
7
Computer Arithmetic

In Chapter 6, we described the basic circuits for logical operations and storage elements. In this
chapter, we will use this knowledge to design hardware algorithms for arithmetic operations.
This chapter also requires the knowledge of binary 2’s complement numbers and floating point
numbers that we gained in Chapter 2. The plan for this chapter is as follows.

In the first part, we describe algorithms for integer arithmetic. Initially, we describe the
basic algorithms for adding two binary numbers. It turns out that there are many ways of
doing these basic operations, and each method has its own set of pros and cons. Note that the
problem of binary subtraction is conceptually the same as binary addition in the 2’s complement
system. Consequently, we do not need to treat it separately. Subsequently, we shall see that
the problem of adding n numbers is intimately related to the problem of multiplication, and it
is a fast operation in hardware. Sadly, very efficient methods do not exist for integer division.
Nevertheless, we shall consider two popular algorithms for dividing positive binary numbers.

After integer arithmetic, we shall look at methods for floating point (numbers with a decimal
point) arithmetic. Most of the algorithms for integer arithmetic can be ported to the realm
of floating point numbers with minor modifications. As compared to integer division, floating
point division can be done very efficiently.

7.1 Addition

7.1.1 Addition of Two 1-bit Numbers

Let us look at the problem of adding two 1-bit numbers, a and b. Both a and b can take two
values – 0 or 1. Hence, there are four possible combinations of a and b. Their sum in binary
can be either 00, 01, or 10. Their sum will be 10, when both a and b are 1. We should make an
important observation here. The sum of two 1 bit numbers might potentially be two bits long.
Let us call the LSB of the result as the sum, and the MSB as the carry. We can relate this
concept to standard primary school addition of two 1 digit decimal numbers. If we are adding
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8 and 9, then the result is 17. We say that the sum is 7, and the carry is 1. Similarly, if we add
3 and 4, then the result is 7. We say that the sum is 7, and the carry is 0.

We can extend the concept of sum and carry to adding three 1 bit numbers also. If we are
adding three 1 bit numbers then the range of the result is between 00 and 11 in binary. In this
case also, we call the LSB as the sum, and the MSB as the carry.

Definition 52

sum The sum is the LSB of the result of adding two or three 1 bit numbers.

carry The carry is the MSB of the result of adding two or three 1 bit numbers.

For an adder that can add two 1 bit numbers, there will be two output bits – a sum s and a
carry c. An adder that adds two bits is known as a half adder. The truth table of a half adder
is shown in Table 7.1.

Definition 53
A half adder adds two bits to produce a sum and a carry.

a b s c

0 0 0 0
0 1 1 0
1 0 1 0
1 1 0 1

Table 7.1: Truth table of a half adder

From the truth table, we can conclude that s = a ⊕ b = a.b + a.b, where ⊕ stands for
exclusive or, ‘.’ stands for boolean AND, and ‘+’ stands for boolean OR. Secondly, c = a.b.
The circuit diagram of a half adder is shown in Figure 7.1. As we can see, a half adder is a
very simple structure and we have constructed it using just six gates in Figure 7.1.

7.1.2 Addition of Three 1-bit Numbers

The aim is to be ultimately able to add 32-bit numbers. To add the two least significant bits,
we can use a half adder. However, for adding the second bit pair, we cannot use a half adder
because there might be an output carry from the first half adder. In this case, we need to add
three 1-bit numbers. Hence, we need to implement a full adder that can add 3 bits. One of
these bits is a carry out of another adder and we call it the input carry. We represent the input
carry as cin, and the two other input bits as a and b.
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Figure 7.1: A half adder

Definition 54 An adder than can add 3 bits is known as a full adder.

Table 7.2 shows the truth table for the full adder. We have three inputs – a, b, and cin.
There are two output bits – the sum (s), and the carry out (cout).

a b cin s cout
0 0 0 0 0
0 1 0 1 0
1 0 0 1 0
1 1 0 0 1
0 0 1 1 0
0 1 1 0 1
1 0 1 0 1
1 1 1 1 1

Table 7.2: Truth table of a full adder

From the truth table, we can deduce the following relationships:
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s = a⊕ b⊕ cin
= (a.b+ a.b)⊕ cin
= (a.b+ a.b).cin + (a.b+ a.b).cin

= a.b.cin + a.b.cin + (a.b).a.b.cin

= a.b.cin + a.b.cin + (a+ b).(a+ b).cin

= a.b.cin + a.b.cin + a.b.cin + a.b.cin

cout = a.b+ a.cin + b.cin

The circuit diagram of a full adder is shown in Figure 7.2. This is far more complicated than
the circuit of a half adder. We have used 12 logic gates to build this circuit. Furthermore, some
of these logic gates use three inputs. However, this degree of complexity is required because all
our practical adders will use full adders as their basic element. We face the need of adding 3
bits in all of our arithmetic algorithms.
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b
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c out

Figure 7.2: A full adder
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7.1.3 Ripple Carry Adder

Let us now try to add two n bit numbers. Let us start with an example: 10112 + 01012. The
addition is shown in Figure 7.3. We have seen in Section 2.2.3 that binary numbers can be
added the same way as decimal numbers. In the case of base 10 decimal numbers, we start at
the unit’s digit and proceed towards higher digits. In each step, a carry might be generated,
which is then added to the immediately higher digits. In the case of binary numbers also we
do the same. The only difference is that instead of base 10, we are using base 2.

1 0 1 1
0 1 0 1

     1 0 0 0 0

11 11

Figure 7.3: Addition of two binary numbers

For example, in Figure 7.3, we observe that when two binary bits are added a carry might
be generated. The value of the carry is equal to 1. This carry needs to be added to the bits
in the next position (more significant position). The computation is complete when we have
finished the addition of the most significant bits. It is possible that a carry might propagate
from one pair of bits to another pair of bits. This process of propagation of the carry from one
bit pair to another is known as rippling.

Let us construct a simple adder to implement this procedure. Let us try to add two n
bit binary numbers – A and B. We number the bits of A and B as A1 . . . An and B1 . . . Bn
respectively. Let A1 refer to A’s LSB, and An refer to A’s MSB. We can create an adder for
adding A and B as follows. We use a half adder to add the LSBs. Then we use n−1 full adders
to add the rest of the corresponding bits of A and B and their input carry values. This n bit
adder is known as a ripple carry adder. Its design is shown in Figure 7.4. We observe that we
add two n bit numbers to produce a n+ 1 bit result. The method of addition is exactly similar
to the procedure we follow while adding two binary numbers manually. We start from the LSB
and move towards the MSB. At every step we propagate the carry to the next pair of digits.

Now, let us calculate the speed of this adder. Let us assume that it takes th units of time
for a half adder to complete its operation, and tf units of time for a full adder to complete
its operation. If we assume that carries are propagated instantaneously across blocks, then the
total time, f(n), is equal to th + (n− 1)tf . Here, n is equal to the number of bits being added.

However, as we shall see this is a rather cryptic basis of comparison, especially for large
values of n. We do not wish to have a lot of constants in our timing model. Secondly, the
values of these constants are heavily dependent on the specific technology used. It is thus hard
to derive algorithmic insights. Hence, we introduce the notion of asymptotic time complexity
that can significantly simplify the timing models, yet retain their basic characteristics. For



c© Smruti R. Sarangi 274

Half
adder

A1 B1A2B2 cA3B3 cAnBn c

Full
adder

Result

c carry

Figure 7.4: Addition of two binary numbers

example, in the case of a ripple carry adder, we can say that the complexity is almost equal to
n multiplied by some constant. We can further abstract away the constant, and say that the
time complexity is the order of n. Let us now formally define this notion.

Asymptotic Time Complexity

Let us consider two functions f(n) = 2n2 + 3, and g(n) = 10n. Here, n is the size of the input,
and f(n), and g(n) represent the number of time units it takes for a certain circuit to complete
its operation. We plot the time values for different values of n in Figure 7.5. As we can see,
g(n) is greater than f(n) for small values of n. However, for larger values of n, f(n) is larger,
and it continues to be so. This is because it contains a square term, and g(n) does not. We can
extend this argument to observe that even if g(n) would have been defined to be 100n, f(n)
would have ultimately exceeded it. The gist of the argument lies in the fact that f(n) contains
a quadratic term (n2) and g(n) only contains linear terms. For large n, we can conclude that
f(n) is slower than g(n). Consequently, we need to define a new notion of time that precisely
captures this fact. We call this new notion of time as the asymptotic time complexity.
The name comes from the fact that we are interested in finding an envelope or asymptote to
the time function such that the function is contained within this envelope for practically large
values of n.

For example, we can define the asymptotic time complexity of f(n) to be n2 and that of
g(n) to be n respectively. This notion of time is powerful enough to say that f(n) is greater
than g(n) for values of n larger than some threshold. What if we consider: f(n) = 2n2 + 3, and
f ′(n) = 3n2 + 10. Needless to say, f ′(n) > f(n). However, we might not be interested in the
difference. If we compare the asymptotic time complexity of f(n) or f ′(n) with another function
that has terms with different exponents (other than 2), then the results of the comparison will be
the same. Consequently, for the sake of simplicity we can ignore the additive and multiplicative
constants. We capture the definition of one form of asymptotic time in the big-O notation. It
is precisely defined in Definition 55.
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Figure 7.5: f(n) = 2n2 + 3 and g(n) = 10n

Definition 55
We say that: f(n) = O(g(n))
if | f(n) |≤ c | g(n) | for all n > n0. Here, c is a positive constant.

The big-O notation is actually a part of a set of asymptotic notations. For more details,
the reader can refer to a standard text in computer algorithms [Cormen et al., 2009]. From our
point of view, g(n) gives a worst case time bound for f(n) ignoring additive and multiplicative
constants. We illustrate this fact with two examples: Examples 93 and 94. In this book, we
will refer to asymptotic time complexity as time complexity.

Example 93
f(n) = 3n2 + 2n+ 3. Find its asymptotic time complexity.
Answer:

f(n) = 3n2 + 2n+ 3

≤ 3n2 + 2n2 + 3n2 (n > 0)

≤ 8(n2)

Hence, f(n) = O(n2).
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8n2 is a strict upper bound on f(n) as shown in the figure.

Example 94
f(n) = 0.00001n100 + 10000n99 + 234344. Find its asymptotic time complexity.
Answer: f(n) = O(n100)

Time Complexity of a Ripple Carry Adder

The worst case delay happens when the carry propagates from the least significant bit to the
most significant bit. In this case, each full adder waits for the input carry, performs the addition,
and then propagates the carry out to the next full adder. Since, there are n 1 bit adders, the
total time taken is O(n).

7.1.4 Carry Select Adder

A ripple carry adder is extremely slow for large values of n such as 32 or 64. Consequently, we
desire faster implementations. We observe that in hardware we can potentially do a lot of tasks
in parallel. Unlike purely sequential C or Java programs where one statement executes after
the next, hundreds or even thousands of actions can be performed in parallel in hardware. Let
us use this insight to design a faster adder that runs in O(

√
n) time.

Let us consider the problem of adding two numbers A and B represented as: A32 . . . A1 and
B32 . . . B1 respectively. Let us start out by dividing the set of bits into blocks of let us say 4
bits. The blocks are shown in Figure 7.6. Each block contains a fragment of A and a fragment
of B. We need to add the two fragments by considering the input carry to the block, and
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generate a set of sum bits and a carry out. This carry out is an input carry for the subsequent
block.

A32 A1A2A3A4A31 A30 A29

B32 B1B2B3B4B31 B30 B29

A5A6A7A8

B5B6B7B8

Carry propagating
across blocks

Figure 7.6: Dividing the numbers into blocks

In this case, a carry is propagated between blocks rather that between bit pairs. To add the
pair of fragments within a block, we can use a simple ripple carry adder. For small values of n,
ripple carry adders are not very inefficient. However, our basic problem of carry propagation
has not been solved yet.

Let us now introduce the basic idea of the carry select adder. We divide the computation
into two stages. In the first stage, we generate two results for each block. One result assumes
that the input carry is 0, and the other result assumes that the input carry is 1. A result consists
of 4 sum bits, and a carry out. We thus require two ripple carry adders per block. Note that
each of these additions are independent of each other and thus can proceed in parallel.

Now, at the beginning of the second stage two sets of results for the nth block are ready. If
we know the value of the input carry, Cin produced by the (n− 1)th block, then we can quickly
calculate the value of the output carry, Cout, by using a simple multiplexer. We do not need
to perform any extra additions. The inputs to the multiplexer are the values of Cout generated
by the two ripple carry adders that assume Cin to be 0 and 1 respectively. When the correct
value of Cin is available, it can be used to choose between the two values of Cout. This process
is much faster than adding the two blocks. Simultaneously, we can also choose the right set of
sum bits. Then we need to propagate the output carry, Cout, to the (n+ 1)th block.

Let us now evaluate the time complexity of the carry select adder. Let us generalise the
problem and assume the block size to be k. The first stage takes O(k) time because we add
each pair of fragments within a block using a regular ripple carry adder, and all the pairs of
fragments are added in parallel. The second phase takes time O(n/k). This is because we have
have dn/ke blocks and we assume that it takes 1 time unit for the input carry of a block to
choose the right output carry in the multiplexer. The total time is thus: O(k+n/k). Note that
we are making some simplistic assumptions regarding the constants. However, our final answer
will not change if we make our model more complicated.

Let us now try to minimise the time taken. This can be done as follows:

∂(k + n/k)

∂k
= 0

⇒1− n

k2
= 0

⇒k =
√
n

(7.1)
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Thus, the optimal block size is equal to
√
n. The total time complexity is thus O(

√
n+
√
n),

which is the same as O(
√
n).

7.1.5 Carry Lookahead Adder

We have improved the time complexity from O(n) for a ripple carry adder to O(
√
n) for a carry

select adder. The question is, “Can we do better?” In this section, we shall present the carry
lookahead adder that can perform addition in O(log(n)) time. O(log(n)) has been proved as
the theoretical lower bound for adding two n bit numbers. Note that the log operation in this
book typically has a base equal to 2, unless explicitly mentioned otherwise. Secondly, since
logarithms to different bases differ by constant multiplicative factors, the base is immaterial in
the big-O notation.

Generate and Propagate Functions

Before introducing the adder, we need to introduce a little bit of theory and terminology. Let us
again consider the addition of two numbers – A and B – represented as A32 . . . A1 and B32 . . . B1

respectively. Let us consider a bit pair – Ai and Bi. If it is equal to (0,0), then irrespective of
the carry in, the carry out is 0. In this case, the carry is absorbed.

However, if the bit pair is equal to (0,1) or (1,0) then the value of the carry out is equal to
the value of the carry in. If the carry in is 0, then the sum is 1, and the carry out is 0. If the
carry in is 1, then the sum is 0, and the carry out is 1. In this case, the carry is propagated.

Lastly, if the bit pair is equal to (1,1), then the carry out is always equal to 1, irrespective
of the carry in. In this case, a carry is generated.

We can thus define a generate(gi) and propagate(pi) function as follows:

gi = Ai.Bi (7.2)

pi = Ai ⊕Bi (7.3)

The generate function captures the fact that both the bits are 1. The propagate function
captures the fact that only one of the bits is 1. We can now compute the carry out Cout in
terms of the carry in Cin, gi, and pi. Note that by our case by case analysis, we can conclude
that the carry out is equal to 1, only if a carry is either generated, or it is propagated. Thus,
we have:

Cout = gi + pi.Cin (7.4)

Example 95
Ai = 0, Bi = 1. Let the input carry be Cin. Compute gi, pi and Cout.

Answer:

gi = Ai.Bi = 0.1 = 0

pi = Ai ⊕Bi = 0⊕ 1 = 1

Cout = gi + pi.Cin = Cin

(7.5)
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Let us now try to generalise the notion of generate and propagate functions to multiple bits.
Let us consider a two bit system that has an input carry, and an output carry. Let the bit
pairs be numbered 1 and 2, where 2 represents the most significant bit. Let Ciout represent the
output carry obtained after adding the ith bit pair. Likewise, Ciin is the input carry for the ith

bit pair. The output carry of the two bit system is thus equal to C2
out. We have:

C2
out = g2 + p2.C

1
out

= g2 + p2.(g1 + p1.C
1
in)

= (g2 + p2.g1) + p2.p1.C
1
in

(7.6)

Similarly, for a 3 bit system, we have:

C3
out = g3 + p3.C

2
out

= g3 + p3.((g2 + p2.g1) + p2.p1.C
1
in)

= (g3 + p3.g2 + p3.p2.g1) + p3.p2.p1.C
1
in

(7.7)

For a 4-bit system, we have:

C4
out = g4 + p4.C

3
out

= g4 + p4.((g3 + p3.g2 + p3.p2.g1) + p3.p2.p1.C
1
in)

= (g4 + p4.g3 + p4.p3.g2 + p4.p3.p2.g1) + p4.p3.p2.p1.C
1
in

(7.8)

Let us now try to derive a pattern, in these results (see Table 7.3).

1 bit C1
out = g1︸︷︷︸

G1

+ p1︸︷︷︸
P1

.C1
in

2 bit C2
out = (g2 + p2.g1)︸ ︷︷ ︸

G2

+ p2.p1︸ ︷︷ ︸
P2

.C1
in

3 bit C3
out = (g3 + p3.g2 + p3.p2.g1)︸ ︷︷ ︸

G3

+ p3.p2.p1︸ ︷︷ ︸
P3

.C1
in)

4 bit C4
out = (g4 + p4.g3 + p4.p3.g2 + p4.p3.p2.g1)︸ ︷︷ ︸

G4

+ p4.p3.p2.p1︸ ︷︷ ︸
P4

.C1
in)

n bit Cnout = Gn + Pn.C
1
in

Table 7.3: Generate and propagate functions for multi bit systems

We observe that for a system of n bits, it is possible to define a generate function (Gn) and
a propagate function (Pn). If we are able to somehow precompute these functions, then we can
generate Cout from Cin in a single step. However, as we can see from the example of the 4-bit
system, the functions are fairly difficult to compute for large values of n. Let us now derive an
interesting property of the generate and propagate functions.
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Let us consider a sequence of n bits. Let us divide it into two parts 1 . . .m and (m +
1) . . . n. Let the generate and propagate functions for both the parts be (G1,m, P1,m) and
(Gm+1,n, Pm+1,n) respectively. Furthermore, let the generate and propagate functions for the
entire block beG1,n and P1,n. We wish to find a relationship between the generate and propagate
functions for the whole block with n bits and the functions for the sub blocks.

n

1,mm+1,n

Cout Cin

Csub

Figure 7.7: A block of n bits divided into two parts

Let the carry out and carry in of the n bit block be Cout and Cin respectively. Let the carry
between the two sub-blocks be Csub. See Figure 7.7. We have:

Cout = Gm+1,n + Pm+1,n.Csub

= Gm+1,n + Pm+1,n.(G1,m + P1,m.Cin)

= Gm+1,n + Pm+1,n.G1,m︸ ︷︷ ︸
G1,n

+Pm+1,n.P1,m︸ ︷︷ ︸
P1,n

.Cin

= G1,n + P1,n.Cin

(7.9)

Thus, for a block of n bits, we can easily compute G1,n and P1,n from the corresponding
functions of its sub blocks. This is a very powerful property and is the basis of the carry
lookahead adder.

Carry Lookahead Adder – Stage I

The carry lookahead adder’s operation is divided into two stages. In the first stage, we compute
the generate and propagate functions for different subsequences of bits. In the next stage, we
use these functions to generate the result.

The diagram for the first stage is shown in Figure 7.8. Like the carry select adder, we
divide bit pairs into blocks. In this diagram, we have considered a block size equal to 2. In the
first level, we compute the generate and propagate functions for each block. We build a tree
of (G,P) circuits(blocks) as follows. Each (G,P) block in level n takes as input the generate
and propagate functions of two blocks in level n− 1. Thus, at each level the number of (G,P)
blocks decreases by a factor of 2. For example, the first (G,P) block in level 1 processes the
bit pairs (1, 2). Its parent processes the bit pairs (1 . . . 4), and so on. The ranges are shown in
Figure 7.8. We create a tree of (G,P) blocks in this fashion.

For a n bit input, there are O(log(n)) levels. In each level, we are doing a constant amount
of work since each (G,P) block is only processing the inputs from two other blocks. Hence, the
time complexity of this stage is equal to O(log(n)).
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Figure 7.8: Carry Lookahead Adder – Stage I

Carry Lookahead Adder – Stage II

In this stage, we use the information generated in Stage I to compute the final sum bits, and
the carry out. The block diagram for the second stage is shown in Figure 7.9.
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Figure 7.9: Carry Lookahead Adder – Stage II

Let us first focus at the rightmost (G,P) blocks in each level. The ranges for each of these
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blocks start at 1. They take the input carry, C1
in, as input, and then calculate the output

carry for the range of bit pairs that they represent as Cout = G+ P.C1
in. When we are adding

two numbers, the input carry at the first bit is typically 0. However, some special instructions
(ADC in ARM) can consider a non-zero value of C1

in also.

Each (G,P) block with a range (r2, r1) (r2 > r1), is connected to all (G,P) blocks that have
a range of the form (r3, r2 + 1). The output carry of the block is equal to the input carry of
those blocks. To avoid excessive clutter in the diagram (Figure 7.9), we show the connections
for only the (G,P) block with range (16-1) using solid lines. Each block is connected to the
block to its left in the same level and to one (G,P) block in every lower level.

The arrangement of (G,P) blocks represents a tree like computation where the correct carry
values propagate from different levels to the leaves. The leaves at level 0, contain a set of 2-bit
ripple carry(RC) adders that compute the result bits by considering the correct value of the
input carry. We show an example in Figure 7.9 of the correct carry in value propagating from
the block with range (16-1) to the 2-bit adder representing the bits 31 and 32. The path is
shown using dotted lines.

In a similar manner, carry values propagate to every single ripple carry adder at the zeroth
level. The operation completes once all the result bits and the output carry have been computed.

The time complexity of this stage is also O(log(n)) because there are O(log(n)) levels in
the diagram and there is a constant amount of work done per level. This work comprises of
computing Cout and propagating it to (G,P) blocks at lower levels.

Hence, the total time complexity of the carry lookahead adder is O(log(n)) .

Way Point 5
Time complexities of different adders:

• Ripple Carry Adder: O(n)

• Carry Select Adder: O(
√
n)

• Carry Lookahead Adder: O(log(n))

7.2 Multiplication

7.2.1 Overview

Let us now consider the classic problem of binary multiplication. Similar to addition, let us
first look at the most naive way of multiplying two decimal numbers. Let us try to multiply 13
times 9. In this case, 13 is known as the multiplicand and 9 is known as the multiplier, and 117
is the product.

Figure 7.10(a) shows the multiplication in the decimal number system, and Figure 7.10(b)
shows the multiplication in binary. Note that multiplying two binary numbers can be done
exactly the same way as decimal numbers. We need to consider each bit of the multiplier from
the least significant position to the most significant position. If the bit is 1, then we write the
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1  3
9

1  1  7
1 0 0 1
1 1 0 1

0 0 0 0
0 0 0 0

1 1 0 1

1 1 0 1
1 1 1 0 1 0 1

(a)

(b)

Partial sums

Figure 7.10: Multiplication in decimal and binary

value of the multiplicand below the line, otherwise we write 0. For each multiplier bit, we shift
the multiplicand progressively one bit to the left. The reason for this is that each multiplier bit
represents a higher power of two. We call each such value a partial sum (see Figure 7.10(b)).
If the multiplier has m bits, then we need to add m partial sums to obtain the product. In
this case the product is 117 in decimal and 1110101 in binary. The reader can verify that they
actually represent the same number. Let us define another term called the partial product for
ease of representation later. It is the sum of a contiguous sequence of partial sums.

Definition 56

Partial sum It is equal to the value of the multiplicand left shifted by a certain number of
bits, or it is equal to 0.

Partial product It is the sum of a set of partial sums.

In this example, we have considered unsigned numbers. What about signed numbers? In
Section 2.3.4, we proved that multiplying two 2’s complement signed n bit binary numbers, and
constraining the result to n bits without any concern for overflows, is not different from unsigned
multiplication. We need to just multiply the 2’s complement numbers without bothering about
the sign. The result will be correct.

Let us now consider the issue of overflows in multiplication. If we are multiplying two signed
32-bit values, the product can be as large as (2−31)2 = 2−62. There will thus be an overflow if
we try to save the result in 32 bits. We need to keep this in mind. If we desire precision, then
it is best to allot 64 bits for storing the result of 32-bit multiplication. Let us now look at a
naive approach for multiplying two 32-bit numbers by using an iterative multiplier.
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U V

Multiplicand(N)

Figure 7.11: Iterative Multiplier

7.2.2 Iterative Multiplier

In this section, we present the design of an iterative multiplier (see Figure 7.11) that multiplies
two signed 32-bit numbers to produce a 64-bit result. We cannot treat the numbers as unsigned
anymore and the algorithm thus gets slightly complicated. We use a 33-bit register U , and a
32-bit register V as shown in Figure 7.11. The multiplier is loaded into V at the beginning.
The multiplicand is stored separately in register N . The size of the register N is equal to 33
bits, and we store the multiplicand in it by extending its sign by 1 position. The two registers
U and V are treated as one large register for the purposes of shifting. If we perform a right
shift on U and V , then the value shifted out of U , becomes the MSB of V . We have an adder
that adds the multiplicand to the current value of U , and updates U . U is initialised to 0. Let
us represent the multiplicand by N , the multiplier by M , and the product by P . We need to
compute P = MN .

The algorithm used by the iterative multiplier is very similar to the multiplication algorithm
that we learnt in elementary school. We need to consider each bit of the multiplier in turn and
add a shifted version of the multiplicand to the partial product if the bit is 1. The algorithm
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is as follows:

Algorithm 1: Algorithm to multiply two 32-bit numbers and produce a 64-bit result

Data: Multiplier in V , U = 0, Multiplicand in N
Result: The lower 64 bits of UV contains the product

1 i ← 0
2 for i < 32 do
3 i ← i + 1
4 if LSB of V is 1 then
5 if i < 32 then
6 U ← U +N
7 end
8 else
9 U ← U −N

10 end

11 end
12 UV ← UV � 1 (arithmetic right shift)

13 end

Let us now try to understand how this algorithm works. We iterate for 32 times to consider
each bit of the multiplier. The multiplier is initially loaded into register V .

Now, if the LSB of V is 1 (Line 4), then we add the multiplicand N to U and save the result
in U . This basically means that if a bit in the multiplier is equal to 1, then we need to add
the multiplicand to the already accumulated partial product. The partial product is a running
sum of the shifted values of the multiplicands. It is initialised to 0. In the iterative algorithm,
the part of UV that does not contain the multiplier, contains the partial product. We then
shift UV one step to the right (Line 12). The reason for this is as follows. In each step we
actually need to shift the multiplicand 1 bit to the left and add it to the partial product. This
is the same as not shifting the multiplicand but shifting the partial product 1 bit to the right
assuming that we do not lose any bits. The relative displacement between the multiplicand and
the partial product remains the same.

If in any iteration of the algorithm, we find the LSB of V to be 0, then nothing needs to be
done. We do not need to add the value of the multiplicand to the partial product. We simply
need to shift UV one position to the right using an arithmetic right shift operation.

Note that till the last step we assume that the multiplier is positive. If in the last step we
see that the multiplier is not positive (MSB is 1), then we need to subtract the multiplicand
from U (Line 9). This follows directly from Theorem 2.3.4.2. The theorem states that the value
of the multiplier (M) in the 2’s complement notation is equal to (−Mn2n−1 +

∑n−1
i=1 Mi2

i−1).
Here Mi is the ith bit of the multiplier, M . In the first n− 1 iterations, we effectively multiply
the multiplicand with

∑n−1
i=1 Mi2

i−1. In the last iteration, we take a look at the MSB of the
multiplier, Mn. If it is 0, then we need not do anything. If it is 1, then we need to subtract
2n−1 × N from the partial product. Since the partial product is shifted to the right by n − 1
positions with respect to the multiplicand, the multiplicand is effectively shifted n−1 positions
to the left with respect to the partial product. To subtract 2n−1 × N to the partial product,
we need to simply subtract N from register U , which is our last step.
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Important Point 8
We assume that register U is 33 bits wide. We did this to avoid overflows while adding or
subtracting N from U . Let us consider U and N again. |N | ≤ 231 because N is essentially
a 32-bit number. For our induction hypothesis, let us assume that |U | ≤ 231 (true for the
base case, U = 0). Thus |U ±N | ≤ 232. Hence, if we store both the numbers and their sum
in 33-bit registers, we will never have overflows while adding or subtracting them. Note
that we could have had overflows, if we would have used just 32 bits. Now, after the shift
operation, the value in U is divided by 2. Since U ± N is assigned to U , and we have
established that |U ±N | ≤ 232, we can prove that |U | ≤ 231. Thus, our induction hypothesis
holds, and we can thus conclude that during the operation of our algorithm, we shall never
have an overflow. The absolute value of the product can at the most be 231 × 231 = 262.
Hence, the product can fit in 64 bits(proved in Section 7.2.1), and we thus need to only
consider the lower 64 bits of the UV register.

Examples

Example 96
Multiply 2× 3 using an iterative multiplier. Assume a 4-bit binary 2’s complement number
system. Let 2 (00102) be the multiplicand and let 3 (00112) be the multiplier. For each
iteration show the values of U and V just before the right shift on Line 12, and just after
the right shift.
Answer:
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00010 0011

after shift: 00001 0001
1

00000 0011beginning:
U V

Multiplier (M) 0011

Multiplicand (N) 0010

Product(P) 0110

before shift:
         

00011 0001

after shift: 00001 1000
2

before shift:
         

00001 1000

after shift: 00000 1100
3

before shift:
         

00000 1100

after shift: 00000 0110
4

before shift:
         

2

3

6

Example 97
Multiply 3 × (−2) using an iterative multiplier. Assume a 4-bit binary 2’s complement
number system. Let 3 (00112) be the multiplicand and let -2 (11102) be the multiplier. For
each iteration show the values of U and V just before the right shift on Line 12, and just
after the right shift.
Answer:
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00000 1110

after shift: 00000 0111
1

00000 1110beginning:
U V

Multiplier (M) 1110

Multiplicand (N) 0011

Product(P) 1010

before shift:
         

00011 0111

after shift: 00001 1011
2

before shift:
         

00100 1011

after shift: 00010 0101
3

before shift:
         

11111 0101

after shift: 11111 1010
4

before shift:
         

3

-2

-6

Time Complexity

If we are performing n bit multiplication, then there are n iterations of the loop, and each
iteration performs one addition at the most. This takes O(log(n)) time. Hence, the total time
required is O(nlog(n)).

7.2.3 Booth Multiplier

The iterative multiplier is a simple algorithm, yet it is slow. It is definitely not as fast as
addition. Let us try to speed it up by making a simple alteration. This trick will not change the
asymptotic time complexity of the algorithm. However, in practice the process of multiplication
will become significantly faster. This algorithm is known as the Booth multiplication algorithm
and has been used for designing fast multipliers in a lot of processors.

We observe that if a bit in the multiplier is 0, then nothing needs to be done other than a
shift in the iterative multiplier. The complexity arises when a bit is 1. Let us assume that the
multiplier contains a run of 1s. It is of the form - 0000111100. Let the run of 1s be from the
ith to the jth position (i ≤ j). The value of the multiplier M is thus:
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M =

k=j∑
k=i

2k−1 = 2j − 2i−1 (7.10)

Now, the iterative multiplier will perform j− i+ 1 additions. This is not required as we can
see from Equation 7.10. We just need to do one subtraction when we are considering the ith

bit, and do one addition when we are considering the (j+1)th bit. We can thus replace j− i+1
additions with one addition and one subtraction. This insight allows us to reduce the number
of additions if there are long runs of 1s in the 2’s complement notation of the multiplier. If
the multiplier is a small negative number, then it fits this pattern. It will have a long run of
1s especially in the most significant positions. Even otherwise, most of the numbers that we
encounter will at least have some runs of 1s. The worst case arises, when we have a number of
the form: 010101... . This is a very rare case.

If we consider our basic insight again, then we observe that we need to consider bit pairs
consisting of the previous and the current multiplier bit. Depending on the bit pair we need to
perform a certain action. Table 7.4 shows the actions that we need to perform.

(current value,previous value) Action

0,0 -

1,0 subtract multiplicand from U

1,1 -

0,1 add multiplicand to U

Table 7.4: Actions in the Booth multiplier

If the current and previous bits are (0,0) respectively, then we do not need to do anything.
We need to just shift UV and continue. Similarly, if the bits are (1,1), nothing needs to be
done. However, if the current bit is 1, and the previous bit was 0, then a run of 1s is starting.
We thus need to subtract the value of the multiplicand from U . Similarly, if the current bit is
0, and the previous bit was 1, then a run of 1s has just ended. In this case, we need to add the
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value of the multiplicand to U .

Algorithm 2: Booth’s Algorithm to multiply two 32-bit numbers to produce a 64-bit
result

Data: Multiplier in V , U = 0, Multiplicand in N
Result: The lower 64 bits of UV contain the result

1 i ← 0
2 prevBit ← 0
3 for i < 32 do
4 i ← i + 1
5 currBit ← LSB of V
6 if (currBit,prevBit) = (1,0) then
7 U ← U −N
8 end
9 else if (currBit,prevBit) = (0,1) then

10 U ← U +N
11 end
12 prevBit ← currBit
13 UV ← UV � 1 (arithmetic right shift)

14 end

The Booth’s algorithm is shown in Algorithm 2. Here, also, we assume that U is 33 bits
wide, and V is 32 bits wide. We iterate for 32 times, and consider bit pairs (current bit, previous
bit). For (0,0) and (1,1), we do not need to perform any action, else we need to perform an
addition and subtraction.

Proof of Correctness*

Let us try to prove that the Booth’s algorithm produces the same result as the iterative algo-
rithm for a positive multiplier.

There are two cases. The multiplier (M) can either be positive or negative. Let us consider
the case of the positive multiplier first. The MSB of a positive multiplier is 0. Now, let us
divide the multiplier into several sequences of contiguous 0s and 1s. For example, if the number
is of the form: 000110010111. The sequences are: 000, 11, 00, 1, 0, and 111. For a run of 0s,
both the multipliers (Booth’s and iterative) produce the same result result because they simply
shift the UV register 1 step to the right.

For a sequence of continuous 1s, both the multipliers also produce the same result because
the Booth multiplier replaces a sequence of additions with an addition and a subtraction ac-
cording to Equation 7.10. The only special case arises for the MSB bit, when the iterative
multiplier may subtract the multiplicand. In this case, the MSB is 0, and thus no special cases
arise. Each run of continuous 0s and 1s in the multiplier is accounted for in the partial product
correctly. Therefore, we can conclude that the final result of the Booth multiplier is the same
as that of a regular iterative multiplier.

Let us now consider a negative multiplier M . Its MSB is 1. According to Theorem 2.3.4.2,
M = −2n−1 +

∑n−1
i=1 Mi2

i−1. Let M ′ =
∑n−1

i=1 Mi2
i−1. Hence, for a negative multiplier (M):

M = M ′ − 2n−1 (7.11)
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M ′ is a positive number (MSB is 0). Note that till we consider the MSB of the multiplier,
the Booth’s algorithm does not know if the multiplier is equal to M or M ′.

Now, let us split our argument into two cases. Let us consider the MSB bit (nth bit), and
the (n− 1)th bit. This bit pair can either be 10, or 11.

Case 10: Let us divide the multiplier M into two parts as shown in Equation in Equation 7.11.
The first part is a positive number M ′, and the second part is −2n−1, where M = M ′ − 2n−1.
Since the two MSB bits of the binary representation ofM are 10, we can conclude that the binary
representation of M ′ contains 00 as its two MSB bits. Recall that the binary representation of
M and M ′ contain the same set of n− 1 least significant bits, and the MSB of M ′ is always 0.

Since the Booth multiplier was proven to work correctly for positive multipliers, we can
conclude that the Booth multiplier correctly computes the partial product as N ×M ′ in the
first (n − 1) iterations. The proof of this fact is as follows. Till the end of (n − 1) iterations,
we are not sure if the MSB is 0 or 1. Hence, we do not know if we are multiplying N with M
or M ′. The partial product will be the same in both the cases. If we were multiplying N with
M ′, then no action will be taken in the last step because the two MSB bits of M ′ are 00. This
means that in the second last step ((n− 1) iterations), the partial product contains NM ′. We
can similarly prove that the partial product computed by the iterative multiplier after (n− 1)
iterations is equal to NM ′ because the MSB of M ′ is 0.

Hence, till this point, both the algorithms compute the same partial product, or alternatively
have the same contents in the U and V registers. In the last step, both the algorithms find
out that the MSB is 1. The iterative algorithm subtracts the multiplicand(N) from U , or
alternatively subtracts N × 2n−1 from the partial product. The reason that we treat the
multiplicand as shifted by n − 1 places is because the partial product in the last iteration
spans the entire U register and n− 1 bits of the V register. Now, when we add or subtract the
multiplicand(N) to U , effectively, we are adding N shifted by n−1 places to the left. Hence, the
iterative multiplier correctly computes the product as M ′N−2n−1N = MN (see Equation 7.11).
The Booth multiplier also does the same in this case. It sees a 0→ 1 transition. It subtracts N
from U , which is exactly the same step as taken by the iterative multiplier. Thus, the operation
of the Booth multiplier is correct in this case (same result as the iterative multiplier).

Case 11: Let us again consider the point at the beginning of the nth iteration. At this point
of time, the partial product computed by the iterative algorithm is M ′N , whereas the partial
product computed by the Booth multiplier is different because the two MSB bits of M ′ are 0
and 1, respectively. Let us assume that we were originally multiplying N with M ′, then the
MSB would have been 0, and this fact would have been discovered in the last iteration. The
Booth’s algorithm would have then added 2n−1N to obtain the final result in the last step
because of a 1 → 0 transition. Hence, after the (n − 1)th iteration, the partial product of
the Booth multiplier is equal to M ′N − 2n−1N . Note that till the last iteration, the Booth
multiplier does not know whether the multiplier is M or M ′.

Now, let us take a look at the last iteration. In this iteration both the algorithms find out
that the MSB is 1. The iterative multiplier subtracts 2n−1N from the partial product, and
correctly computes the final product as MN = M ′N − 2n−1N . The Booth multiplier finds the
current and previous bit to be 11, and thus does not take any action. Hence, its final product
is equal to the partial product computed at the end of the (n− 1)th iteration, which is equal to
M ′N − 2n−1N . Therefore, in this case also the outputs of both the multipliers match.

We have thus proved that the Booth multiplier works for both positive and negative multi-
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pliers.

Important Point 9
Here, we use a 33-bit U register to avoid overflows. Let us show an example of an overflow,
if we would have used a 32-bit U register. Assume that we are trying to multiply −231

(multiplicand) with -1(multiplier). We will need to compute 0 − N in the first step. The
value of U should be equal to 231; however, this number cannot be represented with 32 bits.
Hence, we have an overflow. We do not have this issue when we use a 33-bit U register.
Moreover, we can prove that with a 33-bit U register, the additions or subtractions in the
algorithm will never lead to an overflow (similar to the proof for iterative multiplication).

Example 98
Multiply 2 × 3 using a Booth multiplier. Assume a 4-bit binary 2’s complement number
system. Let 3 (00112) be the multiplicand and let 2 (00102) be the multiplier. For each
iteration show the values of U and V just before and after the right shift.
Answer:
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00000 0010

after shift: 00000 0001
1

00000 0010beginning:
U V

Multiplier (M) 0010

Multiplicand (N) 00011

Product(P) 0110

before shift:
         

11101 0001

after shift: 11110 1000
2

before shift:
         

00001 1000

after shift: 00000 1100
3

before shift:
         

00000 1100

after shift: 00000 0110
4

before shift:
         

3

2

6

00

10

01

00

Example 99
Multiply 3× (−2) using a Booth multiplier. Assume a 4-bit binary 2’s complement number
system. Let 3 (00112) be the multiplicand and let -2 (11102) be the multiplier. For each
iteration show the values of U and V just before and after the right shift.
Answer:
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00000 1110

after shift: 00000 0111
1

00000 1110beginning:
U V

Multiplier (M) 1110

Multiplicand (N) 00011

Product(P) 1010

before shift:
         

11101 0111

after shift: 11110 1011
2

before shift:
         

11110 1011

after shift: 11111 0101
3

before shift:
         

11111 0101

after shift: 11111 1010
4

before shift:
         

3

-2

-6

00

10

11

11

7.2.4 An O(log(n)2) Time Algorithm

Let us make our life slightly easier now. Let us multiply two n bit numbers, and save the product
as also a n bit number. Let us ignore overflows, and concentrate only on performance. The
issue of detecting overflows in a high performance multiplier is fairly complex, and is beyond the
scope of this book. Using our results from Section 2.3.4, we use simple unsigned multiplication
to compute the product of signed numbers. If there are no overflows then the result is correct.

Let us take a look at the problem of multiplication again. We basically consider each bit
of the multiplier in turn, and multiply it with a shifted version of the multiplicand. We obtain
n such partial sums. The product is the sum of the n partial sums. Generating each partial
sum is independent of the other. This process can be performed in parallel in hardware. To
generate the ith partial sum, we need to simply compute an AND operation between the ith bit
of the multiplier and each bit of the multiplicand. This takes O(1) time.

Now, we can add the n partial sums(P 1 . . . Pn) in parallel using a tree of adders as shown
in Figure 7.12. There are O(log(n)) levels. In each level we are adding two O(n) bit numbers;
hence, each level takes O(log(n)) time. The total time requirement is thus O(log(n)2). By
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P1
P2P3

P4Pn-3
Pn-2Pn-1

Pn

Final product

log(n) levels

Figure 7.12: Tree of adders for adding partial sums

exploiting the inherent parallelism, we have significantly improved the time from O(nlog(n))
to O(log(n)2). It turns out that we can do even better, and get an O(log(n)) time algorithm.

A

B

C

D

E

Carry
save
adder

Figure 7.13: Carry Save Adder

7.2.5 Wallace Tree Multiplier

Before, we introduce the Wallace tree multiplier, let us introduce the carry save adder. A carry
save adder adds three numbers, A, B, C, and produces two numbers D, and E such that:
A+B+C = D+E(see Figure 7.13). We will extensively use carry save adders in constructing
the Wallace tree multiplier that runs in O(log(n)) time.
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Carry Save Adder

Let us consider the problem of adding three bits a, b, and c. The sum can range from 0 to 3.
We can express all numbers between 0 to 3 in the form 2d+ e, where (d, e) ∈ [0, 1]. Using this
relationship, we can express the sum of three numbers as the sum of two numbers as follows:

A+B + C =

n∑
i=1

Ai2
i−1 +

n∑
i=1

Bi2
i−1 +

n∑
i=1

Ci2
i−1

=

n∑
i=1

(Ai +Bi + Ci)2
i−1

=

n∑
i=1

(2Di + Ei)2
i−1

=

n∑
i=1

Di2
i

︸ ︷︷ ︸
D

+

n∑
i=1

Ei2
i−1

︸ ︷︷ ︸
E

= D + E

(7.12)

Thus, we have A + B + C = D + E. The question is how to compute the bits Di, and Ei
such that Ai +Bi +Ci = 2Di +Ei. This is very simple. We note that if we add Ai, Bi, and Ci,
we get a two bit result, where s is the sum bit and c is the carry bit. The result of the addition
can be written as 2× c+ s. We thus have two equations as follows:

Ai +Bi + Ci = 2Di + Ei (7.13)

Ai +Bi + Ci = 2c+ s (7.14)

If we set Di to the carry bit and Ei to the sum bit, then we are done! Now, E is equal to∑n
i=1Ei2

i−1. We can thus obtain E by concatenating all the Ei bits. Similarly, D is equal to∑n
i=1Di2

i. D can be computed by concatenating all the Di bits and shifting the number to
the left by 1 position.

The hardware complexity of a carry save adder is not much. We need n full adders to
compute all the sum and carry bits. Then, we need to route the wires appropriately to produce
D and E. The asymptotic time complexity of a carry save adder is O(1) (constant time).

Addition of n Numbers with Carry Save Adders

We can use carry save adders to add n partial sums (see Figure 7.14). In the first level, we
can use a set of n/3 carry save adders to reduce the sum of n partial sums to a sum of 2n/3
numbers in the second level. If we use 2n/9 carry save adders in the second level, then we will
have 4n/9 numbers in the third level, and so on. In every level the set of numbers gets reduced
by a factor of 2/3. Thus, after O(log3/2(n)) levels, there will only be two numbers left. Note
that O(log3/2(n) is equivalent to O(log(n)). Since each stage takes O(1) time because all the
carry save adders are working in parallel, the total time taken up till now is O(log(n)).
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P1P2P3

Final product

log    (n) levels

CSA

P4P5P6

CSA

CSA

Pn-5Pn-4Pn-3

CSA

Pn-2Pn-1Pn

CSA

CSA

CSA

3/2

Figure 7.14: Wallace Tree Multiplier

In the last stage, when we have just two numbers left, we cannot use a carry save adder
anymore. We can use a regular carry lookahead adder to add the two numbers. This will
take O(log(n)) time. Hence, the total time taken by the Wallace tree multiplier is O(log(n) +
log(n)) = O(log(n)). In terms of asymptotic time complexity, this is the fastest possible
multiplier. It is possible to reduce the number of full adders by slightly modifying the design.
This is known as the Dadda multiplier. The reader can refer to [Wikipedia, ] for further
information on this topic.

7.3 Division

7.3.1 Overview

Let us now look at integer division. Unfortunately, unlike addition, subtraction, and multipli-
cation, division is a significantly slower process. Any division operation can be represented as
follows:

N = DQ+R (7.15)

Here, N is the dividend, D is the divisor, Q is the quotient, and R is the remainder. Division
algorithms assume that the divisor and dividend are positive. The process of division needs to
satisfy the following properties.

Property 1 R < D, and R ≥ 0.



c© Smruti R. Sarangi 298

Property 2 Q is the largest positive integer that satisfies Equation 7.15.

If we wish to divide negative numbers, then we need to first convert them to positive
numbers, perform the division, and then adjust the sign of the quotient and remainder. Some
architectures try to ensure that the remainder is always positive. In this case, it is necessary to
decrement the quotient by 1, and add the divisor to the remainder to make it positive.

Let us focus on the core problem, which is to divide two n bit positive numbers. The MSB
is the sign bit, which is 0. Now, DQ =

∑n
i=1DQi2

i−1. We can thus write:

N = DQ+R

= DQ1...n−1 +DQn2n−1 +R

(N −DQn2n−1)︸ ︷︷ ︸
N ′

= DQ1...n−1︸ ︷︷ ︸
Q′

+R

N ′ = DQ′ +R

(7.16)

We have thus reduced the original problem of division into a smaller problem. The original
problem was to divide N by D. The reduced problem is to divide N ′ = N −DQn2n−1 by D.
The remainder for both the problems is the same. The quotient, Q′, for the reduced problem
has the same least significant n− 1 bits as the original quotient, Q. The nth bit of Q′ is 0.

To create the reduced problem it is necessary to find Qn. We can try out both the choices
– 0 and 1. We first try 1. If N −D2n−1 ≥ 0, then Qn = 1 (Property 1 and 2). Otherwise, it is
0.

Once, we have created the reduced problem, we can proceed to further reduce the problem
till we have computed all the quotient bits. Ultimately, the divided will be equal to the re-
mainder, R, and we will be done. Let us now illustrate an algorithm that precisely follows the
procedure that we have just outlined.

U V

Divisor(D)

(U-D)

Figure 7.15: Iterative divider

7.3.2 Restoring Division

Let us consider a similar setup as the iterative multiplier to divide two positive 32-bit numbers.
The divisor is stored in a 32-bit register called D. We have a 33 bit register U , and a 32-bit
register V . If we left shift U and V , then the value shifted out of V , is shifted in to U . U is
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initialised to 0, and V is initialised to hold the dividend (see Figure 7.15). Note that the size
of U is equal to 33 bits to avoid overflows (similar to the case of the iterative multiplier).

Algorithm 3: Restoring algorithm to divide two 32-bit numbers

Data: Divisor in D, Dividend in V , U = 0
Result: U contains the remainder (lower 32 bits), and V contains the quotient

1 i ← 0
2 for i < 32 do
3 i ← i + 1

/* Left shift UV by 1 position */

4 UV ← UV << 1
5 U ← U - D
6 if U ≥ 0 then
7 q ← 1

8 end
9 else

10 U ← U + D
11 q ← 0

12 end
/* Set the quotient bit */

13 LSB of V ← q

14 end

Algorithm 3 follows the discussion that we had in Section 7.3.1. We shall see that each
iteration of the algorithm reduces the problem according to Equation 7.16. Let us prove its
correctness.

Proof of Correctness*

To start out we iterate 32 times for each bit of the dividend (Lines 2 to 14). Let us consider
the first iteration. At the beginning, the value in the combined register UV is equal to the
value of the dividend N . The first step is to shift UV to the left by 1 position in Line 4. Since
the dividend is originally loaded into register V , we are shifting the dividend to the left by 1
position. The next step is to subtract the divisor from register U in Line 5. If U −D ≥ 0, then
we set the MSB of the quotient to 1 (Line 7), otherwise we add D back to U in Line 10, and
set the MSB of the quotient to 0.

We wish to use Equation 7.16 to reduce the problem in every iteration. Equation 7.16 states
that the new dividend(N ′) is equal to:

N ′ = N − 2n−1DQn (7.17)

Qn is the MSB of the quotient here. The divisor and remainder stay the same. The last n− 1
bits of the new quotient match those of the old quotient.

We wish to prove that the value of UV at the end of the first iteration is equal to (2N ′)(ignoring
quotient bits) such that we can reduce the problem according to Equation 7.16. Let us consider
the value stored in UV . Just after executing Line 4, it contains twice the dividend – 2N –
because we shifted UV by 1 position to the left. Now, we are subtracting D from the upper n
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bits of UV . In effect, we are subtracting 2nD. Hence, after Line 5, UV contains UV − 2nD.
We have:

UV − 2nD = 2N − 2nD = 2× (N − 2n−1D) (7.18)

Subsequently, we test the sign of U−D in Line 6. If U−D is positive or zero, then it means
that UV is greater than 2nD because V ≥ 0. If U −D is negative, then let U + ∆ = D, where
∆ ≥ 1. We have:

UV − 2nD = 2nU + V − 2nD

= (U −D)2n + V

= V −∆× 2n
(7.19)

Now, V < 2n. Hence, V < ∆× 2n, and thus UV − 2nD is negative. We thus observe that
the sign of U−D is the same as the sign of UV −2nD, which is same as the sign of (N−2n−1D).

sign(U −D) = sign(N − 2n−1D) (7.20)

Now, for reducing the problem, if we observe that U −D ≥ 0, then N − 2n−1D ≥ 0. Hence,
we can set Qn to 1, and set the new dividend to N ′ = N − 2n−1DQn, and also conclude that at
the end of the iteration UV contains 2N ′(Line 5 and 7). If U −D < 0, then we cannot set Qn
to 1. N ′ will become negative. Hence, the algorithm sets Qn to 0 in Line 11 and adds D back
to U . The value of UV is thus equal to 2N . Since Qn = 0, we have N = N ′(Equation 7.17).
In both the cases, the value of UV at the end of the iteration is 2N ′. We thus conclude that in
the first iteration, the MSB of the quotient is computed correctly, and the value of UV ignoring
the quotient bit is equal to 2N ′.

In the next iteration, we can use exactly the same procedure to prove that the value of
UV (ignoring quotient bits) is equal to 4N ′′. Ultimately, after 32 iterations, V will contain the
entire quotient. The value of UV (ignoring quotient bits) at that point will be 2n ×N32. Here
N i is the reduced dividend after the ith iteration. We have the following relation according to
Equation 7.17:

N31 = DQ1 +R

⇒N31 −DQ1︸ ︷︷ ︸
N32

= R (7.21)

Hence, U will contain the value of the remainder and V will contain the quotient.

Important Point 10
Let us now try to prove that the restoring algorithm does not suffer from overflows while
performing a left shift, and adding or subtracting the divisor. Let us first prove that just
before the shift operation in Line 4, U < D. Let us assume positive divisors (D > 0) and
non-negative dividends (N ≥ 0) for division. For the base case, (U = 0), the proposition
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holds. Let us consider the nth iteration. Let the value of U before the shift operation be Û .
From the induction hypothesis, we can conclude that Û < D, or alternatively, Û ≤ D − 1
After the shift operation, we have U ≤ 2Û + 1 because we are performing a left shift by
1 position, and shifting in the MSB of V . If U < D, then the induction hypothesis holds
for the (n + 1)th iteration. Otherwise, we subtract D from U . We have, U = U − D ≤
2Û + 1 − D ≤ 2(D − 1) + 1 − D = D − 1. Therefore, U < D. Thus, for the (n + 1)th

iteration, the induction hypothesis holds. Now that we have proved that U < D, let us prove
that the largest value contained in register U is less than or equal to 2D − 1.

After the shift operation, the largest value that U can contain is (2(D−1)+1) = 2D−1.
Henceforth, the value of U can only decrease. Since D is a 32-bit number, we require at the
most 33 bits to store (2D − 1). Consequently, having a 33-bit U register avoids overflows.

Time Complexity

There are n iterations of the for loop. Each iteration does one subtraction in Line 5 and maybe
one addition in Line 10. The rest of the operations can be done in O(1) time. Thus, per
iteration it takes O(log(n)) time. Hence, the total time complexity is O(nlog(n)).

Example 100
Divide two 4-bit numbers: 7 (0111) / 3(0011) using restoring division. Answer:
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00000 111Xafter shift:

end of 
iteration:

00000 1110
1

00000 0111beginning:
U V

00001 110Xafter shift:

end of 
iteration:

00001 1100
2

00011 100Xafter shift:

end of 
iteration:

00000 1001
3

00001 001Xafter shift:

end of 
iteration:

00001 0010
4

Divisor (D) 0011

Dividend (N) 00111

Remainder(R) 0001

Quotient(Q) 0010

7.3.3 Non-Restoring Division

We observe that there can be a maximum of two add/subtract operations per iteration. It is
possible to circumvent it by using another temporary register to store the result of the subtract
operation U−D. We can move it to U only if U−D ≥ 0. However, this also involves additional
circuitry. The U register will get complicated and slower too.

The non-restoring algorithm does either one addition or one subtraction per iteration.
Hence, it is more efficient even though the asymptotic time complexity is the same. The
hardware setup (U and V registers, dividend (N), divisor (D)) is the same as that for the
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restoring algorithm.

Algorithm 4: Non-restoring algorithm to divide two 32-bit numbers

Data: Divisor in D, Dividend in V , U = 0
Result: U contains the remainder, and V contains the quotient

1 i ← 0
2 for i < 32 do
3 i ← i + 1

/* Left shift UV by 1 position */

4 UV ← UV << 1
5 if U ≥ 0 then
6 U ← U −D
7 end
8 else
9 U ← U + D

10 end
11 if U ≥ 0 then
12 q ← 1
13 end
14 else
15 q ← 0
16 end

/* Set the quotient bit */

17 LSB of V ← q

18 end
19 if U < 0 then
20 U ← U +D
21 end

We see that the non-restoring algorithm is very similar to the restoring algorithm with some
minor differences. The non-restoring algorithm shifts UV as the first step in an iteration. Then,
if the value of U is negative, it adds D to U . Otherwise, it subtracts D from U . If the addition
or subtraction has resulted in a value that is greater than or equal to zero, the non-restoring
algorithm sets the appropriate quotient bit to 1, else it sets it to 0.

Finally, at the end V contains the entire quotient. If U is negative, then we need to add
the divisor (D) to U . U will contain the remainder.

Proof of Correctness*

Like the restoring algorithm, let us assume that when we refer to the value of UV , we assume
that all the quotient bits are equal to 0. As long as U remains positive or 0, the state of U and
V is equal to that produced by the restoring algorithm. Let us assume that in the jth iteration,
U becomes negative for the first time. Let us consider the value represented by the register
UV just after it is shifted to the left by 1 position, and call it UVj (j stands for the iteration
number).

At the end of the jth iteration, UV = UVj − D′, where D′ = D × 2n. We shift D by n
places to the left because we always add or subtract D from U , which is the upper half of UV .
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According to our assumption UVj is negative. In this case the restoring algorithm would not
have subtracted D′, and it would have written 0 to the quotient. The non-restoring algorithm
sets the quotient bit correctly since it finds UV to be negative (Line 15). Let us now move to
the (j + 1)th iteration.

UVj+1 = 2UVj − 2D′. At the end of the (j + 1)th iteration, UV = 2UVj − 2D′ + D′ =
2UVj −D′. If UV is not negative, then the non-restoring algorithm will save 1 in the quotient.
Let us now see at this point what the restoring algorithm would have done (assuming UV
is non-negative). In the (j + 1)th iteration, the restoring algorithm would have started the
iteration with UV = UVj . It would have then performed a shift and subtracted D′ to set
UV = 2UVj −D′, and written 1 to the quotient. We thus observe that at this point the state
of the registers U and V matches exactly for both the algorithms.

However, if UV is negative then the restoring and non-restoring algorithms will have a
different state. Nonetheless the quotient bits will be set correctly. UVj+2 = 4UVj − 2D′. Since
a negative number multiplied by 2 (left shifted by 1 position) is still negative, the non-restoring
algorithm will add D′ to U . Hence, the value of UV at the end of the (j + 2)th iteration will
be 4UVj −D′. If this is non-negative, then the restoring algorithm would also have exactly the
same state at this point.

We can continue this argument to observe that the quotient bits are always set correctly
and the state of U and V exactly matches that of the restoring algorithm when UV ≥ 0 at
the end of an iteration. Consequently, for dividing the same pair of numbers the states of the
restoring and non-restoring algorithms will start as the same, then diverge and converge several
times. If the last iteration leads to a non-negative UV then the algorithm is correct because
the state exactly matches that produced by the restoring algorithm.

However, if the last iteration leaves us with UV as negative, then we observe that UV
= 2n−kUVk−D′, where k is the iteration number at which the states had converged for the last
time. If we add D′ to UV , then the states of both the algorithms match, and thus the results
are correct (achieved in Line 20).

Important Point 11
Let us now try to prove that the non-restoring algorithm does not suffer from overflows while
performing a left shift, and adding or subtracting the divisor. Similar to the proof for the
restoring algorithm, let us first prove that just before the shift operation, |U | < D. For the
base case, (U = 0), the proposition holds. Let us consider the nth iteration, and let the value
of U just before the shift operation be Û . Let us first assume that Û ≥ 0. In this case, we
can use the same logic as the restoring algorithm, and prove that |U | < D at the beginning
of the (n + 1)th iteration. Let us now assume that Û < 0. From the induction hypothesis,
|Û | < D ⇒ Û ≥ −(D−1). Now, if we shift Û by 1 position, and shift in a 0 or 1, we compute
U ≥ 2Û (for Û < 0, shifting in a 1 reduces the absolute value). After the shift operation,
we add D to U . We thus have, U = U +D ≥ 2Û +D ≥ 2× (1−D) +D = 2−D. Thus, in
this case also |U | < D, just before the shift, and after the shift we have |U | ≤ 2D − 1. We
thus need to allocate an extra bit to register U to correctly store all the possible intermediate
values of U . Hence, the U register is 33 bits wide. We are thus guaranteed to not have
overflows during the operation of the non-restoring algorithm.
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Example 101
Divide two 4-bit numbers: 7 (0111) / 3(0011) using non-restoring division. Answer:

00000 111Xafter shift:

end of 
iteration:

11101 11101

00000 0111beginning:
U V

11011 110Xafter shift:

end of 
iteration:

11110 11002

11101 100Xafter shift:

end of 
iteration:

00000 10013

00001 001Xafter shift:

end of 
iteration:

11110 00104

Divisor (D) 0011

Dividend (N) 00111

Remainder(R) 0001

Quotient(Q) 0010

0001 0010end (U=U+D):
U V

7.4 Floating Point Addition and Subtraction

The problems of floating point addition and subtraction are actually different faces of the same
problem. A−B can be interpreted in two ways. We can say that we are subtracting B from A,
or we can say that we are adding −B to A. Hence, instead of looking at subtraction separately,
let us look at it as a special case of addition. We shall first look at the problem of adding two
numbers with the same sign in Section 7.4.1, with opposite signs in Section 7.4.4 and then look
at the generic problem of adding two numbers in Section 7.4.5.

Before going further, let us quickly recapitulate our knowledge of floating point numbers
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(see Table 7.5).

Normalised form of a 32-bit (normal) floating point number.

A = (−1)S × P × 2E−bias, (1 ≤ P < 2, E ∈ Z, 1 ≤ E ≤ 254)
(7.22)

Normalised form of a 32-bit (denormal) floating point number.

A = (−1)S × P × 2−126, (0 ≤ P < 1) (7.23)

Symbol Meaning

S Sign bit (0(+ve), 1(-ve))

P Significand (form: 1.xxx(normal) or 0.xxx(denormal))

M Mantissa (fractional part of significand)

E (exponent + 127(bias))

Z Set of integers

Table 7.5: IEEE 754 format

7.4.1 Simple Addition with Same Signs

The problem is to add two floating point numbers A and B with the same sign. We want
to compute a new floating point number C = A + B. In this case, the sign of the result is
known in advance (sign of A or B). All of our subsequent discussion assumes the IEEE 32-bit
format. However, the techniques that we develop can be extended to other formats, especially
double-precision arithmetic.

First, the floating point unit needs to unpack different fields from the floating point rep-
resentations of A and B. Let the E fields (exponent + bias) be EA and EB for A and B
respectively. Let the E field of the result, C, be EC . In hardware, let us use a register called
E to save the exponent (in the bias notation). The final value of E needs to be equal to EC .

Unpacking the significand is slightly more elaborate. We shall represent the significands
as unsigned integers and ignore the decimal point. Moreover, we shall add a leading most
significant bit that can act as the sign bit. It is initially 0. For example, if a floating point
number is of the form: 1.0111 × 210, the significand is 1.0111, and we shall represent it as
010111. Note that we have added a leading 0 bit. Figure 7.16 shows an example of how the
significand is unpacked, and placed in a register for a normal floating point number. In the
32-bit IEEE 754 format, there are 23 bits for the mantissa, and there is either a 0 or 1 before
the decimal point. The significand thus requires 24 bits, and if we wish to add a leading sign
bit(0), then we need 25 bits of storage. Let us save this number in a register, and call it W .

Let us start out by observing that we cannot add A and B the way we have added integers,
because the exponents might be different. The first task is to ensure that both the exponents
are the same. Without no loss of generality, let us assume that EA ≥ EB. This can be effected
with a simple compare and swap in hardware. We can thus initialise the register E to EA.

Let the significands of A and B be PA and PB respectively. Let us initially set W equal to
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S E Mantissa

123243132

01

W

Number in IEEE 754 format

Figure 7.16: Expanding the significand and placing it in a register

the significand of B(PB) with a leading 0 bit as shown in Figure 7.16.

To make the exponent of A and B equal, we need to right shift W by (EA−EB) positions.
Now, we can proceed to add the significand of A termed as PA to W .

W = W >> (EA − EB) (7.24)

W = W + PA (7.25)

Let the significand represented by W be PW . There is a possibility that PW might be
greater than or equal to 2. In this case, the significand of the result is not in normalised form.
We will thus need to right shift W by 1 position and increment E by 1. This process is called
normalisation. There is a possibility that incrementing E by 1 might make it equal to 255,
which is not allowed. We can signal an overflow in this case. The final result can be obtained
by constructing a floating point number out of the E, W , and the sign of the result (sign of
either A or B).

Example 102
Add the numbers: 1.012 × 23 + 1.112 × 21. Assume that the bias is 0.
Answer:

1. A = 1.01× 23 and B = 1.11× 21

2. W = 01.11 (significand of B)

3. E = 3

4. W = 01.11 >> (3-1) = 00.0111

5. W + PA = 00.0111 + 01.0100 = 01.1011

6. Result: C = 1.1011× 23
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Example 103
Add 1.01× 23 + 1.11× 22. Assume that the bias is 0.
Answer:

1. A = 1.01× 23 and B = 1.11× 22

2. W = 01.11 (significand of B)

3. E = 3

4. W = 01.11 >> (3-2) = 00.111

5. W + PA = 00.111 + 01.010 = 10.001

6. Normalisation: W = 10.001 >> 1 = 1.0001, E = 4

7. Result: C = 1.0001× 24

7.4.2 Rounding

In Example 103, let us assume that we were allowed only two mantissa bits. Then, there would
have been a need to discard all the mantissa bits other than the two most significant ones. The
result would have been 1.00. To incorporate the effect of the discarded bits, it might have been
necessary to round the result. For example, let us consider decimal numbers. If we wish to
round 9.99 to the nearest integer, then we should round it to 10. Similarly, if we wish to round
9.05 to the nearest integer, then we should round it to 9. Likewise, it is necessary to introduce
rounding schemes while doing floating point operations such that the final result can properly
reflect the value contained in the discarded bits.

Let us first introduce some terminology. Let us consider the sum of the significands after
we have normalised the result. Let us divide the sum into two parts: (P̂ + R) × 2−23(R < 1).
Here, P̂ is the significand of the temporary result in W multiplied by 223. It is an integer and
it might need to be further rounded. R is a residue (beyond 23 bits) that will be discarded. It
is less than 1. The aim is to modify P̂ appropriately to take into account the value of R. Now,
there are two ways in which P̂ can be modified because of rounding. Either we can leave P̂
as it is, or we can increment P̂ by 1. Leaving P̂ as it is is also known as truncation. This is
because we are truncating or discarding the residue.

The IEEE 754 format supports four rounding modes as shown in Table 7.6. An empty
entry corresponds to truncating the result. We only show the conditions in which we need to
increment P̂ .

We give examples in decimal (base 10) in the next few subsections for the ease of under-
standing. Exactly the same operations can be performed on binary numbers. Our aim is to
round P̂ +R to an integer. There are four possible ways of doing this in the IEEE 754 format.
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Rounding Mode Condition for incrementing the significand
Sign of the result (+ve) Sign of the result (-ve)

Truncation
Round to +∞ R > 0
Round to −∞ R > 0

Round to Nearest (R > 0.5)||(R = 0.5 ∧ LSB(P̂ ) = 1) (R > 0.5)||(R = 0.5 ∧ LSB(P̂ ) = 1)

P̂ (significand of the temporary result multiplied by 223), ∧ (logical AND), R (residue)

Table 7.6: IEEE 754 rounding modes

Truncation

This is the simplest rounding mode. This rounding mode simply truncates the residue. For
example, in truncation based rounding, if P̂ +R = 1.5, then we will discard 0.5, and we are left
with 1. Likewise, truncating -1.5 will give us -1. This is the easiest to implement in hardware,
and is the least accurate out of the four methods.

Round to +∞

In this rounding mode, we always round a number to the larger integer. For example, if
P̂ +R = 1.2, we round it to 2. If P̂ +R = −1.2, we round it to -1. The idea here is to check the
sign bit and the residue. If the number is positive, and the residue is non-zero, then we need
to increment P̂ , or alternatively the LSB of the significand. Otherwise, in all the other cases
(either R = 0 or the number is negative), it is sufficient to truncate the residue.

Round to −∞

This is the reverse of rounding to +∞. In this case, we round 1.2 to 1, and -1.2 to -2.

Round to Nearest

This rounding mode is the most complicated, and is also the most common. Most processors
use this rounding mode as the default. In this case, we try to minimise the error by rounding
P̂ to the nearest possible value. If R > 0.5, then the nearest integer is P̂ + 1. For example,
we need to round 3.6 to 4, and -3.6 to -4. Similarly, if R < 0.5, then we need to truncate the
residue. For example, we need to round 3.2 to 3, and -3.2 to -3.

The special case arises when R = 0.5. In this case, we would like to round P̂ to the nearest
even integer. For example, we will round 3.5 to 4, and 4.5 to also 4. This is more of a convention
than a profound mathematical concept. To translate this requirement in our terms, we need
to take a look at the LSB of P̂ . If it is 0, then P̂ is even, and we do not need to do anything
more. However, if LSB(P̂ ) = 1, then P̂ is odd, and we need to increment it by 1.

7.4.3 Implementing Rounding

From our discussion on rounding, it is clear that we need to maintain some state regarding the
discarded bits and P̂ such that we can make the proper rounding decision. In specific, we need
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four pieces of information – LSB(P̂ ), is R = 0.5, is R > 0, and is R > 0.5. The last three
requirements can be captured with two bits – round and sticky.

The round bit is the MSB of the residue, R. The sticky bit is a logical OR of the rest of
the bits of the residue. We can thus express the different conditions on the residue as shown in
Table 7.7.

Condition on Residue Implementation

R > 0 r ∨ s = 1

R = 0.5 r ∧ s = 1

R > 0.5 r ∧ s = 1

r (round bit), s(sticky bit)

Table 7.7: Evaluating properties of the residue using round and sticky bits

Implementing rounding is thus as simple as maintaining the round bit, and sticky bit, and
then using Table 7.6 to round the result. Maintaining the round and sticky bits requires us
to simply update them on every single action of the algorithm. We can initialise these bits to
0. They need to be updated when B is shifted to the right. Then, they need to be further
updated when we normalise the result. Now, it is possible that after rounding, the result is
not in normalised form. For example, if P̂ contains all 1s, then incrementing it will produce 1
followed by 23 0s, which is not in the normalised form.

Renormalisation after Rounding

In case, the process of rounding brings the result to a state that is not in the normalised form,
then we need to re-normalise the result. Note that in this case, we need to increment the
exponent by 1, and set the mantissa to all 0s. Incrementing the exponent can make it invalid
(if E = 255). We need to explicitly check for this case.

7.4.4 Addition of Numbers with Opposite Signs

Now let us look at the problem of adding two floating point numbers, A and B, to produce C.
They have opposite signs. Again let us make the assumption that EA ≥ EB.

The first step is to load the register W with the significand of B(PB) along with a leading 0.
Since the signs are different, in effect we are subtracting the significand of B (shifted by some
places) from the significand of A. Hence, we can take the 2’s complement of W that contains
PB with a leading 0 bit, and then shift it to the right by EA−EB places. This value is written
back to the register W . Note that the shift needs to be an arithmetic right shift here such
that the value is preserved. Secondly, the order of operations (shift and 2’s complement) is not
important.

We can now add the significand of A (PA) to W . If the resulting value is negative, then we
need to take its 2’s complement, and set the sign of the result accordingly.

Next, we need to normalise the result. It is possible that PW < 1. In this case, we need to
shift W to the left till 1 ≤ PW < 2. Most implementations of the floating point standard, use
an extra bit called the guard bit. along with the round and sticky bits. They set the MSB of
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the residue to the guard bit, the next bit to the round bit, and the OR of the rest of the bits
to the sticky bits. During the process of shifting a number left, they shift in the guard bit first,
and then shift in 0s. At the end of the algorithm, it is necessary to set the round bit equal
to the guard bit, and OR the sticky bit with the round bit such that our original semantics is
maintained. This added complexity is to optimise for the case of a left shift by 1 position. If
we did not have the guard bit, then we needed to shift the round bit into W , and we would
thus lose the round bit forever.

Once W is normalised and the exponent(E) is updated, we need to round the result as per
Table 7.6. This process might lead to another round of normalisation.

7.4.5 Generic Algorithm for Adding Floating Point Numbers

Note that we have not considered special values such as 0 in our analysis. The flowchart
in Figure 7.17 shows the algorithm for adding two floating point numbers. This algorithm
considers 0 values also.

A=0? C=B

B=0? C=A

Y

Y

N

sign(A) = sign(B)?

Swap A and B
such that E <EAB

W P >> (E  -  E  )A B

Y

N

W W + P

W -W (2's complement)

Normalise W and 
   update E

Round W

B

A

E EA , S sign(A)

N

W < 0?

W -W (2's complement)

S = S

Y

N

 

Normalise W and 
   update E

Overflow or 
underflow? 

Overflow or 
underflow? 

N

N

Report

Y

Report
Y

Construct C out
of W, E, and S

C

C = A + B

Figure 7.17: Flowchart for adding two floating point values

7.5 Multiplication of Floating Point Numbers

The algorithm for multiplying floating point numbers is of exactly the same form as the algo-
rithm for generic addition without a few steps. Let us again try to multiply A × B to obtain
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A=0? C=0

B=0? C=0

Y

Y

N Normalise W and 
   update E

Round W
E E    +  E   - biasA 

sign(A)      sign(B)

N

 
Normalise W and 
   update E

Overflow or 
underflow? 

Overflow or 
underflow? 

N

N

Report

Y

Construct C out
of W, E, and S

C

C = A * B

S

 

B

Overflow or 
underflow? 

Report

Y

P  
 
AW P  

 
B*

N

Report

Y

Figure 7.18: Flowchart for multiplying two floating point values

the product C. Again, let us assume without loss of generality that EA ≥ EB.

The flowchart for multiplication is shown in Figure 7.18. We do not have to align the
exponents in the case of multiplication. We initialise the algorithm as follows. We load the
significand of B into register W . In this case, the width of W is equal to double the size
of the operands such that the product can be accommodated. The E register is initialised to
EA+EB−bias. This is because in the case of multiplication, the exponents are added together.
We subtract the bias to avoid double counting. Computing the sign of the result is trivial.

After initialisation, we multiply the significand of A with W and save the product in W .
The product contains 46 bits after the floating point. We might need to discard some of the bits
to ensure that the final mantissa is 23 bits long. Hence, it might be necessary to normalise the
result by shifting it to the right (normal numbers), or shifting it to the left (denormal numbers).

As with the case of addition, we can then proceed to round the result to contain 23 bits in
the mantissa, and renormalise if necessary. Since there are a constant number of add operations,
the time complexity is equal to the sum of the time complexity of normal multiplication and
addition. Both of them are O(log(n)) operations. The total time taken is thus O(log(n)).
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7.6 Division of Floating Point Numbers

7.6.1 Simple Division

The major difference between integer and floating point division is that floating point division
does not have a remainder. It only has a quotient. Let us try to divide A by B to obtain C.

We initialise the algorithm by setting the W register to contain the significand(PA) of A.
The E register is initialised as EA − EB + bias. This is done because in division, we subtract
the exponents. Hence, in their biased representation we need to subtract EB from EA, and we
need to add the value of the bias back. Computing the sign of the result is also trivial in this
case.

We start out by dividing PA by PB. The rest of the steps are the same as that of multipli-
cation (see Section 7.5). We normalise the result, round it, and then renormalise if necessary.

The time complexity of this operation is the same as the time complexity of the restoring
or non-restoring algorithms. It is equal to O(nlog(n)). It turns out that for the case of floating
point division, we can do much better.

7.6.2 Goldschmidt Division

Let us try to simplify the process of division by dividing it into two stages. In the first stage,
we compute the reciprocal of the divisor (1/B). In the next stage, we multiply the obtained
reciprocal with the dividend A. The product is equal to A/B. Floating point multiplication is
an O(log(n)) time operation. Hence, let us focus on trying to compute the reciprocal of B.

Let us also ignore exponents in our discussion because, we just need to flip the sign of the
exponent in the reciprocal. Let us only focus on the significand, PB, and to keep matters simple,
let us further assume that B is a normal floating point number. Thus, 1 ≤ PB < 2. We can
represent PB = 1 +X(X < 1). We have:

1

PB
=

1

1 +X
(PB = 1 +X,X < 1)

=
1

1 + 1−X ′
(X ′ = 1−X,X ′ < 1)

=
1

2−X ′

=
1

2
× 1

1−X ′/2

=
1

2
× 1

1− Y
(Y = X ′/2, Y < 1/2)

(7.26)

Let us thus focus on evaluating 1/(1− Y ). We have:
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1

1− Y
=

1 + Y

1− Y 2

=
(1 + Y )(1 + Y 2)

1− Y 4

= . . .

=
(1 + Y )(1 + Y 2) . . . (1 + Y 16)

1− Y 32

≈ (1 + Y )(1 + Y 2) . . . (1 + Y 16)

(7.27)

We need not proceed anymore. The reason for this is as follows. Since Y < 1/2, Y n

is less than 1/2n. The smallest mantissa that we can represent in the IEEE 32-bit floating
point notation is 1/223. Hence, there is no point in having terms that have an exponent
greater than 23. Given the approximate nature of floating point mathematics, the product
(1 + Y )(1 + Y 2) . . . (1 + Y 16) is as close to the real value of 1/(1− Y ) as we can get.

Let us now consider the value – (1 + Y )(1 + Y 2) . . . (1 + Y 16). It has 5 add operations that
can be done in parallel. To obtain Y . . . Y 16, we can repeatedly multiply each term with itself.
For example, to get Y 8, we can multiply Y 4 with Y 4 and so on. Thus, generating the powers
of Y takes 4 multiply operations. Lastly, we need to multiply the terms in brackets – (1 + Y ),
(1 +Y 2),(1 +Y 4),(1 +Y 8), and (1 +Y 16). This will required 4 multiplications. We thus require
a total of 8 multiplications and 5 additions.

Let us now compute the time complexity. For an n-bit floating point number, let us assume
that a fixed fraction of bits represent the mantissa. Thus, the number of bits required to
represent the mantissa is O(n). Consequently, the number of terms of the form (1 + Y 2k)
that we need to consider is O(log(n)). The total number of additions, and multiplications for
finding the reciprocal is also O(log(n)). Since each addition or multiplication takes O(log(n))
time, the time complexity of finding the reciprocal of B is equal to O(log(n)2). Since the rest
of the operations such as adjusting the exponents and multiplying the reciprocal with A take
O(log(n)) time, the total complexity is equal to O(log(n)2).

We observe that floating point division is asymptotically much faster than normal integer
division. This is primarily because floating point mathematics is approximate, whereas integer
mathematics is exact.

7.6.3 Division Using the Newton-Raphson Method

We detail another algorithm that also takes O(log(n)2) time. We assume that we are trying to
divide A by B. Let us only consider normal numbers. Akin to Goldschmidt division, the key
point of the algorithm is to find the reciprocal of the significand of B. Adjusting the exponents,
computing the sign bit, and multiplying the reciprocal with A are fast operations (O(log(n)).

For readability, let us designate PB as b (1 ≤ b < 2). We wish to compute 1/b. Let us
create a function: f(x) = 1/x − b. f(x) = 0 when x = 1/b. The problem of computing the
reciprocal of b is thus the same as computing the root of f(x). Let us use the Newton Raphson
method [Kreyszig, 2000].

The gist of this method is shown in Figure 7.19. We start with an arbitrary value of x
such as x0. We then locate the point on f(x) that has x0 as its x co-ordinate and then draw
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x0

x0 f(x )0,

x1

x1 f(x )1,

x2

root

x

f(x)

Figure 7.19: The Newton-Raphson method

a tangent to f(x) at (x0, f(x0)). Let the tangent intersect the x axis at x1. We again follow
the same procedure, and draw another tangent at (x1, f(x1)). This tangent will intersect the x
axis at x2. We continue this process. As we can observe in the figure, we gradually get closer
to the root of f(x). We can terminate after a finite number of steps with an arbitrarily small
error. Let us analyse this procedure mathematically.

The derivative of f(x) at x0 is df(x)/dx = −1/x20. Let the equation of the tangent be
y = mx+ c. The slope is equal to −1/x20. The equation is thus: y = −x/x20 + c. Now, we know
that at x0, the value of y is 1/x0 − b. We thus have:

1

x0
− b = −x0

x20
+ c

⇒ 1

x0
− b = − 1

x0
+ c

⇒c =
2

x0
− b

(7.28)

The equation of the tangent is y = −x/x20 + 2/x0 − b. This line intersects the x axis when
y = 0, and x = x1. We thus have:

0 = −x1
x20

+
2

x0
− b

⇒x1 = 2x0 − bx20
(7.29)

Let us now define an error function of the form: E(x) = bx− 1. Note that E(x) is 0, when
x is equal to 1/b. Let us compute the error: E(x0) and E(x1).
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E(x0) = bx0 − 1 (7.30)

E(x1) = bx1 − 1

= b
(
2x0 − bx20

)
− 1

= 2bx0 − b2x20 − 1

= −(bx0 − 1)2

= −E(x0)
2

| E(x1) | =| E(x0) |2

(7.31)

Thus, the error gets squared every iteration, and if the starting value of the error is less
than 1, then it will ultimately get arbitrarily close to 0. If we can place bounds on the error,
then we can compute the number of iterations required.

We start out by observing that 1 ≤ b < 2 since we only consider normal floating point
numbers. Let x0 be 1/2. The range of bx0 − 1 is thus [−1/2, 0]. We can thus bound the
error(E(x0)) as −1/2 ≤ E(x0) < 0. Therefore, we can say that | E(x0) |≤ 1/2. Let us now take
a look at the maximum value of the error as a function of the iteration in Table 7.8.

Iteration max(E(x))

0 1
2

1 1
22

2 1
24

3 1
28

4 1
216

5 1
232

Table 7.8: Maximum error vs iteration count

Since we only have 23 mantissa bits, we need not go beyond the fifth iteration. Thus, in
this case also, the number of iterations is small, and bounded by a small constant. In every
step we have a multiply and subtract operation. These are O(log(n)) time operations.

Let us compute the time complexity for n bit floating point numbers. Here, also we assume
that a fixed fraction of bits are used to represent the mantissa. Like the case of Goldschmidt
division, we need O(log(n)) iterations, and each iteration takes O(log(n)) time. Thus, the total
complexity is O(log(n)2).

7.7 Summary and Further Reading

7.7.1 Summary
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Summary 7

1. Adding two 1 bit numbers (a and b) produces a sum bit(s) and a carry bit(c)

(a) s = a⊕ b
(b) c = a.b

(c) We can add them using a circuit called a half adder.

2. Adding three 1 bit numbers (a, b, and cin) also produces a sum bit(s) and a carry
bit(cout)

(a) s = a⊕ b⊕ cin
(b) cout = a.b+ a.cin + b.cin

(c) We can add them using a circuit called a full adder.

(d)

3. We can create a n bit adder known as a ripple carry adder by chaining together n− 1
full adders, and a half adder.

4. We typically use the notion of asymptotic time complexity to express the time taken
by an arithmetic unit such as an adder.

(a) f(n) = O(g(n)) if |f(n)| ≤ c|g(n)| for all n > n0, where c is a positive constant.

(b) For example, if the time taken by an adder is given by f(n) = 2n3 + 1000n2 +n,
we can say that f(n) = O(n3)

5. We discussed the following types of adders along with their time complexities:

(a) Ripple carry adder – O(n)

(b) Carry select adder – O(
√
n)

(c) Carry lookahead adder – O(log(n))

6. Multiplication can be done iteratively in O(n log(n)) time using an iterative multiplier.
The algorithm is similar to the one we learned in elementary school.

7. We can speed it up by using a Booth multiplier that takes advantage of a continuous
run of 1s in the multiplier.

8. The Wallace tree multiplier runs in O(log(n)) time. It uses a tree of carry save adders
that express a sum of three numbers, as a sum of two numbers.

9. We introduced two algorithms for division:

(a) Restoring algorithm
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(b) Non-restoring algorithm

10. Floating point addition and subtraction need not be considered separately. We can
have one algorithm that takes care of the generic case.

11. Floating point addition requires us to perform the following steps:

(a) Align the significand of the smaller number with the significand of the larger
number.

(b) If the signs are different then take a 2’s complement of the smaller significand.

(c) Add the significands.

(d) Compute the sign bit of the result.

(e) Normalise and round the result using one of four rounding modes.

(f) Renormalise the result again if required.

12. We can follow the same steps for floating point multiplication and division. The only
difference is that in this case the exponents get added or subtracted respectively.

13. Floating point division is fundamentally a faster operation than integer division be-
cause of the approximate nature of floating point mathematics. The basic operation is
to compute the reciprocal of the denominator. It can be done in two ways:

(a) Use the Newton-Raphson method to find the root of the equation f(x) = 1/x− b.
The solution is the reciprocal of b.

(b) Repeatedly multiply the numerator and denominator of a fraction derived from
1/b such that the denominator becomes 1 and the reciprocal is the numerator.

7.7.2 Further Reading

For more details on the different algorithms for computer arithmetic, the reader can refer to
classic texts such as the books by Israel Koren [Koren, 2001], Behrooz Parhami [Parhami,
2009], and Brent and Zimmermann [Brent and Zimmermann, 2010]. We have not covered
the SRT division algorithm. It is used in a lot of modern processors. The reader can find
good descriptions of this algorithm in the references. The reader is also advised to look at
algorithms for multiplying large integers. The Karatsuba and Scönhage-Strassen algorithms
are the most popular algorithms in this area. The area of approximate adders is gaining in
prominence. These adders add two numbers by assuming certain properties such as a bound on
the maximum number of positions a carry propagates. It is possible that they can occasionally
make a mistake. Hence, they have additional circuitry to detect and correct errors. With high
probability such adders can operate in O(log(log(n)) time. Verma et. al. [Verma et al., 2008]
describe one such scheme.
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Exercises

Addition
Ex. 1 — Design a circuit to find the 1’s complement of a number using half adders only.

Ex. 2 — Design a circuit to find the 2’s complement of a number using half adders and logic
gates.

Ex. 3 — Assume that the latency of a full adder is 2ns, and that of a half adder is 1ns. What
is the latency of a 32-bit ripple carry adder?

* Ex. 4 — Design a carry-select adder to add two n-bit numbers in O(
√
n) time, where the

sizes of the blocks are 1, 2, ...,m respectively.

Ex. 5 — Explain the operation of a carry lookahead adder.

* Ex. 6 — Suppose there is an architecture which supports numbers in base 3 instead of base
2. Design a Carry Lookahead Adder for this system. Assume that you have a simple full-adder
which adds numbers in base 3.

* Ex. 7 — Most of the time, a carry does not propagate till the end. In such cases, the correct
output is available much before the worst case delay. Modify a ripple carry adder to consider
such cases and set an output line to high as soon as the correct output is available.

* Ex. 8 — Design a fast adder, which uses only the propagate function, and simple logic
operations. It should NOT use the generate function. What is its time and space complexity?

Ex. 9 — Design a hardware structure to compute the sum of m, n bit numbers. Make it run
as fast as possible. Show the design of the structure. Compute a tight bound on its asymptotic
time complexity. [NOTE: Computing the time complexity is not as simple as it seems].

** Ex. 10 — You are given a probabilistic adder, which adds two numbers and yields the
output ensuring that each bit is correct with probability, a. In other words, a bit in the output
may be wrong with probability, (1 − a), and this event is independent of other bits being
incorrect. How will you add two numbers using probabilistic adders ensuring that each output
bit is correct with at least a probability of b, where b > a?

*** Ex. 11 — How frequently does the carry propagate to the end for most numbers? An-
swer: Very infrequently. In most cases, the carry does not propagate beyond a couple of bits.
Let us design an approximately correct adder. The insight is that a carry does not propagate
by more than k positions most of the time. Formally, we have:
Assumption 1: While adding two numbers, the largest length of a chain of propagates is at
most k.

Design an optimal adder in this case that has time complexity O(log k) assuming that Assump-
tion 1 holds all the time. Now design a circuit to check if assumption 1 has ever been violated.
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Verma et. al. [Verma et al., 2008] proved that k is equal to O(log(n)) with very high probability.
Voila, we have an exactly correct adder, which runs most of the time in O(log(log(n))) time.!!!

*** Ex. 12 — Let us consider two n-bit binary numbers, A, and B. Further assume that the
probability of a bit being equal to 1 is p in A, and q in B. Let us consider (A+B) as one large
chunk(block).
(a) What are the expected values of generate and propagate functions of this block as n tends
to ∞?
(b) If p = q = 1

2 , what are the values of these functions?
(c) What can we infer from the answer to part (b) regarding the fundamental limits of binary
addition?

Multiplication

Ex. 13 — Write a program in assembly language (any variant) to multiply two unsigned
32-bit numbers given in registers r0 and r1 and store the product in registers r2 (LSB) and
r3 (MSB). Instead of using the multiply instruction, simulate the algorithm of the iterative
multiplier.

Ex. 14 — Extend the solution to Exercise 13 for 32-bit signed integers.

* Ex. 15 — Normally, in the Booth’s algorithm, we consider the current bit, and the previous
bit. Based on these two values, we decide whether we need to add or subtract a shifted version
of the multiplicand. This is known as the radix-2 Booth’s algorithm, because we are considering
two bits at one time. There is a variation of Booth’s algorithm, called radix-4 Booth’s algorithm
in which we consider 3 bits at a time. Is this algorithm faster than the original radix-2 Booth’s
algorithm? How will you implement this algorithm ?

* Ex. 16 — Assume that in the sizes of the U and V registers are 32 bits in a 32-bit Booth
multiplier. Is it possible to have an overflow? Answer the question with an example. [HINT:
Can we have an overflow in the first iteration itself?]

* Ex. 17 — Prove the correctness of the Booth multiplier in your own words.

Ex. 18 — Explain the design of the Wallace tree multiplier. What is its asymptotic time
complexity?

** Ex. 19 — Design a Wallace tree multiplier to multiply two signed 32-bit numbers, and
save the result in a 32-bit register. How do we detect overflows in this case?

Division

Ex. 20 — Implementation of division using an assembly program.

i) Write an assembly program for restoring division.

ii) Write an assembly program for non-restoring division.
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* Ex. 21 — Design an O(log(n)k) time algorithm to find out if a number is divisible by 3.
Try to minimise k.

* Ex. 22 — Design an O(log(n)k) time algorithm to find out if a number is divisible by 5.
Try to minimise k.

** Ex. 23 — Design a fast algorithm to compute the remainder of the division of an unsigned
number by a number of the form (2m + 1). What is its asymptotic time complexity?

** Ex. 24 — Design a fast algorithm to compute the remainder of the division of an unsigned
number by a number of the form (2m − 1). What is its asymptotic time complexity?

** Ex. 25 — Design an O(log(uv)2) algorithm to find the greatest common divisor of two
binary numbers u and v. [HINT: The gcd of two even numbers u and v is 2 ∗ gcd(u/2, v/2)]

Floating Point Arithmetic

Ex. 26 — Give the simplest possible algorithm to compare two 32-bit IEEE 754 floating point
numbers. Do not consider ±∞, NAN, and (negative 0). Prove that your algorithm is correct.
What is its time complexity ?

Ex. 27 — Design a circuit to compute dlog2(n)e. What is its asymptotic time complexity?
Assume n is an integer. How can we use this circuit to convert n to a floating point number?

Ex. 28 — A and B, are saved in the computer as A′ and B′. Neglecting any further truncation
or roundoff errors, show that the relative error of the product is approximately the sum of the
relative errors of the factors.

Ex. 29 — Explain floating point addition with a flowchart.

Ex. 30 — Explain floating point multiplication with a flowchart.

Ex. 31 — Can we use regular floating point division for dividing integers also? If not, then
how can we modify the algorithm for performing integer division?

Ex. 32 — Describe in detail how the “round to nearest” rounding mode is implemented.

*** Ex. 33 — We wish to compute the square root of a floating point number in hardware
using the Newton-Raphson method. Outline the details of an algorithm, prove it, and compute
its computational complexity. Follow the following sequence of steps.

1.Find an appropriate objective function.

2.Find the equation of the tangent, and the point at which it intersects the x-axis.

3.Find an error function.

4.Calculate an appropriate initial guess for x.

5.Prove that the magnitude of the error is less than 1.

6.Prove that the error decreases at least by a constant factor per iteration.
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7.Evaluate the asymptotic complexity of the algorithm.

Design Problems

Ex. 34 — Implement an adder and a multiplier in a hardware description language such as
VHDL or Verilog.

Ex. 35 — Extend your design for implementing floating point addition and multiplication.

Ex. 36 — Read about the SRT division algorithm, comment on its computational complexity,
and try to implement it in VHDL/Verilog.


