps are taken,
they may end up inadvertently writing to each other’s memory space and corrupting each
other’s data. In fact, given that they use the same memory map, the chances of this
happening in a naive system are extremely high. The hardware somehow needs to ensure
that different processes are isolated from each other. This is the overlap problem.

Size Problem Occasionally we need to run processes that require more memory than the
available physical memory. It is desirable if some space in other storage media such as
the hard disk can be repurposed for storing the memory footprint of a process. This is
known as the size problem.

Any implementation of virtual memory needs to effectively solve the size and overlap prob-
lems.

10.4.3 Implementation of Virtual Memory with Paging

To balance the requirements of the processor, operating system, compiler, and programmer we
need to design a translation system that can translate the address generated by a process into an
address that the memory system can use. By using a translator, we can satisfy the requirements
of the programmer/compiler, who need virtual memory, and the processor/memory system, who
need physical memory. A translation system is similar to what a translator in real life would
do. For example, if we have a Russian delegation visiting Dubai, then we need a translator who
can translate Russian to Arabic. Both the sides can then speak their own language, and thus
be happy. A conceptual diagram of the translation system is shown in Figure 10.20.

Address
translation
system

Physical
address

Virtual
address

Figure 10.20: Address translation system

Let us now try to design this address translation system. Let us first succinctly list the
requirements that a program and compiler place on the nature of virtual memory.

1. Any address in the range of valid addresses should be accessible. For example, in a Linux
based machine, a process’s virtual memory size is limited to 3 GB. Hence, it should be
possible to access any address in this range.

2. The virtual memory should be perceived as one contiguous memory space where the entire
space is available to the program.

511 c© Smruti R. Sarangi

3. Unless explicitly desired by the program, there should be no interference from any other
program.

Here are the requirements from the side of the memory system.

1. Different programs should access non-overlapping sets of addresses.

2. A program cannot be allotted a large continuous chunk of memory addresses. This will
cause a high degree of wastage in space due to fragmentation.

3. If the total amount of physical memory is less than the size of the virtual memory, then
there should be additional storage space available to support programs that require more
space than the total amount of physical memory.

Let us now try to satisfy these requirements by designing a translation system that takes
an address as specified in the program, and translates it to a real address that can be presented
to the memory system. The address specified in the program is known as the virtual address,
and the address sent to the memory system is known as the physical address.

Definition 113

Virtual Address An address specified by the program in the virtual address space.

Physical Address An address presented to the memory system after address translation.

We can trivially achieve a translation system by uniquely mapping every virtual address
to a physical address at the level of every byte or memory word (4 bytes). In this case, the
program perceives one contiguous memory space. Secondly, we need to only map those virtual
addresses that are actually used by the program. If a program actually requires 3 MB of space,
then we end up using only 3 MB of physical memory. Whenever, the process requires a new set
of bytes that have not been already mapped, a smart memory management unit can allocate
new space in physical memory. Lastly, note that it is necessary for every memory access to pass
through this translation system.

Even though our basic translation system satisfies all our requirements, it is not efficient.
We need to maintain a large table that maps every byte in the virtual address space to a byte
in the physical address space. This mapping table between the virtual and physical addresses
will be very large and slow. It is also not a very power efficient scheme. Secondly, our scheme
does not take advantage of spatial and temporal locality. Hence, let us try to make our basic
system more efficient.

Pages and Frames

c© Smruti R. Sarangi 512

Definition 114

Page It is a block of memory in the virtual address space.

Frame It is a block of memory in the physical address space. A page and frame have the
same size.

Page Table It is a mapping table that maps the address of each page to an address of a
frame. Each process has its own page table.

Instead of translating addresses at the granularity of bytes, let us translate addresses at the
granularity of larger blocks. This will reduce the amount of state that we need to maintain,
and also take advantage of spatial locality. Let us define a block of memory in the virtual
address space and call it a page. Similarly, let us define a block of the same size in the physical
address space and call it a frame. The size of a page or a frame is typically 4 KB. Secondly,
note that the virtual address space is unique to each process; whereas, the physical address
space is the same for all processes. For each process, we need to maintain a mapping table
that maps each page to a frame. This is known as the page table. A page table can either
be implemented in hardware or in software. A hardware implementation of the page table has
dedicated structures to store the mapping between virtual and physical addresses. The lookup
logic is also in hardware. In the case of a software implementation, the mappings are stored
in a dedicated region of the physical address space. In most processors that use software page
tables, the lookup logic is also in hardware. They typically do not use custom routines in
software to lookup page tables because this approach is slow and complicated. Since the lookup
logic of page tables is primarily in hardware, the design of page tables needs to be relatively
simple. The page tables that we describe in the next few sections are oblivious to how they are
implemented (software or hardware).

Let us consider a 32-bit memory address. We can now split it into two parts. If we
consider a 4 KB page, then the lower 12 bits specify the address of a byte in a page (reason:
212 = 4096 = 4KB). This is known as the offset. The upper 20 bits specify the page number
(see Figure 10.21). Likewise, we can split a physical address into two parts – frame number
and offset. The process of translation as shown in Figure 10.21, first replaces the 20 bit page
number with an equivalent 20 bit frame number. Then it appends the 12 bit offset to the
physical frame number.

A Single Level Page Table

Figure 10.22 shows a basic page table that contains 220 (≈ 1, 000, 000) rows. Each row is
indexed by the page number, and it contains the corresponding 20 bit (2.5 byte) frame number.
The total size of the table is thus 2.5 MB. If we have 200 processes in the system at any point of
time, then we need to waste 500 MB of precious memory for just saving page tables! If our total
main memory is 2 GB, then we are spending 25% of it in saving page tables, which appears to
be a big waste of space. Secondly, it is possible that in some systems, we might not even have

513 c© Smruti R. Sarangi

Page
table

Physical
address

Virtual
address Page number Offset

Frame number Offset

20 12

20 12

Figure 10.21: Translation of a virtual to a physical address

Page number Frame number

20

20

Page table

Figure 10.22: A single level page table

500 MB of main memory available. In this case, we cannot support 200 live processes at the
same time. We need to look for better solutions.

Let us now look for insights that might help us reduce the amount of storage. We start
out by noticing that large parts of the virtual address space of a process are actually empty.
In a 32-bit system, the size of the virtual address space is 4 GB. However, large programs do
not use more than 100 MB. There is a massive empty region between the stack and the heap
sections in the memory map, and thus it is not necessary to allocate space for mapping this
region. Ideally, the number of entries in the page table should be equal to the number of pages
actually used by a process rather than the theoretically maximum number of pages a process
can use. If a process uses only 400 KB of memory space, then ideally its page table should just
contain 100 entries. Let us design a two level page table to realise this goal.

c© Smruti R. Sarangi 514

Page number

Frame number

20

20

Primary page
 table

10 10

Secondary page tables

Figure 10.23: A two level page table

Two Level Page Table

Let us further split a page number into two equal parts. Let us split the 20 bits into two parts
containing 10 bits each as shown in Figure 10.23. Let us use the upper 10 bits to access a top
level page table known as the primary page table. Each entry in the top level page table points
to a secondary page table. Subsequently, each secondary page table is indexed by the lower
10 bits of the page number. An entry in the secondary page table contains the frame number.
If no addresses map to a given entry in the primary page table, then it does not point to a
secondary page table, and thus there is no need to allocate space for it. In a typical program,
most of the entries in the primary page table are expected to be empty. Let us now calculate
the size of this structure.

The primary page table contains 1024 entries, where each entry is 10 bits long. The total
size is 1.25 KB (10 bits = 1.25 bytes). Let the number of secondary page tables be N . Each
secondary page tables contains 1024 entries, where each entry is 20 bits long. Therefore, the
size of each secondary page table is 2.5 KB, and the total storage requirement is (1.25+2.5×N)
KB. Because of spatial locality in a program, N is not expected to be a large number. Let
us consider a program that has a memory footprint of 10 MB. It contains roughly 2500 pages.
Each secondary page table can map at the most 1024 pages (4 MB of data). It is highly likely
that this program might map to only 3 secondary page tables. Two page tables will contain the
mappings for the text, data, and heap sections, and one page table will contain the mappings
for the stack section. In this case, the total storage requirement for the page tables will be
equal to 8.75 KB, which is very reasonable. Even, if we require double the number of secondary
page tables because of lower spatial locality in the memory map, then also the total storage
requirement is equal to 16.25 KB. This is an order of magnitude better than a single level page
table that required 2.5 MB of storage per process. Hence, two level page tables are used in
most commercial systems.

515 c© Smruti R. Sarangi

Inverted Page Table

Page number

Frame number

20

20

Inverted
page tablePid

Hashing
engine

Hashtable
Compare the page
num, process id with
each entry

Frame number Page number

20

20

Inverted
page table

(a)

(b)

Figure 10.24: Inverted page table

Some processors such as the Intel Itanium, and PowerPC 603, use a different design for a
page table. Instead of addressing the page table using the page number, they address it using
the frame number. In this case, there is one page table for the entire system. Since one frame is
typically uniquely mapped to a page in a process, each entry in this inverted page table contains
the process id, and page number. Figure 10.24(a) shows the structure of an inverted page table.
The main advantage of an inverted page table is that we do not need to keep a separate page
table for each process. We can save space if there are a lot of processes, and the size of physical
memory is small.

The main difficulty in inverted page tables is in performing a lookup for a virtual address.
Scanning all the entries is a very slow process, and is thus not practical. Hence, we need to
have a hashing function that maps the (process id, page number) pair to an index in a hash
table. This index in the hash table needs to point to an entry in the inverted page table. Since
multiple virtual addresses can point to the same entry in the hash table, it is necessary to verify
that the (process id, page number) matches that stored in the entry in the inverted page table.
Readers can refer to [Cormen et al., 2009] for a detailed explanation of the theory and operation
of hash tables.

We show one scheme for using an inverted page table in Figure 10.24(b). After computing
a hash of the page number, and process id pair, we access a hashtable indexed by the contents
of the hash. The contents of the hashtable entry point to a frame, f , that might possibly map
to the given page. However, we need to verify, since it is possible that the hash function maps

c© Smruti R. Sarangi 516

multiple pages to the same frame. Subsequently, we access the inverted page table, and access
the entry, f . An entry of the inverted page table, contains the page number, process id pair
that is mapped to the given entry (or given frame). If we find that the contents do not match,
then we keep searching for the page number, process id pair in the subsequent K entries. This
method is called linear probing (see [Cormen et al., 2009]), where we keep searching in the
target data structure till we get a match. If we do not get a match within K entries, then we
may conclude that the page is not mapped. We need to then create a mapping, by evicting an
entry (similar to caches), and writing it to a dedicated region in main memory that buffers all
the entries that are evicted from the inverted page table. We need to always guarantee that
the entry pointed to by the hash table, and the actual entry that contains the mapping, do not
differ by more than K entries. If we do not find any free slots, then we need to evict an entry.

An astute reader might argue that we can directly use the output of the hashing engine to
access the inverted page table. Typically, we add accessing a hashtable as an intermediate step,
because it allows us to have better control over the set of frames that are actually used. Using
this process, it is possible to disallow mappings for certain frames. These frames can be used
for other purposes. Lastly, we need to note that the overhead of maintaining, and updating
hash tables outweighs the gains in having a system wide page table. Hence, an inverted page
table is typically not used in commercial systems.

Translation Lookaside Buffer (TLB)

For every single memory access it is necessary to lookup the page table for translating the virtual
address. The page table itself is stored in physical memory. Hence, we need to do a separate
memory access to read the corresponding entry of the page table. This approach doubles the
number of memory accesses, and is thus very inefficient. However, we can minimise the number
of extra memory accesses by maintaining a small cache of mappings in the processor. We
typically use a structure known as the Translation Lookaside Buffer (TLB) that is a small fully
associative cache. A TLB contains 32-64 entries. Each entry is indexed by the page number,
and contains the corresponding frame number.

Once a memory address is calculated in the EX stage of the pipeline. It is sent to the
TLB. The TLB is a very fast structure, and typically its access time is a fraction of a cycle.
If there is a TLB hit, then the physical address is ready by the time we reach the memory
access (MA) stage. The MA stage of the pipeline can then issue the read/write request to the
memory system using the physical address obtained from the TLB. However, if there is a TLB
miss, then the pipeline needs to stall, and the page table needs to be accessed. This is a slow
process and takes tens of cycles. Fortunately, the hit rate of a TLB is very high (≈ 99%) in
most programs because of two reasons. First, programs have a high degree of temporal locality.
Second, a 64 entry TLB covers 256 KB of the virtual address space (assuming a 4 KB page).
The working set of most programs fits within this limit for small windows of time.

10.4.4 Swap Space

We have solved the first problem, i.e., ensuring that processes do not overwrite each other’s
data. Now, we need to solve the second problem, which is to ensure that our system can run
even when the memory footprint of a program is more than the amount of physical memory.
For example, we might need to run a program with a memory footprint of 3 GB on a machine

517 c© Smruti R. Sarangi

with only 512 MB of main memory. Even on regular desktop machines it is possible that the
combined memory footprint of all the processes is more than the size of main memory.

To support this requirement, we first need to find a location to save all the data that does
not fit in main memory. Most processors typically have peripheral devices connected to the
processor such as the hard disk, or USB flash drives that have a large amount of storage capacity.
We shall study about storage devices in detail in Chapter 12. In this section, we only need to
appreciate the following aspects of such connected storage devices.

1. Connected storage devices are very slow as compared to main memory. The access time
to main memory is about 100-300 ns; whereas, the access time to a hard disk is of the
order of milliseconds.

2. Storage devices typically have several orders of magnitude more storage than main mem-
ory. A hard disk contains about 500 GB of storage in a system with 4 GB of main
memory.

3. They are conceptually treated as a large array of bytes similar to the way we treat the
memory system. However, an address in the memory system is unrelated to the address
in a hard disk. The storage device is not a part of the memory system.

4. It is not necessary to have a storage device physically close to the processor. It can be
accessible over the network, and be in another part of the world.

A storage device can define an area known as the swap space that has space to contain all
the frames that cannot be saved in main memory. Furthermore, this storage region need not
be a superset of the main memory. If it is an extension of main memory, then we can define
a larger physical memory. For example, if we have 2 GB of main memory, and 3 GB of swap
space, then the total amount of physical memory can be 5 GB. In this case, if we need to
displace a frame from main memory, then we need to allocate a location for it in swap space.
Alternatively, the swap space can be inclusive. In the above example, we will effectively have 3
GB of physical memory, and the main memory acts like a cache for the swap space. In either
case, the role of the swap space is to increase the amount of available physical memory.

Now, the obvious question that arises is, “How does the memory system know if a frame is
present in main memory or the swap space? ” We can augment each entry in the page table
with an extra bit. If this bit is 1, then the frame is in main memory, else it is in the swap
space. Note that this system can be made more complicated also. Instead of one swap space,
we can have multiple swap spaces, and use multiple bits in a page table entry to indicate the
corresponding swap space.

10.4.5 Memory Management Unit (MMU)

Up till now we have not discussed how page tables are actually managed and stored. Let us
consider the typical life cycle of a process. When a process begins, the kernel allocates a primary
page table in main memory, and clears off the TLB. It can then insert the mappings for the text,
and data, sections. Secondly, the kernel can optionally allocate some space and insert some
mappings for the heap, and stack sections. As long as there is a TLB hit, there is no problem.
Once, there is a TLB miss, it is necessary to access the page tables, and secondly, the pipeline

c© Smruti R. Sarangi 518

needs to stall. The job of accessing the page tables is typically handled by a dedicated unit
known as the MMU (memory management unit). It can either be a hardware structure, or a
software structure. If it is a hardware structure, then we have dedicated logic in the processor.
Otherwise, it is necessary to invoke the MMU process by suspending the current process.

In either case, the operation of the MMU is the same. It needs to first locate the starting
address of the primary page table. Note that this address cannot be a virtual address. Other-
wise, we will need a page table for a page table. It is typically a physical address that does need
additional translation. This starting address is either kept in a dedicated processor register
(CR3 in x86), or in a designated location in physical memory. The MMU then needs to access
the appropriate entry in the primary page table, and get the address of the secondary page
table. The address of the secondary page table is another physical address. If a secondary page
table exists, then the MMU accesses the relevant entry in the secondary page table, and gets
the frame number. Subsequently, it evicts an entry from the TLB, and adds the new mapping.
It can follow a LRU replacement scheme as described in Section 10.2.5. Note that it is necessary
to have all the page tables in the main memory. They cannot be in the swap space.

Page Fault

There are several things that can go wrong in this process. If a page is being accessed for the
first time, it is possible that it might not have a secondary page table, or its corresponding entry
in the secondary page table might be empty. In this case, it is necessary to first find a free frame
in main memory, create a secondary page table if required, and then insert the mapping in the
secondary page table. To find a free frame in memory the MMU must maintain information
about each frame. This information can be kept in the form of a bit vector, where each bit
corresponds to a frame in main memory. If it is free, then the bit is 0, else if it is mapped, the
bit is 1. If a free frame is available, then it can be used to map the new page. Otherwise, we
need to forcibly free a frame by writing its data to the swap space. The method of finding a
frame to evict from main memory is known as the page replacement policy. Subsequently, we
need to change the page table entry of the page that was previously mapped to this frame. It
needs to now say that the page is available in swap space. Once a frame has been freed, it can
be mapped to another page.

Alternatively, it is also possible that the entry in the page table indicates that the frame is
there in swap space. In this case, it is necessary to bring the frame into main memory. We first
need to find a free frame, or if necessary evict a frame from main memory. Then, we need to
create an appropriate page table mapping.

Definition 115
Whenever a page is not found in main memory, the event is known as a page fault.

Whenever a page is not found in main memory, we term the event as a page fault. It is
subsequently necessary to create appropriate mappings in the page table and fetch the data from
the swap space. Fetching an entire page from the swap space is a rather slow operation, and
takes millions of cycles. Hence, it is very important for the MMU to manage pages efficiently.

519 c© Smruti R. Sarangi

In specific, the page fault rate is very sensitive to the page replacement policy. Similar to
cache block replacement policies, we can have different kinds of page replacement policies such
as FIFO (first in first out), and LRU (least recently used). For more information on page
replacement policies, the reader is referred to a textbook on operating systems [Silberschatz
et al., 2008, Tanenbaum, 2007].

TLB hit?
Yes

Memory
access

Send mapping
to processor

Page table
 hit?

Yes

No

Populate
TLB

No

Send mapping
to processor

Free frame
available?

No (1) Evict a frame
to swap space
(2) Update its page
table entry

Yes

Create/update mapping
in the page table

Populate
TLB

Send mapping
to processor

Read in the new frame
from swap space (if possible),
or create a new empy frame

Figure 10.25: The process of address translation

Figure 10.25 summarises the major steps in the process of address translation.

10.4.6 Advanced Features of the Paging System

It turns out that we can do several interesting things with the page table mechanism. Let us
look at a few examples.

c© Smruti R. Sarangi 520

Shared Memory

Let us assume that two processes want to share some memory between each other such that
they can exchange data between them. Then each process needs to let the kernel know about
this. The kernel can then map two pages in both the virtual address spaces to the same frame.
Now, each process can write to a page in its own virtual address space, and magically, the data
will get reflected in the virtual address space of the other process. It is sometimes necessary
for several processes to communicate among each other, and the shared memory mechanism is
one of the fastest methods.

Protection

Computer viruses typically change the code of a running process such that they can execute
their own code. This is typically achieved by a giving a specific sequence of erroneous inputs to
the program. If appropriate checks are not in place, then the values of specific variables within
the program get overwritten. Some variables can get changed to pointers to the text section,
and it is possible to exploit this mechanism to change instructions in the text section. It is
possible to solve this problem by marking all the pages in text section as read-only. It will thus
not be possible to modify their contents in run time.

Segmentation

We have been assuming that a programmer is free to layout the memory map according to
her wish. She might for example decide to start the stack at a very high address such as
0xFFFFFFF8. However, this code might not run on a machine that uses 16-bit addresses
even if the memory footprint of the program is very small. Secondly, it is possible that a certain
system might have reserved some parts of the virtual memory and made them unavailable to the
process. For example, operating systems typically reserve the upper 1 or 2 GB for the kernel.
To solve these problems, we need to create another virtual layer on top of virtual memory.

In a segmented memory (used in x86 systems), there are specific segment registers for the
text, data, and stack sections. Each virtual address is specified as an offset to the specific
segment register. By default instructions use the code segment register, and data uses the data
segment register. The memory access (MA) stage of the pipeline adds the offset to the value
stored in the segment register to generate the virtual address. Subsequently, the MMU uses
this virtual address to generate the physical address.

10.5 Summary and Further Reading

10.5.1 Summary

Summary 10

521 c© Smruti R. Sarangi

1. A program perceives the memory system to be one large array of bytes. In practice,
we need to design a memory system that preserves this abstraction, and is also fast
and power efficient.

2. A physical memory system needs to be built out of SRAM and DRAM cells. An SRAM
array is faster than a DRAM array. However, it takes much more area and consumes
much more power. Building a memory with just DRAM cells will be too slow, and
building a memory with just SRAM cells will be consume too much power.

3. We can use the properties of temporal and spatial locality to design more efficient
memory systems. Temporal locality refers to the fact that there is a high likelihood
of the same data item being accessed again in the near future. Spatial locality means
that there is a high likelihood of adjacent memory locations being accessed in the near
future.

4. To utilise temporal locality, we build a hierarchical memory system of caches. A cache
is a memory structure that contains a subset of all the memory locations.

(a) The cache at the highest level is known as the L1 cache. It is small and fast.

(b) The L2 cache is at the next level. It is larger and slower.

(c) Some recent processors also have a third level of cache known as the L3 cache.

(d) The last level in the memory system is known as the main memory. It is a large
DRAM array of cells, and contains an entry for all the memory locations in the
system.

(e) Caches are typically inclusive. This means that a cache at a level i contains a
subset of memory locations present at level (i+ 1).

5. To utilise spatial locality we group adjacent memory locations at the granularity of
32-128 byte blocks.

6. A cache contains a tag array and a data array. The tag array contains some of the
bits of the address of the block, and the data array contains the contents of the block.

7. The basic operations needed to implement a cache are – lookup, data read, data write,
insert, replace, and evict.

(a) There are three ways to store data in a cache – direct mapped, set associative,
and fully associative.

(b) It is necessary to evict a block in a set if all the ways are non-empty.

(c) There are two major write policies – write-through (every write is immediately
sent to the lower level), and write-back (writes are sent to the lower level, only
upon an eviction)

(d) Some of the prominent replacement policies are – Random, FIFO, and LRU.

c© Smruti R. Sarangi 522

8. The average memory access time is given by:

AMAT = L1hit time + L1miss rate × L1miss penalty

= L1hit time + L1miss rate × (L2hit time + L2miss rate × L2miss penalty)

9. There are three types of cache misses – compulsory, capacity, and conflict.

10. Some of the methods and structures to optimise the memory system are: hardware
prefetching, increased associativity/block size, victim cache, compiler techniques, write
buffers, early restart and critical word first.

11. We need virtual memory to ensure that:

(a) Multiple programs do not overwrite each other’s data unintentionally, or mali-
ciously.

(b) The memory footprint of a program can be larger than the amount of available
main memory.

12. To implement virtual memory, we divide a memory address into two parts – virtual
page number, and an offset within a page. The virtual page number gets mapped to a
physical frame number. The mapping is stored in a structure called a page table.

13. If a page is not found in main memory, then the event is known as a page fault.
Servicing a page fault takes millions of cycles. Hence, it is necessary to avoid page
faults by using sophisticated page replacement algorithms.

14. Some of the advanced features of the virtual memory system include shared memory,
protection, and segmented addressing.

10.5.2 Further Reading

The reader can refer to advanced text books on computer architecture by Henessey and Pat-
terson [Hennessy and Patterson, 2012], Kai Hwang [Hwang, 2003], and Jean Loup Baer [Baer,
2010] for a discussion on advanced memory systems. Specifically, the books discuss advanced
techniques for prefetching, miss rate reduction, miss penalty reduction, and compiler directed
approaches. The reader can also refer to the book on memory systems by Bruce Jacob [Jacob,
2009]. This book gives a comprehensive survey of most of the major techniques employed in
designing state of the art memory systems till 2009. The book by Balasubramaniam, Jouppi,
and Muralimanohar on cache hierarchies also discusses some of the more advanced topics on the
management of caches [Balasubramonian et al., 2011]. Managing the MMU is mostly studied in
courses on operating systems [Tanenbaum, 2007, Silberschatz et al., 2008]. Research in DRAM
memories [Mitra, 1999], and systems using advanced memory technologies is a hot topic of
current research. A lot of research work is now focusing on phase change memories that do not
require costly refresh cycles like DRAM. Readers can refer to the book by Qureshi, Gurumurthi,
and Rajendran [Qureshi et al., 2011] for a thorough explanation of memory systems using phase

523 c© Smruti R. Sarangi

change memories.

Exercises

Overview

Ex. 1 — Define temporal locality, and spatial locality.

Ex. 2 — Experimentally verify that the log-normal distribution is a heavy tailed distribution.
What is the implication of a heavy tailed distribution in the context of the stack distance and
temporal locality?

Ex. 3 — Define the term, address distance. Why do we find the nearest match in the last K
accesses?

Ex. 4 — How do we take advantage of temporal locality in the memory system?

Ex. 5 — How do we take advantage of spatial locality in the memory system?

Caches and the Memory System

Ex. 6 — Consider a fully associative cache following the LRU replacement scheme and con-
sisting of only 8 words. Consider the following sequence of memory accesses (the numbers
denote the word address):
20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 22, 30, 21, 23, 31

Assume that we begin when the cache is empty. What are the contents of the cache after the
end of the sequence of memory accesses.

Ex. 7 — Answer Exercise 6 assuming a FIFO replacement scheme.

Ex. 8 — Consider a two-level cache using a write back policy. The L1 cache can store 2
words, and the L2 cache can store 4 words. Assume the caches to be fully associative (block
size = 1 word); they follow the LRU replacement scheme. Consider the following sequence of
memory accesses. The format of a write access is write <address> <value>, and the format
for a read access is read <address> .

write 20 200

write 21 300

write 22 400

write 23 500

write 20 201

write 21 301

read 22

read 23

c© Smruti R. Sarangi 524

write 22 401

write 23 501

What are the contents of the caches at the end of the sequence of memory accesses? What are
the contents of the caches, if we assume a write through policy ?

Ex. 9 — What is the total size (in bytes) of a direct mapped cache with the following con-
figuration in a 32 bit system? It has a 10 bit index, and a block size of 64 bytes. Each block
has 1 valid bit and 1 dirty bit.

Ex. 10 — Which sorting algorithm will have a better cache performance – bubble sort or
selection sort? Explain your answer.

Ex. 11 — You have a cache with the following parameters:

•size : n bytes

•associativity : k

•block size : b bytes

Assuming a 32-bit address space, answer the following:

(a) What is the size of the tag in bits?

(b) What is the size of the set index in bits?

* Ex. 12 — Consider a direct mapped cache with 16 cache lines, indexed 0 to 15, where each
cache line contains 32 integers (block size : 128 bytes).

Consider a two-dimensional, 32× 32 array of integers a. This array is laid out in memory such
that a[0, 0] is next to a[0, 1], and so on. Assume the cache is initially empty, and a[0, 0] maps
to the first word of cache line 0.

Consider the following column-first traversal:

int sum = 0;

for (int i = 0; i < 32; i++) {

for(int j=0; j < 32; j++) {

sum += a[i,j];

}

}

and the following row-first traversal:

int sum = 0;

for (int i = 0; i < 32; i++) {

for(int j=0; j < 32; j++) {

sum += a[j,i];

}

}

525 c© Smruti R. Sarangi

Compare the number of cache misses produced by the two traversals, assuming the oldest cache
line is evicted first. Assume that i, j, and sum are stored in registers, and that no part of array
a is saved in registers. It is always stored in the cache.

Ex. 13 — A processor has a baseline IPC of 1.5, an L1 miss rate of 5%, and an L2 miss rate
of 50%. The hit time of the L1 cache is 1 cycle (part of the baseline IPC computation), the L2
hit time is 10 cycles, and the L2 miss penalty is 100 cycles. Compute the final IPC. Assume
that all the miss rates are local miss rates.

Ex. 14 — Consider the designs shown below

Design Base CPI L1 local
miss rate
(%)

L2 local
miss rate
(%)

L1 hit
time
(cycles)

L2 hit
time
(cycles)

L2 miss
penalty
(cycles)

D1 1 5 20 1 10 200

D2 1.5 10 25 1 20 150

D3 2 15 20 1 5 300

The base CPI assumes that all the instructions hit in the L1 cache. Furthermore, assume that
a third of the instructions are memory instructions.

Write the formula for the average memory access time. What is the CPI of D1, D2 and D3?

* Ex. 15 — Assume a cache that has n levels. For each level, the hit time is x cycles, and
the local miss rate is y per cycle.

(a) What is the recursive formula for the average memory access time?

(b) What is the average memory access time as n tends to ∞?

** Ex. 16 — Assume that you are given a machine with an unknown configuration. You
need to find out a host of cache parameters by measuring the time it takes to execute different
programs. These programs will be tailor made in such a way that they will reveal something
about the underlying system. For answering the set of questions, you need to broadly describe
the approach. Assume that the cache follows the LRU scheme for replacement.

(a) How will you estimate the size of the L1 cache?

(b) How will you estimate the L1 block size?

(c) How will you estimate the L1 cache associativity?

Virtual Memory

Ex. 17 — In a 32-bit machine with a 4 KB page size, how many entries are there in a single
level page table? What is the size of each entry in the page table in bits?

Ex. 18 — Consider a 32-bit machine with a 4 KB page size, and a two level page table. If
we address the primary page table with 12 bits of the page address, then how many entries are
there in each secondary page table?

c© Smruti R. Sarangi 526

Ex. 19 — In a two level page table, should we index the primary page table with the most
significant bits of the page address, or the least significant bits? Explain your answer.

Ex. 20 — We have a producer-consumer interaction between processes A and B. A writes
data that B reads in a shared space. However, B should never be allowed to write anything
into that shared space. How can we implement this using paging? How do we ensure that B
will never be able to write into the shared space?

Ex. 21 — Assume a process A, forks a process B. Forking a process means that B inherits a
copy of A’s entire address space. However, after the fork call, the address spaces are separate.
How can we implement this using our paging mechanism?

Ex. 22 — How is creating a new thread different from a fork() operation in terms of memory
addressing?

Ex. 23 — Most of the time, the new process generated by a fork call does not attempt to
change or modify the data inherited from the parent process. So is it really necessary to copy
all the frames of the parent process to the child process? Can you propose an optimisation?

Ex. 24 — Explain the design of an inverted page table.

* Ex. 25 — Calculate the expected value of the final CPI:

•Baseline CPI: 1

•Percentage of memory accesses: 30%

•TLB lookup time: 1 cycle (part of the baseline CPI)

•TLB miss rate: 20%

•Page table lookup time: 20 cycles (do not assume any page faults). Assume we can
instantaneously insert entries into the TLB.

•L1 cache hit time: 1 cycle (Part of the baseline CPI)

•L1 local miss rate: 10%

•L2 cache hit time: 20 cycles

•L2 local miss rate: 50%

•L2 miss penalty: 100 cycles

** Ex. 26 — Most of the time, programmers use libraries of functions in their programs.
These libraries contain functions for standard mathematical operations, for supporting I/O
operations, and for interacting with the operating system. The machine instructions of these
functions are a part of the final executable. Occasionally, programmers prefer to use dynamically
linked libraries (DLLs). DLLs contain the machine code of specific functions. However, they are
invoked at run time, and their machine code is not a part of the program executable. Propose
a method to implement a method to load and unload DLLs with the help of virtual memory.

527 c© Smruti R. Sarangi

Design Problems

Ex. 27 — You need to learn to use the CACTI tool (http://www.hpl.hp.com/research/
cacti/) to estimate the area, latency, and power of different cache designs. Assume a 4-way
associative 512 KB cache with 64 byte blocks. The baseline design has 1 read port, and 1 write
port. You need to assume the baseline design, vary one parameter as mentioned below, and
plot its relationship with the area, latency, or power consumption of a cache.

a)Plot the area versus the number of read ports.

b)Plot the energy per read access versus the number of read ports.

c)Plot the cache latency versus the associativity.

d)Vary the size of the cache from 256 KB to 4 MB (powers of 2), and plot its relationship
with area, latency, and power.

Ex. 28 — Write a cache simulator that accepts memory read/write requests and simulates
the execution of a hierarchical system of caches.

http://www.hpl.hp.com/research/cacti/
http://www.hpl.hp.com/research/cacti/

c© Smruti R. Sarangi 528

