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Variability in social app usage across regions results in a high skew of the quantity and the quality of check-in
data collected, which in turn is a challenge for effective location recommender systems. In this paper, we
present Axolotl (Automated cross Location-network Transfer Learning), a novel method aimed at transferring
location preference models learned in a data-rich region to significantly boost the quality of recommendations
in a data-scarce region. Axolotl predominantly deploys two channels for information transfer, (1) a meta-
learning based procedure learned using location recommendation as well as social predictions, and (2) a
lightweight unsupervised cluster-based transfer across users and locations with similar preferences. Both of
these work together synergistically to achieve improved accuracy of recommendations in data-scarce regions
without any prerequisite of overlapping users and with minimal fine-tuning. We build Axolotl on top of a
twin graph-attention neural network model used for capturing the user- and location-conditioned influences in
a user-mobility graph for each region. We conduct extensive experiments on 12 user mobility datasets across
the U.S., Japan, and Germany, using 3 as source regions and 9 of them (that have much sparsely recorded
mobility data) as target regions. Empirically, we show that Axolotl achieves up to 18% better recommendation
performance than the existing state-of-the-art methods across all metrics.
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1 INTRODUCTION

As POI (Points-of-Interest) gathering services such as Foursquare, Yelp, and Google Places are
becoming widespread, there is significant research in extracting location preferences of users to
predict their mobility behavior and recommend next POIs that users are likely to visit [9, 17, 38, 41,
45, 51]. However, the quality of POI recommendations for users in regions where there is a severe
scarcity of mobility data is much poorer in comparison with those from data-rich regions. This
is a critical problem affecting the state-of-the-art approaches [27, 60, 69]. The situation is further
exacerbated in the recent times due to the advent of various restrictions for collecting personal data
and growing awareness (in some geopolitical regions) about the need for personal privacy [3, 63].
It not only means that there is overall reduction in the high quality (useful) data1, but, even more
1Nearly 80% of the data generated by Foursquare users is discarded [20].
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Fig. 1. Skew in the volume of mobility data across different states in the US (Figure 1a) and the large

variation in region-specific density of mobility data between California and Washington in Figures 1b and 1c

respectively (based on Gowalla dataset [54]).

importantly, it introduces a high-skew in the mobility data across different regions (see Figure 1) –
primarily due to varying views towards personal privacy across these regions.
Therefore, current state-of-the-art methods struggle in low-data regions and the approaches that
attempt to incorporate data from external sources suffer from the following limitations:
• limited to cold-start users from within a city [39, 50, 64],
• focused only on using traffic network ignoring the use of social network of users and location
dynamics [51, 60, 69],
• generate trajectories using amodel learned on traffic-network images of source region [16, 27],
thus vulnerable to recaliberation,
• operating only for users who are common across locations [14, 37], or
• adopting a limited level of transfer through domain-invariant features [32] –like the spending
capacity or the users’ age, thus constrained by the feature unavailability in public datasets.

Unfortunately, none of these approaches, especially those based on visual-data (i.e., traffic and
location images), can be easily re-calibrated for a target POI network due to the varied spatial
density, location category and lack of user-specific features in public POI datasets.

1.1 Contributions

In this paper, we presentAxolotl(Automated cross Location-network Transfer Learning), a novel
meta learning-based approach for POI recommendation in limited-data regions while transfer-
ring model parameters learned at a data-rich region without any prerequisite of inter-region user
overlap. Specifically, we use a hierarchical multi-channel learning procedure with a novel meta-
learning [18, 33] extension for geographical scenarios called spatio-socialmeta-learning (SSML),
that learns the model parameters by jointly minimizing the region-specific social as well as location
recommendation losses, and a cross-region transfer via clusters [60, 69] of user and locations with
similar preferences by minimizing an alignment loss [30, 74], to achieve high performance even in
extremely limited-data regions. We represent the POI network of each region via a heterogeneous
graph with users and locations as nodes and capture the user-location inter-dependence and their
neighborhood structure via a twin graph attentionmodel [66, 77]. The graph-attention model aggre-
gates all four aspects of user and location influences [15, 65] namely, (i) users’ social neighborhood
and their location affinity to construct user-specific and location-conditioned representations, and
(ii) similarly for each location, its neighboring locations and associated user affinity to obtain a
locality-specific and user-conditioned representations. We combine this multi-faceted information to
determine the final user and location representations which are used for POI recommendation. We
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highlight the region-size invariant performance of Axolotl by using regions with different spatial
granularities, i.e. large and small states for Germany and U.S respectively, and prefectures for Japan.

In summary, the key contributions we make in this paper via Axolotl are three-fold:

(1) Region-wise Transfer: We address the problems associated with POI recommendation
in limited data regions and propose Axolotl, a cross-region model transfer approach for
POI recommendation that does not require common users and their traces across regions.
It utilizes a novel spatio-social meta-learning based transfer and minimizes the divergence
between user-location clusters with similar characteristics.

(2) User-Location Influences: Our twin graph attention-based model combines user and loca-
tion influences in heterogeneous mobility graphs. This is the first approach to combine these
aspects for addressing the data scarcity problemwith POI recommendation. Axolotl is robust
to network size, trajectory spread, and check-in category variance making it more suitable
for transfer across geographically distant regions (and even across different networks).

(3) Detailed Empirical Evaluation: We conduct thorough experiments over 12 real-world
points-of-interest datasets from the U.S, Japan, and Germany, at different region-wise granu-
larity. They highlight the superior recommendation performance of Axolotl over state-of-
the-art methods across all metrics.

2 RELATEDWORK

In this section, we introduce key related work for this paper. It mainly falls into following cat-
egories: 1) Mobility Prediction; 2) Graph based recommendations; 3) Transfer Learning andMobility.

Mobility Prediction: Understanding the mobility dynamics of a user is widely studied using
different data sources [10, 76]. Early efforts relied on taxi datasets to study individual trajecto-
ries [22, 40]. However, these approaches are limited by the underlying datasets as it excludes
two critical aspects of a mobility network; the social friendships and location categories. The
social network is used to model the influence dynamics across different users [41, 45] and the POI
categories capture the different preferences of an individual [9, 42]. We utilize user POI social
networks for our model as these datasets provide both: a series of social dynamics for different
users and location-specific interest patterns for a user. These are essential for tasks such as location-
specific advertisements and personalized recommendations. Standard POI models that utilize an
RNN [6, 17, 43, 45, 76] or a temporal point process [23, 24, 42] are prone to irregularities in the
trajectories. These irregularities arise due to uneven data distributions, missing check-ins, and social
links. Moreover, these approaches consider the check-in trajectory for each user as a sequence
of events and thus have limited power to capture the user-location inter-dependence through
their spatial neighborhood, i.e. the location-sensitive information that influences all neighborhood
events. Recent approaches [60, 69], harness the spatial characteristics by generating an image corre-
sponding to each user trajectory and then utilize a CNN as an underlying model. Such approaches
based on visual data, and all CNN-based approaches, are limited by the image characteristics such
as resolution and interpolation. Modern POI recommendation approaches such as [68] model
the spatial network as a graph and utilize a random-walk-based model, with [67] proposing a
graph-based neural network based model to incorporate structural information of the network.
Unfortunately, none of these approaches are designed for mobility prediction in limited data regions.

Graph based Recommendation: Existing graph embedding approaches focus on incorporating
the node neighborhood proximity in a classical graph in their embedding learning process [21, 68].
For example [28] adopts a label propagation mechanism to capture the inter-node influence and
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hence the collaborative filtering effect. Later, it determines the most probable purchases for a user
via her interacted items based on the structural similarity between the historical purchases and
the new target item. However, these approaches perform inferior to model-based CF methods,
since they do not optimize a recommendation-specific loss function. The recently proposed graph
convolutional networks (GCNs) [31] have shown significant prowess for recommendation tasks
in user-item graphs. The attention-based variant of GCNs, graph attention networks (GATs) [59]
are used for recommender systems in information networks [15, 61], traffic networks [22, 40] and
social networks [72, 75]. Furthermore, the heterogeneous nature of these information networks
comprises of multi-faceted influences that led to approaches with dual-GCNs across both user and
item domains [15, 77]. However with POI networks, the disparate weights, location-category as
node feature, and varied sizes, these models cannot be generalized for spatial graphs.

Clustering in Spatial Datasets: In addition to the twin-GAT model, Axolotl includes an align-
ment loss for cross-region transfer via clusters of users and locations with similar preferences.
Due to the disparate features in our spatial graph, identifying the optimal number of clusters for
the source and target region is a non-trivial task. Thus, we highlight a few key related works
for clustering POIs and users in a spatial graph. Standard community-detection algorithms for
spatial datasets [36, 42, 49, 62] are not suitable for grouping POIs as they ignore the graph structure,
POI-specific features such as categories, geographical distances, and the order of check-ins in a
user trajectory. Moreover, the clustering performance of these methods is highly susceptible to the
hyper-parameter values used in a setting. Recent approaches [1, 19, 35, 47, 73] can automatically
identify the number of clusters in a graph by capturing higher-order semantics between graph
nodes, however, their application to graphs in spatial and mobility domains have certain challenges.
In detail, (i) DiffPool [73] can learn differentiable clusters for POIs and users for each region,
however, these assignments are soft i.e., without definite boundaries between distant POI clusters
and, moreover, have a quadratic storage complexity; (ii) Gao and Ji [19] ignores the topology of the
underlying spatial graph; (iii) Lee et al. [35] can be extended to spatial graphs, however, has limited
scalability due to its self-attention [58] based procedure; (iv) Morris et al. [47] can incorporate
higher-order structure in a POI graph using multi-dimensional Weisfeiler-Leman graph isomor-
phism; and (v) Abu-El-Haija et al. [1] can learn inter-user and inter-POI relationships by mixing
feature representations of neighbors at various distances. However, due to the presence of two
types of graph nodes – user and POI – identifying higher-order relationships by solely considering
POI or user nodes is challenging. In addition, Chen et al. [8] uses a differentiable grouping network
to discover the latent dependencies in a spatial network but is limited to air-quality forecasting. We
highlight that though these approaches can be plugged-in with Axolotl, they have an additional
computation cost that gets further amplified due to the repetitive clustering procedure required
in Axolotl (please refer to Section 4.3.2). However, we note that using these approaches over
Axolotl while simultaneously maintaining the scalability is a probable future work of this paper.

Transfer Learning and Mobility: Transfer learning has long been addressed for tasks involving
sparse data [18, 30] with applications to recommender systems as well [33, 37, 57]. Transfer-based
spatial applications deploy CNNs across regions and achieve significant improvements in limited
data-settings [60, 69]. However, these approaches are restricted to non-structural data and a graph-
based approach has not been explored by the previous literature. [39] extends meta-learning to
enhance recommendations in a POI setting, but is limited to a specific region. Information transfer
across graphs is not a trivial task [32, 34, 71] and recent mobility models that incorporate graphs
with meta-learning in [46, 51] are either limited to traffic datasets and do not incorporate the social
network or are limited to new trajectories [16, 27]. From our experiments, we prove that a mere
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fine-tuning on the target data is susceptible to large cross-data variances and thus re-calibrating a
generative model is not a trivial task in mobility-based networks.

3 PROBLEM FORMULATION

We consider POI data for two regions, a source and a target denoted by D𝑠𝑟𝑐 and D𝑡𝑔𝑡 . We denote
the users and locations in source and target networks asU𝑠𝑟𝑐 ,P𝑠𝑟𝑐 ∈ D𝑠𝑟𝑐 andU𝑡𝑔𝑡 ,P𝑡𝑔𝑡 ∈ D𝑡𝑔𝑡

correspondingly with no common entries U𝑠𝑟𝑐 ∩ U𝑡𝑔𝑡 = L𝑠𝑟𝑐 ∩ L𝑡𝑔𝑡 = ∅. In other words, we
do not need a common user between two regions to perform a cross-region mobility knowledge
transfer. With a slight abuse of notation, the network for any region –either target or source– is
assumed to consist of users |U| = 𝑀 , locations |P | = 𝑁 and an affinity matrix 𝑹 = {𝑟𝑢𝑙 }𝑀×𝑁 . We
populate entries in 𝑹 as row-normalized number of check-ins made by a user to a location (i.e.,
multiple check-ins mean higher value). This can be further weighed by the user-location ratings, if
available. We denote a pair of users as 𝑢𝑖 , 𝑢 𝑗 and locations as 𝑙𝑎, 𝑙𝑏 . We also assume that for each
location 𝑙𝑎 we have one (or more) category label (such as Jazz Club, Cafe, etc.).

Problem Statement (Target Region POI Recommendation). Given the mobility data of source
and target regions,D𝑠𝑟𝑐 andD𝑡𝑔𝑡 , our aim is to transfer the rich dynamics in source region to improve
POI recommendation for users in the target region. Specifically, maximize the following probability:

𝑃∗ = argmax{E[𝑟 𝑡𝑔𝑡
𝑢𝑖 ,𝑙𝑎
|D𝑠𝑟𝑐 ,D𝑡𝑔𝑡 ]}, (1)

where E[𝑟 𝑡𝑔𝑡
𝑢,𝑙
] calculates the expectation of location 𝑙𝑎 in the target region being visited by the user 𝑢𝑖 ,

thus 𝑟 𝑡𝑔𝑡
𝑢𝑖 ,𝑙𝑎
∈ 𝑹𝑡𝑔𝑡 , given the mobility data of users from both source and target regions. Simultaneously

for a region, our objective as personalized location recommendation is to retrieve, for each user, a
ranked list of candidate locations that are most likely to be visited by her based upon the past check-ins
available in the training set.

3.1 User-Location Graph Construction

For each region, we construct a heterogeneous user-location graph G𝑠𝑟𝑐 and G𝑡𝑔𝑡 but we de-
scribe generically as G = {U ∪ P, E} with each user and location as a node. The disparate
edges E𝑢, E𝑙 , E𝑟 ∈ E determine the user-user, location-location and user-location relationships
respectively. The structure of the graph is as follows:
• An edge, 𝑒𝑢𝑖 ,𝑢 𝑗

∈ E𝑢 , between two users, 𝑢𝑖 and 𝑢 𝑗 is denotes a social network friendship.
• We form an edge, 𝑒𝑙𝑎,𝑙𝑏 ∈ E𝑙 , between two locations when any user has consecutive check-ins

between them – i.e., a check in at 𝑙𝑎 (or 𝑙𝑏 ) followed immediately by 𝑙𝑏 (or 𝑙𝑎) with edge weight based
on the geographical distance [40, 75] between the two locations. Specifically, we use non-linear
decay with distance as:

𝑤 (𝑒𝑙𝑎,𝑙𝑏 ) =
{
exp

(
−𝑑 (𝑙𝑎,𝑙𝑏 )

𝜎2

)
, if 𝑑 (𝑙𝑎, 𝑙𝑏) ≤ 𝜅,

0 otherwise,

where 𝑑 (𝑙𝑎, 𝑙𝑏) is the haversine [13] distance between the two locations.
• A check-in by user 𝑢𝑖 at location 𝑙𝑎 results in a user-location edge, 𝑒𝑢𝑖 ,𝑙𝑎 ∈ E𝑟 .

We also use the following notations to define different neighborhoods that will be used in our
model description later: (1) N𝑢𝑖 =

{
𝑢𝑘 : 𝑒𝑢𝑖 ,𝑢𝑘 ∈ E𝑢

}
: the social neighborhood of user 𝑢𝑖 , (2) N𝑙𝑎 ={

𝑢𝑘 : 𝑒𝑢𝑘 ,𝑙𝑎 ∈ E𝑟
}
: the user neighborhood of location 𝑙𝑎 , (3) S𝑢𝑖 =

{
𝑙𝑘 : 𝑒𝑢𝑖 ,𝑙𝑘 ∈ E𝑟

}
: the location

neighborhood of user 𝑢𝑖 , and, finally, (4) S𝑙𝑎 =
{
𝑙𝑘 : 𝑒𝑙𝑎,𝑙𝑘 ∈ E𝑙

}
: locations in the spatial vicinity of

𝑙𝑎 . Note that the graph G can also be enriched with all edges as weighted [67] conditioned on the
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Table 1. Summary of Notations Used.

Notation Description

D𝑠𝑟𝑐 ,D𝑡𝑔𝑡 Datasets for source and target regions
𝑹 Normalized user to location preference matrix
𝑼 𝑙 , 𝑼 𝑠 , 𝑼 𝑓 User’s latent, location-based and final representations
𝑳𝑙 , 𝑳𝑠 , 𝑳𝑓 Location’s latent, user-based and final representations
Φ1· · ·4 Graph Attention Networks in Axolotl
𝜓1· · ·4 MLP layers to calculate attention weights for Φ1· · ·4
𝜑1· · ·3 MLPs for final user and location embeddings, and affinity prediction
L𝑝 ,L𝑠 ,L𝑐 Affinity, social prediction and Cluster-based loss
𝐾 No. of clusters in source and target region
𝑁𝑢 No. of target region based updates for SSML
𝑀𝑡 Iterations before cluster-transfer
𝑼 𝑡𝑔𝑡𝑐 , 𝑳𝑡𝑔𝑡𝑐 User and location clusters for target region
𝑼 𝑠𝑟𝑐𝑐 , 𝑳𝑠𝑟𝑐𝑐 User and location clusters for source region

Fig. 2. Different node and edge types in our graph model (users are in yellow and locations are in blue). The

dashed arrows represent various influences and corresponding GATs (Φ𝑖 , 𝑖 = 1, 2, 3, 4) in Axolotl.

availability of different features. However, we present a general framework which can be easily
extended to such settings.

4 AXOLOTL FRAMEWORK

In this section we first describe in detail the basic model of Axolotl along with its training
procedure. Then we present the key feature of Axolotl, viz., its ability to transfer model parameters
learned from data-rich region to data-scarce region. For a specific region, we embed all users inU
and all locations in P through embedding matrices 𝑼 = {𝒖𝑖 }𝑀×𝐷 and 𝑳 = {𝒍𝑎}𝑁×𝐷 respectively
with 𝐷 as the embedding dimension. A summary of all notations is given in Table 1.

4.1 Basic Model

In the graph model of Axolotl, called Axo-basic, we capture the four aspects of influence prop-
agation –namely, user-latent embeddings (𝑼 𝑙 ∈ R𝑀×𝐷 ), location-conditioned user embeddings
(𝑼 𝑠 ∈ R𝑀×𝐷 ), location-latent embeddings (𝑳𝑙 ∈ R𝑁×𝐷 ), and user-conditioned location embeddings
(𝑳𝑠 ∈ R𝑁×𝐷 )– illustrated in Figure 2.

The basic model of Axolotl captures these four aspects using different graph attention networks,
resulting in a twin-graph architecture as shown in Figure 3. In the rest of this section, we first
describe each of the graph attention components and the prediction model in the basic model of
Axolotl. Subsequently, we delineate the information transfer component that operates over this
basic model.
GAT for User Latent Embedding(Φ1): In each iteration, using the available user embeddings, 𝑼 ,
we aggregate each user’s social neighborhood to obtain a new latent representation of the user. We
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denote this embedding as 𝑼 𝑙 and calculate as follows:

𝒖𝑙,𝑖 = 𝜎

( ∑
𝑢𝑘 ∈N𝑢𝑖

𝜶Φ1
𝑢𝑖 ,𝑢𝑘

(
WΦ1𝒖𝑘 + bΦ1

) )
, 𝒖𝑙,𝑖 ∈ 𝑼 𝑙 , (2)

where 𝑢𝑖 ∈ U,N𝑢𝑖 , 𝜎,WΦ1 and bΦ1 are the user node 𝑢𝑖 , nodes in the social neighborhood of 𝑢𝑖 ,
the activation function, the weight matrix and the bias vector respectively. 𝜶Φ1

𝑢𝑖 ,𝑢𝑘 determines the
attention weights between user embeddings 𝒖𝑘 and 𝒖𝑖 given by:

𝜶Φ1
𝑢𝑖 ,𝑢𝑘

=
exp

(
𝜓1 (𝒖𝑖 , 𝒖𝑘 )

)∑
𝑢 𝑗 ∈N𝑢𝑖

exp
(
𝜓1 (𝒖𝑖 , 𝒖 𝑗 )

) , (3)

where,𝜓1 (𝒖𝑖 , 𝒖 𝑗 ) = LeakyReLU(GΦ1 ⊗ (𝒖𝑖 ∥ 𝒖 𝑗 )) calculates the inter-user attention weights with
learnable parameter GΦ1 .
GAT for Location-conditioned User Embeddings (Φ2): To encapsulate the influence on a user
based on the her check-ins as well as those by her social neighborhood, our embeddings must
include location information for all check-ins made by different users in her social proximity.
For this purpose, we first need to aggregate the location embeddings for every check-in made
by a user (𝑢𝑖 ) as her location-based embedding, 𝑸 = {𝒒𝑖 }𝑀×𝐷 . We note that the category of a
check-in location is arguably the root-cause for a user to visit the location and thus to capture
the location-specific category and the user-category affinity in these embeddings, we populate 𝑸
using a max-pooling aggregator across each location embedding weighted by the probability of a
category to be in a user’s check-in locations. That is,

𝒒𝑖 = MaxPool

[ ∑
𝑙𝑘 ∈S𝑢𝑖

p𝑢𝑖(𝑙𝑘 ) · 𝒍𝑘
]
, ∀𝒒𝑖 ∈ 𝑸, (4)

where S𝑢𝑖 , p
𝑢𝑖
(𝑙𝑘 ) respectively denote the location neighborhood of 𝑢𝑖 and the probability of a POI-

category to be present in the past check-ins of𝑢𝑖 . We calculate p𝑢𝑖(𝑙𝑘 ) as the fraction of check-ins made
by the user to POIs of the specific category with the total number of her check-ins. Mathematically,

p𝑢𝑖(𝑙𝑘 ) =
No. of check-ins by 𝑢𝑖 at POIs with category same as 𝑙𝑘

Total no. of check-ins by 𝑢𝑖
, (5)

We calculate these probabilities for every POI category and these values are user-specific. Moreover,
the values of p𝑢𝑖(𝑙𝑘 ) can be considered as the explicit category preferences of a user 𝑢𝑖 .
Later, to get the influence of neighborhood locations on a user, we aggregate the location-based
neighbor embeddings 𝑸 for each user (𝑢𝑖 ) based on her social network as:

𝒖𝑠,𝑖 = 𝜎

( ∑
𝑢𝑘 ∈N𝑢𝑖

𝜶Φ2
𝑢𝑖 ,𝑢𝑘

(
WΦ2𝒒𝑘 + bΦ2

) )
, 𝒖𝑠,𝑖 ∈ 𝑼 𝑠 , (6)

where 𝜶Φ2
𝑢𝑖 ,𝑢𝑘 is the attention weight for quantifying the influence a user has on another through

its check-ins and is formulated using𝜓2 similar to𝜓1 (Eqn 3). The resulting embedding 𝑼 𝑠 is the
location-conditioned user embedding.
GAT for Location Latent Embedding (Φ3): Similar to Φ1, we aggregate the neighborhood of
each location, 𝒍𝑎 ∈ 𝑳, to get a latent representation of each location. To factor the inter-location
edge-weight in our embeddings, we sample locations from the neighborhood with probability
proportional to𝑤 (𝑒𝑙𝑎,𝑙𝑏 ), i.e., closer the locations higher their repetitive sampling. These sampled
locations represent the vicinity of the check-in and we encapsulate them to get the latent location
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Concatenate

Hadamard Product

| |

| | | |User and Location 
Embeddings

(Level - 1)

Final Embeddings
(Level - 2)

Affinity Prediction
(Level - 3)

Fig. 3. System architecture of Axo-basic that shows level-wise embedding computation and affinity prediction.

User-Latent (𝑼 𝑙 ) and Location conditioned (𝑼 𝑠 ) embeddings are combined to form a final user embedding

(𝑼 𝑓 ) and similarly for location, 𝑳𝑙 and 𝑳𝑠 are combined to 𝑳𝑓 .

representation.

𝒍𝑙,𝑎 = 𝜎

( ∑
𝑙𝑘 ∈S𝑙𝑎

𝜶Φ3
𝑙𝑎,𝑙𝑘

(
WΦ3 𝒍𝑘 + bΦ3

) )
, ∀𝑙𝑎 ∈ P, 𝒍𝑙,𝑎 ∈ 𝑳𝑙 , (7)

where 𝜶Φ3
𝑙𝑎,𝑙𝑘

is again formulated as in Equation 3, using𝜓3 (𝒍𝑎, 𝒍𝑘 ).
GAT for User-conditioned Location Embedding(Φ4): Similar to Φ2, we need to capture the
influence of different users with check-ins nearby to the current location 𝑙𝑎 . Thus we use amax-pool
aggregator to capture the user neighborhood of each location weighted by its affinity towards the
location category. Through this, we aim to encapsulate the locality-specific user preferences, i.e.
the counter-influence of 𝑸 in Φ2, denoted as 𝒀 = {𝒚𝑎}𝑁×𝐷 .

𝒚𝑎 = MaxPool

[ ∑
𝑢𝑘 ∈N𝑙𝑎

p𝑙𝑎(𝑢𝑘 ) · 𝒖𝑘
]
, ∀𝒚𝑎 ∈ 𝒀 , (8)

where, p𝑙𝑎(𝑢𝑘 ) denotes the category affinity of all users in the neighborhood N𝑙𝑎 of a location 𝑙𝑎 . We
calculate p𝑙𝑎(𝑢𝑘 ) for each user as the fraction of check-ins of a user 𝑢𝑘 with the total check-ins for all
users in N𝑙𝑎 at the POIs with category same as 𝑙𝑎 . Mathematically,

p𝑙𝑎(𝑢𝑘 ) =
No. of check-ins by 𝑢𝑘 with category ‘cat’

No. of check-ins by users in N𝑙𝑎 with category ‘cat’
, (9)

where ‘cat’ denotes the category of POI 𝑙𝑎 . Moreover, these probabilities are specific to each
POI and can be interpreted as the affinity of nearby users towards the POI category. Similar to
Φ3, we aggregate the location neighborhood using an edge-weight based sampling on 𝒀 to get
user-conditioned location embedding 𝑳𝑠 with parameters WΦ4 , bΦ4 and 𝜶Φ4 and𝜓4 (𝒚𝑎,𝒚𝑏).

4.2 Model Prediction

We combine the four representations of users and locations developed above using fully-connected
layers, with a concatenated input of 𝑼 𝑙 and 𝑼 𝑠 for final user embedding 𝑼 𝑓 = 𝜑1 (𝑼 𝑙 ∥ 𝑼 𝑠 ); and
similarly for locations 𝑳𝑙 and 𝑳𝑠 to obtain final location embedding 𝑳𝑓 = 𝜑2 (𝑳𝑙 ∥ 𝑳𝑠 ). Finally, we
estimate a user’s affinity to check-in at a location by a Hadamard (element-wise) product between
the corresponding representations. Formally,

𝑟𝑢𝑙 = 𝜑3
(
𝑼 𝑓 ⊗ 𝑳𝑓

)
, (10)
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POI Recommendation via Cross-Region Transfer 1:9

where 𝜑1 (·), 𝜑2 (·) and 𝜑3 (·) represent fully-connected neural layers.
The parameters are optimized using a mean-squared error that considers the difference between

the user’s predicted and the actual affinity towards a location, with 𝐿1 regularization over the
trainable parameters.

L𝑝 =
∑
(∀𝑢,𝑙)



𝑟𝑢𝑙 − 𝑟𝑢𝑙

2 + 𝜆𝑝

Θ𝑝𝑟𝑒𝑑

. (11)

Θ𝑝𝑟𝑒𝑑 refers to all the trainable parameters in Axolotl for a region-specific prediction including
the weights for all attention networks.

4.3 Axolotl: Information Transfer

We now turn our attention to the central theme of this paper, namely, the training procedure for
Axolotl along with its cluster-wise transfer approach. We reiterate that we do not expect any
common users/POIs between source and target regions, and thus the only feasible way to transfer
mobility knowledge using the trained model parameters and the user-POI embeddings. Specifically,
there are two channels of learning for Axolotl, (1) Spatio-Social Meta-learning based optimization,
and (ii) Region-wise cluster alignment loss.

4.3.1 Spatio-Social Meta-Learning (SSML). Meta-learning has long been proposed to alleviate data
scarcity problem in spatial datasets [39, 51, 69]. Specifically, in meta-learning, we aim to learn a
joint parameter initialization for multiple tasks by simultaneously optimizing the prediction loss
for each task. However, there is a high variance in data-quality between the regionsD𝑠𝑟𝑐 andD𝑡𝑔𝑡

and thus a vanilla meta-learning —also called a model agnostic meta-learning (MAML) [18]— will
not be sufficient as the target region is expected to have nodes with limited interactions. Such
nodes, due to their low contribution in the loss function, may get neglected during the meta-
procedure. We overcome this via a hierarchical learning procedure that not only considers the
location recommendation performance, but also the social neighborhood of all user and location
nodes. We call the resulting learning procedure as spatio-social meta-learning (SSML) and the
contrast between this approach and standard model agnostic meta-learning approach (MAML) [18]
is schematically given in Figure 4.
Specifically, we consider the two tasks of (i) optimizing the POI recommendation loss function
L𝑝 across both source and target regions, and, (ii) neighborhood prediction for each node in both
the networks [70].We initialize the parameters for the recommender system with global initial
values (𝜃𝑠𝑡 ) shared across both source and target. Note that by 𝜃𝑠𝑡 we mean the parameters for
all GATs (Φ1· · ·4) and prediction MLPs (𝜑1· · ·3) and thus exclude region-specific, user and location

(a) MAML (b) SSML

Fig. 4. The difference between MAML(fig 4a) and our SSML (fig 4b) is that the latter optimizes parameters in

a hierarchy i.e. user and location parameters are updated for neighborhood prediction and then combined for

POI recommendation. (Best viewed in color).
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embedding matrices, 𝑼 𝑠𝑟𝑐 , 𝑳𝑠𝑟𝑐 , 𝑼 𝑡𝑔𝑡 and 𝑳𝑡𝑔𝑡 . We describe the hierarchical learning procedure of
SSML here:
Neighborhood Prediction: For any region target or source, consider a user 𝑢𝑖 and her neighbor
𝑢 𝑗 ∈ N𝑢𝑖 , we obtain the probability of them being connected on the social network as 𝑣𝑢𝑖 ,𝑢 𝑗

= 𝒖𝑖 ·𝒖𝑇𝑗
where 𝒖• ∈ 𝑼 𝑓 represents the final representations of a user. We optimize the following cross-
entropy loss:

LU𝑠 (D•) = −
∑
𝑢𝑖 ∈U•

∑
𝑢 𝑗 ∈N𝑢𝑖

𝑢′𝑗∉N𝑢𝑖

[
log

(
𝜎 (𝑣𝑢𝑖 ,𝑢 𝑗

)
)
+ log

(
1 − 𝜎 (𝑣𝑢𝑖 ,𝑢′𝑗 )

)]
, (12)

where, 𝑣𝑢𝑖 ,𝑢 𝑗
, 𝑣𝑢𝑖 ,𝑢′𝑗 , 𝜎 denote the estimated link probability between two users connected by their

social networks, with a negatively sampled user 𝑢 ′𝑗 i.e. a user not in N𝑢𝑖 , and the sigmoid function.
Similarly, we calculate the probability of a location 𝑙𝑏 being in the spatial neighborhood of a location
𝑙𝑎 as 𝑣𝑙𝑎,𝑙𝑏 = 𝒍𝑎 · 𝒍𝑇𝑏 and denote the neighborhood loss as LP𝑠 (D•). For the region as a whole, say
target, the net neighborhood loss is defined as:

L𝑡𝑔𝑡𝑠 = LU𝑠 (D𝑡𝑔𝑡 ) + LP𝑠 (D𝑡𝑔𝑡 ), (13)

Similarly for source regions we denote social loss as L𝑠𝑟𝑐𝑠 .
POI Recommendation: Since Axolotl is designed for limited data regions, we purposely incline the
meta-procedure towards improved target-region predictions. Specifically, we alter the meta-learning
procedure by optimizing the parameters with the recommendation loss for the target region (L𝑡𝑔𝑡𝑝 )
for a pre-defined no. of updates (𝑁𝑢 ) and then optimize for the source region prediction loss(L𝑠𝑟𝑐𝑝 ).

Target :𝜃 𝑡𝑔𝑡
𝑘+1 ←

{
𝜃
𝑡𝑔𝑡

𝑘
− 𝜔1∇𝜃𝑡𝑔𝑡

𝑘

L𝑡𝑔𝑡𝑝 (𝑓𝜃𝑡𝑔𝑡
𝑘

), ∀ 1 ≤ 𝑘 ≤ 𝑁𝑢,
𝜃𝑠𝑡 − 𝜔1∇𝜃𝑠𝑡 L𝑡𝑔𝑡𝑝 (𝑓𝜃𝑠𝑡 ), otherwise,

Source :𝜃𝑠𝑟𝑐 ← 𝜃𝑠𝑡 − 𝜔1∇𝜃𝑠𝑡 L𝑠𝑟𝑐𝑝 (𝑓𝜃𝑠𝑡 ), (14)

where 𝜃𝑠𝑡 , 𝜃 𝑡𝑔𝑡 , 𝜃𝑠𝑟𝑐 ,L𝑡𝑔𝑡𝑝 ,L𝑠𝑟𝑐𝑝 , 𝑓𝜃 are the global model independent parameters, parameters for
target and source region, prediction loss for target and source, and Axolotl output respectively.
Final Update: The final update to global parameters is done by: (i) optimizing the region-specific
social loss, L𝑡𝑔𝑡𝑠 and L𝑠𝑟𝑐𝑠 , and (ii) minimizing the POI recommendation loss L𝑡𝑔𝑡𝑝 ,L𝑠𝑟𝑐𝑝 for both
source and target regions.

𝜃𝑠𝑡 ← 𝜃𝑠𝑡 −𝜔2 ·
[
∇𝜃𝑠𝑡 L𝑠𝑟𝑐𝑝 (𝑓𝜃𝑠𝑡 ) + ∇𝜃𝑡𝑔𝑡

𝑁𝑢

L𝑡𝑔𝑡𝑝 (𝑓𝜃𝑡𝑔𝑡
𝑁𝑢

)
]
−𝜔3 ·

[
∇𝜃𝑠𝑡 L𝑠𝑟𝑐𝑠 (𝑓𝜃𝑠𝑡 ) + ∇𝜃𝑠𝑡 L

𝑡𝑔𝑡
𝑠 (𝑓𝜃𝑠𝑡 )

]
, (15)

where, 𝜔2, 𝜔3 denote the region-wise learning rates.

4.3.2 Cluster Alignment Loss. Recent research [60, 69] has shown that enforcing similar patterns
across specific POI clusters between source and target domains, e.g. from one university campus
to another facilitates better knowledge transfer. Unfortunately, obtaining the necessary semantic
information to align similar clusters across regions, that these techniques require, is not always
practical at large-scale settings. For a POI network, a rudimentary approach to identify clusters
would be to traverse across the categories associated with each location – which may be quite
expensive to compute andwill neglect the user-dynamics as well. We avoid these approaches and use
a light-weight Euclidean-distance based k-means clustering to identify a set of users and locations
in source as well as target regions (separately) that have displayed similar characteristics till the
current iteration. Such a dynamic clustering mechanism over the contemporary GAT embeddings
prevents the need for additional hand-crafting. In contrast to previous approaches [41, 70], we
utilize a hard-assignment as unlike online product purchases, the mobility of a user is bounded by
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Algorithm 1: Training Algorithm for Axolotl
Input:

D𝑠𝑟𝑐 : Source-Region Training Data, D𝑡𝑔𝑡 : Target-Region Training Data
𝑀𝑡 : Epoch-based checkpoint, C: Clustering function
Output: 𝜃 𝑡𝑔𝑡 : Trained Axolotl Parameters for Target Region

1 𝜃𝑠𝑡 , 𝜃 𝑡𝑔𝑡 , 𝜃𝑠𝑟𝑐 ← Randomly initialize all parameters
2 while epoch < Max_Epoch do

3 Parameter update via target-region social prediction: 𝜃 𝑡𝑔𝑡0 ← 𝜃𝑠𝑡 − 𝜔∇𝜃𝑠𝑡 L𝑡𝑔𝑡𝑠 (𝑓𝜃𝑠𝑡 )
4 Parameter update via source-region social prediction: 𝜃𝑠𝑟𝑐0 ← 𝜃𝑠𝑡 − 𝜔∇𝜃𝑠𝑡 L𝑠𝑟𝑐𝑠 (𝑓𝜃𝑠𝑡 )
5 Calculate the target-region recommendation loss: L𝑡𝑔𝑡𝑝 ← PredictionLoss(D𝑡𝑔𝑡 )
6 Initial update-before iterations: 𝜃 𝑡𝑔𝑡1 ← 𝜃𝑠𝑡 − 𝜔1∇𝜃𝑠𝑡 L𝑡𝑔𝑡𝑝 (𝑓𝜃𝑠𝑡 )
7 for 𝑘 < 𝑁𝑢 do

8 Iterative updates: 𝜃 𝑡𝑔𝑡
𝑘+1 ← 𝜃

𝑡𝑔𝑡

𝑘
− 𝜔1∇𝜃𝑡𝑔𝑡

𝑘

L𝑡𝑔𝑡𝑝 (𝑔𝜃𝑡𝑔𝑡
𝑘

)

9 Calculate the source-region recommendation loss: L𝑠𝑟𝑐𝑝 ← PredictionLoss(D𝑠𝑟𝑐 )
10 Update for source parameters 𝜃𝑠𝑟𝑐 ← 𝜃𝑠𝑡 − 𝜔1∇𝜃𝑠𝑡 L𝑠𝑟𝑐𝑝 (𝑓𝜃𝑠𝑡 (R𝑡 ))
11 Joint update for global parameters: As in eqn. 15
12 if epoch mod 𝑀𝑡 then

13 L𝑐 ← ClusterLoss(C,D𝑠𝑟𝑐 ,D𝑠𝑟𝑐 )
14 Initialize cluster-based transfer 𝜃𝑠𝑟𝑐 , 𝜃 𝑡𝑔𝑡 ← minL𝑐
15 epoch + +
16 Fine-tune for target region: 𝜃 𝑡𝑔𝑡 ← FineTune(L𝑡𝑔𝑡𝑝 )
17 Return model parameters: return 𝜃 𝑡𝑔𝑡

geographical distance [10] and thus checkins to distant locations are very unlikely. We denote 𝑼 𝑡𝑔𝑡𝑐 ,
𝑳𝑡𝑔𝑡𝑐 , 𝑼 𝑠𝑟𝑐𝑐 , 𝑳𝑠𝑟𝑐𝑐 ∈ R𝐾×𝐷 and C as the cluster embedding matrices for target region-users, locations,
source region-users, locations and the clustering algorithm respectively. We calculate the cluster
embedding by mean-pooling the embeddings of elements in the cluster. For example, we calculate
embeddings for user-clusters in the target region as:

𝒖𝑡𝑔𝑡𝑐 = MeanPool [𝒖𝑖 · Ψ(𝑢𝑖 , 𝑐)] ∀𝑢𝑖 ∈ U𝑡𝑔𝑡 , 𝒖𝑡𝑔𝑡𝑐 ∈ 𝑼
𝑡𝑔𝑡
𝑐 , (16)

where, Ψ(𝑢𝑖 , 𝑐) is the indicator function denoting whether user 𝑢𝑖 belongs to cluster 𝑐 . Similarly we
calculate 𝑳𝑡𝑔𝑡𝑐 , 𝑼 𝑠𝑟𝑐𝑐 and 𝑳𝑠𝑟𝑐𝑐 . For minimizing the divergence between the similar users and POIs
between across regions, instead of engineering an explicit alignment between clusters, we use an
attention-based approach to identify and align clusters with similar patterns and minimize the
corresponding weighted 𝐿2 loss [30, 74].

L𝑐 =
∑

∀𝑐𝑡𝑢 ∈𝑼
𝑡𝑔𝑡
𝑐

∑
∀𝑐𝑡

𝑙
∈𝑳𝑡𝑔𝑡

𝑐




𝒄𝑡𝑢 − ∑
𝑐𝑠𝑢 ∈𝑼 𝑠𝑟𝑐

𝑐

𝜷𝑢
𝑐𝑡𝑢 ,𝑐

𝑠
𝑢
𝒄𝑠𝑢




2 + 


𝒄𝑡𝑙 − ∑
𝑐𝑠
𝑙
∈𝑳𝑠𝑟𝑐

𝑐

𝜷𝑙
𝑐𝑡
𝑙
,𝑐𝑠
𝑙

𝒄𝑠
𝑙




2, (17)

where 𝜷𝑢, 𝜷𝑙 ∈ R𝐾×𝐾 , are the attention matrices for user and location clusters respectively. Each
index in 𝜷𝑢, 𝜷𝑙 denotes the weight for a target and source cluster for users and location respectively.
A key modeling distinction between 𝜶 and 𝜷 is that the latter includes self -contribution of the
node under consideration and in 𝜷 we only aim to capture the contribution by the source-cluster on
the particular target-cluster. Therefore 𝜷 is calculated similarly as 𝜶 (Equation 3) after restricting
to only the inter-cluster interactions.

ACM Trans. Intell. Syst. Technol., Vol. 1, No. 1, Article 1. Publication date: January 2022.



1:12 Vinayak Gupta and Srikanta Bedathur

4.3.3 Overcoming the Curse of Pre-Training. Transfer learning, by definition, requires the transfer
source to be pre-trained, i.e. for the information propagation across clusters of user and locations,
the set of weights for source should be trained before initiating the transfer. In our setting, we do not
extensively train the source parameters separately as these parameters are jointly learned via meta-
learning. This could be a severe bottleneck for the cluster-based transfer as it may lead to inaccurate
information sharing across clusters as the source parameters are also simultaneously being learned.
We reconcile these two by adopting a checkpoint-based transfer approach by performing transfer
based on the number of epochs for parameter optimization of the model. Specifically, we optimize
the region-specific model parameters for𝑀𝑡 epochs with each epoch across the entire source and
target data. We checkpoint this model state and consider the user-location cluster embeddings to
initialize transfer by optimizing the all-region parameters through cluster-alignment loss, L𝑐 [30].
Optimizing L𝑐 updates the user and POI embedding by backpropagating the difference between
similar source and target clusters. We minimize L𝑐 via stochastic gradient descent(SGD) [5]. This
checkpoint-based optimize-transfer cycle continues for fixed iterations and then weights are later
fine-tuned [18]. The learning process is summarized in Algorithm 1.

4.3.4 Significance of using SSML with Cluster Loss. Here we highlight the importance of the
two tasks in SSML – neighborhood prediction and POI recommendation that are achieved by
minimizing the loss functions LU𝑠 , LP𝑠 , and L𝑝 respectively for each region. Particularly, the task
of neighborhood prediction of each region is a combination of predicting the spatial neighbors of a
POI (via LP𝑠 ) and the social network of a user (via LU𝑠 ). The former ensures that the embeddings
of POIs located within a small geographical area can capture the latent features of the particular
that area [41, 69]. Such a feat is not achievable by minimizing the difference between POIs in a
common cluster, as the clusters are determined explicitly from these embeddings whereas the
spatial graph is constructed using the distance between POIs, and thus is a better estimate of
neighborhoods within a region. Similarly, minimizing LU𝑠 ensures that user embeddings capture
the flow of POI-preferences between socially connected users [61] that cannot be captured via an
embedding based clustering. Thus, the task of predicting the neighborhood of a node can lead to
better POI recommendations to users closer to a locality.

5 EXPERIMENTS

We perform check-in recommendation in the test data to evaluate Axolotl across three geo-tagged
activity streams from different countries. With our experiments we aim to answer the following
research questions:
RQ1 Can Axolotl outperform state-of-the art baselines for location recommendation in sparse

regions?
RQ2 What are the contributions of different modules in Axolotl?
RQ3 How are the weights in Axolotl transferred across regions?
RQ4 How do hyper-parameters impact the performance of Axolotl’s family of methods?
All our models are implemented in Tensorflow on a server running Ubuntu 16.04. CPU: Intel(R)
Xeon(R) Gold 5118 CPU @ 2.30GHz, RAM: 125GB, and GPU: NVIDIA V100 GPU.

5.1 Experimental Settings

Dataset Description. For our experiments we combine POI data from two popular datasets,
Gowalla [54] and Foursquare [68], across 12 different regions of varied granularities from United
States(US), Japan(JP) and Germany(DE). For each country we construct 4 datasets: one with
large check-in data and three with limited data. We adopt a commonly followed data cleaning
procedure [41, 45] —for source datasets, we filter out locations with less than 10 check-ins, users
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Table 2. Statistics of datasets used in our experiments. The source region columns are highlighted, followed by

target regions. The datasets are further partitioned based on the country of origin (US, Japan and Germany).

Property CA WA MA OH TY KY AI HY NR BV BW BE

#Users (|U|) 3518 1959 1623 1322 6361 1445 2059 1215 1877 923 682 1015
#Locations (|P |) 42125 16758 10585 8509 11905 2055 4561 2255 13049 7290 8381 5493
#User-User Edges (|E𝑢 |) 26167 5039 3702 3457 32540 2973 5723 2124 5663 2833 2370 3122
#Location-Location Edges (|E𝑙 |) 250360 94400 46225 34182 146021 15237 37470 14055 66086 31823 40253 29308
#User-Location Edges (|E𝑟 |) 310350 114897 52097 37431 189990 17573 40503 17036 75212 37673 50889 31915

with less than 10 check-ins and less than 5 connections. For target datasets, these thresholds are
set at 5, 5 and 2 respectively. Higher criteria is used for source datasets to minimize the effects
of noisy data during transfer. The statistics of the twelve datasets is given in Table 2 with each
acronym denoting the following region: (i) CA: California(US), (ii) WA: Washington(US), (iii) MA:
Massachusetts(US), (iv) OH: Ohio(US), (v) TY: Tokyo(JP), (vi) HY: Hyogo(JP), (vii) KY: Kyoto(JP),
(viii) AI: Aizu(JP) (ix) NR: North-Rhine Westphalia(DE), (x) BW: Baden-Württemberg(DE), (xi) BE:
Berlin(DE) and (xii) BV: Bavaria(DE). We consider CA, TY and NR as the source regions and WA,
NY, MA and KY, HY, AI and BV, BW, BE as the corresponding target regions.
Evaluation Protocol: For each region we consider first 70% data, based on the time of check-in,
as training, 10% as validation, and the rest as test data for both Gowalla and Foursquare. For each
region, we use the training data to get a list of top-k most probable check-in locations for each user
and compare with ground-truth check-ins in test. Note that there is no user or location overlap
between source and target regions and for each user we only recommend check-ins located in the
specific region. To evaluate the effectiveness of all approaches, we use: Precision@k and NDCG@k,
with 𝑘 = 1, 5, 10 and report confidence intervals based on three independent runs.
Parameter Settings: For all experiments we adopt a 3 layer architecture for MLPs with dimensions
𝜑1, 𝜑2 = {32→ 32→ 𝐷} and 𝜑3 = {32→ 32→ 1}. Other variations for the MLP had insignificant
differences. We keep 𝑀𝑡 = {4, 6}, 𝑁𝑢 = {4, 8}, 𝐾 = {20, 50, 100}, 𝜆𝑝 = 0.01, 𝜅 = 50𝑘𝑚, 𝐷 = 16 and
batch-size in {16, 32}. Unless otherwise mentioned, we use these parameters in all our experiments.
For the two channels of transfer, meta-learning- and cluster-based, we set 𝜔1, 𝜔2, 𝜔3 = 0.001 and
learning-rate as 0.01, as recommended for training a meta-learning algorithm [18].

5.2 Methods

We compare Axolotl with the state-of-the-art methods based on their architectures below:
(1) Methods based on RandomWalks:

Node2Vec [21] Popular random-walks based embedding approach that uses parameterized
breadth- and depth-first search to capture representations.
Lbsn2Vec [68] State-of-the-art random-walk based POI recommendation, it uses a random-
walk-with-stay scheme to jointly sample user check-ins and social relationships to learn node
embeddings.

(2) Graph-based POI Recommendation

Reline [11] State-of-the-art multi-graph based POI recommendation algorithm. Traverses
across location, user graphs to generate individual embeddings.

(3) Methods based on Matrix Factorization:

GMF [53] Standard matrix factorization which is optimized using a personalized prediction
loss for users.
NMF [29] Collaborative filtering based model that applies MLPs above the concatenation of
user and item embeddings to capture their interactions.

(4) Methods based on Graph Neural Networks:
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NGCF [61] State-of-the-art graph neural network recommendation framework that encodes
the collaborative signal with connectivity in user-item bipartite graph.
DANSER [66] Uses dual graph-attention networks across item and user networks and predicts
using a reinforcement policy-based algorithm.

(5) Methods using Transfer Learning:

MDNN [4] An MLP based meta-learning model that performs global as well as local updates
together.
MCSM [57] A neural architecture with parameters learned through an optimization-based
meta-learning.
MeLU [33] State-of-the-art meta-learning based recommendation system. Estimates user pref-
erences in a data-limited query set by using a data-rich support set across the concatenation of
user and item representations.
MAMO [14] Modifies MAML [18] to incorporate heterogeneous information network by item
content information and memory-based mechanism.
PGN [26] A state-of-the-art meta-learning procedure for pre-training neural graph models to
better capture the user and item embeddings. Specifically, it includes a three step procedure –
a neighborhood sampler, a GNN-based aggregator, and meta-learning based updates. For our
experiments, we apply PGN over graph attention networks [59].

As mentioned in Section 1, other techniques either collectively learn parameters across common
users in both domains[37, 55] or either utilize to meta-path based approach [44], and thus are not
suitable for our setting. Furthermore, to demonstrate the drawbacks of traditional transfer learning,
we report results for the following variants of Axolotl:

Axo-f: We train Axo-basic on the source data and fine-tune the weights for the target data as a
standard transfer-learning setting.

Axo-m: For this variant Axo-basic model is trained on both regions using only the proposed
spatio-social meta learning, i.e. without cluster-based optimization.
The main contribution of the paper that includes both SSML and cluster based optimization is
termed as Axolotl.
Baseline Implementations:Here, we present the implementation details for each of our baselines.
Specifically, for region-specific models, we follow a standard practice of optimizing their parameters
on the training set of the target region and then predicting for users in the corresponding test set.
For MDNN and MCSM, train the parameters on both regions using their standard meta-learning
procedure. For MeLU, we modify the training protocol to perform global-updates using the user-POI
pairs for the target regions and local-updates using the source-region parameters. For more details,
please refer to Section 3.2 in [33]. A similar training procedure is followed for MAMO. Lastly, for
PGN we pre-train the model parameters on the source-region checkins and then fine-tune on the
target region as per their three step optimizing procedure.

5.3 Performance Comparison (RQ1)

We report on the performance of location recommendation of different methods across all our
target datasets in Table 3. From these results we make the following key observations:
• Axolotl, and its variant Axo-m that employ meta-learning, consistently yield the best perfor-

mance on all the datasets. In particular, the complete Axolotl improves over the strongest baselines
by 5-18% across the metrics. These results further signify the importance of a meta-learning based
procedure using external data to design solution for limited-data regions.
• Axo-f does not perform on par with other approaches. This observation further cements the

advantage of a joint-learning over traditional fine-tuning. The performance gain by Axolotl over
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Table 3. Performance comparison between state-of-the-art baselines, Axolotl and its variants (Axo-f and

Axo-m). The first column represents the source and the corresponding target regions. The grouping is done

based on baseline details in Section 5.2. 𝚫 and 𝚫𝑻 respectively denote the performance gain over the best

performing baseline and the advantage over training only on the target region with no transfer. Numbers with

bold font indicate the best performing model. All results marked † are statistically significant (i.e. two-sided

Fisher’s test with 𝑝 ≤ 0.05) over the best baseline.

D𝑠𝑟𝑐 →D𝑡𝑔𝑡
Metric N2V L2V Reline GMF NMF Danser NGCF MDNN MCSM MeLU MAMO PGN Axo-f Axo-m Axolotl

CA→WA

Prec@1 0.3053 0.3493 0.3912 0.3709 0.4306 0.4792 0.4716 0.4639 0.4287 0.5094 0.4783 0.5038 0.4605 0.5529 0.5537†
Prec@5 0.5618 0.6042 0.6248 0.6096 0.6630 0.7124 0.6983 0.6733 0.6694 0.7041 0.6974 0.7067 0.6793 0.7714 0.7736†
Prec@10 0.5652 0.5718 0.6198 0.5982 0.6537 0.7012 0.6981 0.6787 0.6436 0.7003 0.6827 0.6941 0.6832 0.7431 0.7489†
NDCG@5 0.3804 0.4533 0.5386 0.5228 0.5688 0.5809 0.5646 0.5743 0.5680 0.6064 0.5814 0.5932 0.5788 0.6473 0.6503†
NDCG@10 0.4372 0.4976 0.6067 0.5884 0.6461 0.6710 0.6587 0.6511 0.6449 0.6721 0.6687 0.6783 0.6572 0.7199 0.7285†

CA→ OH

Prec@1 0.4453 0.4787 0.5239 0.4863 0.5055 0.5437 0.5386 0.5035 0.5019 0.5492 0.5238 0.5391 0.5394 0.6083 0.6102†
Prec@5 0.5618 0.5694 0.6022 0.5745 0.6152 0.6767 0.6643 0.6283 0.6198 0.6759 0.6693 0.6774 0.6480 0.7118 0.7134†
Prec@10 0.5651 0.5703 0.6173 0.5802 0.6247 0.6759 0.6681 0.6382 0.6233 0.6659 0.6628 0.6648 0.6531 0.7023 0.7042†
NDCG@5 0.4504 0.4576 0.4973 0.4581 0.4850 0.5017 0.5132 0.5271 0.5136 0.5498 0.5231 0.5370 0.5344 0.6088 0.6110†
NDCG@10 0.5070 0.50934 0.5658 0.5781 0.5840 0.6129 0.6115 0.6049 0.5934 0.6180 0.5890 0.6134 0.6222 0.6654 0.6690†

CA→MA

Prec@1 0.3964 0.3900 0.4239 0.4092 0.4476 0.4886 0.4761 0.4462 0.4581 0.4889 0.4731 0.4807 0.4539 0.5813† 0.5807
Prec@5 0.5618 0.5737 0.6282 0.5816 0.6273 0.6873 0.6791 0.6432 0.6400 0.6808 0.6814 0.6973 0.6400 0.7349 0.7373†
Prec@10 0.5651 0.5899 0.6215 0.6007 0.6266 0.6798 0.6620 0.6419 0.6302 0.6649 0.6587 0.6798 0.6545 0.7316 0.7317†
NDCG@5 0.4206 0.4491 0.5243 0.4860 0.5034 0.5614 0.5587 0.5219 0.5187 0.5759 0.5602 0.5683 0.5342 0.6392 0.6404†
NDCG@10 0.4785 0.5084 0.5528 0.5382 0.5476 0.6186 0.6037 0.5764 0.5622 0.6294 0.6140 0.6381 0.5785 0.6930 0.6941†

TY→ AI

Prec@1 0.4703 0.5407 0.6130 0.5811 0.6026 0.5930 0.6200 0.5960 0.6018 0.6462 0.6137 0.6390 0.6625 0.7190 0.7218†
Prec@5 0.5411 0.6008 0.6119 0.6044 0.6289 0.6519 0.6579 0.5996 0.6433 0.6610 0.6413 0.6583 0.6389 0.7216 0.7231†
Prec@10 0.5926 0.6122 0.6208 0.6135 0.6333 0.6540 0.6569 0.6152 0.6172 0.6430 0.6217 0.6535 0.6522 0.7090† 0.7017
NDCG@5 0.4489 0.5013 0.5139 0.5032 0.5390 0.5346 0.5958 0.5304 0.5799 0.6174 0.5689 0.6003 0.5850 0.6581 0.6631†
NDCG@10 0.5562 0.5796 0.5927 0.5818 0.6128 0.6145 0.6485 0.5802 0.6004 0.6298 0.5910 0.6344 0.6299 0.7082† 0.7052

TY→ KY

Prec@1 0.4317 0.4812 0.5226 0.4926 0.5837 0.5719 0.5914 0.5518 0.5867 0.6173 0.5874 0.6074 0.6209 0.6847 0.6910†
Prec@5 0.5811 0.6002 0.6044 0.5869 0.6372 0.6579 0.6567 0.6213 0.6014 0.6521 0.6041 0.6794 0.6348 0.7011 0.7018†
Prec@10 0.5926 0.6098 0.6123 0.5995 0.6243 0.6555 0.6569 0.6135 0.6005 0.6695 0.6117 0.6741 0.6287 0.7019 0.7093†
NDCG@5 0.4789 0.5024 0.5016 0.5120 0.5878 0.5758 0.6291 0.6024 0.5818 0.6892 0.6499 0.6742 0.6458 0.7390 0.7454†
NDCG@10 0.5562 0.5752 0.5807 0.5621 0.6271 0.6485 0.6500 0.6318 0.6044 0.7192 0.6786 0.6983 0.6857 0.7720 0.7737†

TY→ HY

Prec@1 0.5208 0.5719 0.5832 0.5582 0.6030 0.6139 0.6083 0.5990 0.5752 0.6146 0.5824 0.6108 0.5854 0.6793† 0.6781
Prec@5 0.5411 0.5996 0.5938 0.6053 0.6018 0.6527 0.6719 0.6419 0.6322 0.6685 0.6459 0.6814 0.6484 0.7172† 0.7134
Prec@10 0.5726 0.6072 0.6059 0.6205 0.6138 0.6541 0.6569 0.6348 0.6206 0.6406 0.6283 0.6746 0.6268 0.6994 0.7019†
NDCG@5 0.4891 0.4959 0.4888 0.5316 0.6183 0.5724 0.6195 0.6092 0.6151 0.6480 0.6204 0.6359 0.5968 0.7043 0.7068†
NDCG@10 0.5262 0.5736 0.5681 0.6047 0.6256 0.6461 0.6485 0.6380 0.6353 0.6793 0.6433 0.6684 0.6225 0.7298 0.7352†

NR→ BE

Prec@1 0.4624 0.4721 0.4689 0.4627 0.4830 0.5211 0.5354 0.5277 0.5101 0.5471 0.5371 0.5439 0.5392 0.5972 0.5981†
Prec@5 0.4680 0.4981 0.5783 0.5436 0.5836 0.6430 0.6214 0.6023 0.6148 0.6471 0.6252 0.6572 0.6392 0.6900† 0.6889
Prec@10 0.5254 0.5634 0.6092 0.5999 0.6124 0.6444 0.6250 0.6162 0.6029 0.6391 0.6281 0.6492 0.6215 0.6742 0.6749†
NDCG@5 0.4998 0.5077 0.5315 0.5189 0.5416 0.5920 0.6018 0.6297 0.6291 0.6603 0.6198 0.6569 0.6631 0.7370 0.7376†
NDCG@10 0.5532 0.5674 0.6285 0.5779 0.6248 0.6826 0.6604 0.6633 0.6516 0.6889 0.6749 0.6842 0.6811 0.7734 0.7741†

NR→ BV

Prec@1 0.3284 0.3794 0.4024 0.3878 0.4115 0.4588 0.4308 0.4465 0.4209 0.4896 0.4482 0.5163 0.4745 0.5562 0.5593†
Prec@5 0.4380 0.4559 0.5005 0.4843 0.4917 0.5649 0.5318 0.5250 0.5075 0.5657 0.5318 0.5739 0.5736 0.6296 0.6323†
Prec@10 0.4860 0.5062 0.5324 0.5150 0.5456 0.5882 0.5675 0.5744 0.5700 0.5809 0.5624 0.6044 0.5648 0.6357† 0.6355
NDCG@5 0.4378 0.4543 0.4713 0.4571 0.4868 0.5239 0.5243 0.5303 0.5271 0.5694 0.5473 0.5789 0.5700 0.6183 0.6226†
NDCG@10 0.4772 0.4886 0.5768 0.5131 0.5847 0.6043 0.5982 0.5906 0.6019 0.6232 0.5980 0.6267 0.6191 0.6708 0.6739†

NR→ BW

Prec@1 0.3584 0.3858 0.4172 0.3966 0.4263 0.4767 0.4594 0.4520 0.4363 0.4773 0.4587 0.4758 0.4689 0.5066† 0.5062
Prec@5 0.4861 0.5197 0.5416 0.5282 0.5579 0.5670 0.5683 0.5564 0.5423 0.5849 0.5670 0.5913 0.5740 0.6198 0.6201†
Prec@10 0.4860 0.5487 0.5693 0.5354 0.5293 0.5878 0.5849 0.5694 0.5459 0.5805 0.5718 0.5866 0.5712 0.6306† 0.6297
NDCG@5 0.4102 0.4972 0.5122 0.4898 0.5167 0.5750 0.5731 0.5460 0.5281 0.5623 0.5372 0.5683 0.5563 0.6048 0.6075†
NDCG@10 0.4772 0.5532 0.5783 0.5552 0.5862 0.6217 0.6101 0.5962 0.5931 0.6183 0.5849 0.6283 0.6000 0.6598 0.6614†

Axo-m highlights the importance of minimizing the divergence between the embeddings across
the two regions.
• Among meta-learning-based models, we note that MeLU [33] and PGN [26] perform better

than other baseline models, however, are easily outperformed by Axolotl. We also note that
though Axolotl and PGN are graph-based meta-learning models, the performance difference can
be attributed to the ability of Axolotl to include node-features. Specifically, PGN only leverages
the graph structure and cannot thus incorporate any heterogeneous auxiliary information about
the entities such as POI category and distances, whereas Axolotl captures all features of a spatial
network.
• The characteristic of MeLU [33] to include samples from data-rich network into its meta-

learning based procedure leads to significant improvements over other baselines even with its MLP
based architecture. These improvements are more noteworthy for smaller datasets like Bavaria (BV).
However, with inclusion of graph attention networks, Axolotl captures the complex user-location
dynamics better than MeLU.
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Fig. 5. Analysis of Axolotl and its variants across different sizes of training data for bothD𝑠𝑟𝑐
andD𝑡𝑔𝑡

.

Since the results are transductive, i.e. we only predict for users and locations present during training, they are

specific to the subset of train-data.

• Danser [66] and NGCF [61] perform comparable to meta-learning based baselines in some
datasets –e.g., MA and WA. This is due to a sufficiently moderate dataset-size to fuel their dual
graph neural networks. Danser [66] particularly incorporates a reinforcement learning-based
policy optimization which particularly leads to better modeling power albeit at the cost of more
computation. However, for extremely limited-data regions and Precision@1 predictions, the input-
data size alone is not sufficient to accurately train all parameters.
• Despite Reline [11] being the state-of-the-art multi-graph based model for location recom-

mendation, other methods that incorporate complex structures using dual-GCNs or meta-learning
are able to easily outperform it, even under sparse data conditions.
To sum up, our empirical analysis suggests the following: (i) the state-of-the-art models, including
fine-tuning based transfer approaches are not suitable for location recommendation in a limited-
data region, (ii) Axolotl is a powerful recommender system not only for mobility networks with
limited-data, but also in general, and (iii) for data-scarce regions, forcing embeddings to adapt as
per their clusters that share similar preferences across different regions has significant performance
gains.

5.3.1 Impact of Region Data Size on Axolotl. Next we turn our attention to evaluating Axolotl
and its variants under different training data-sizes. Specifically, for each variant, we train with
a pre-defined subset of train data, i.e. either 40% or 60%, for source as well as target regions and
predict on the respective test-set for the target region. We evaluate on the basis of NDCG@5 and
NDCG@10. Note that in this section, our prediction setting is transductive, i.e. we only predict for
those users and locations present in the train data. Hence the results are specific to the subset of
train data used. From the results in Figure 5, we conclude that Axolotl and Axo-m consistently
outperform Axo-f which further substantiate that vanilla transfer is insufficient and minimizing
embedding divergence in Axolotl leads to better performance in data-scarce regions.
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5.4 Ablation Study (RQ2)

We conduct an ablation study for two key contributions in Axolotl: user-GATs (Φ1 and Φ2) and
location-GATs (Φ3 and Φ4). For estimating the contribution of user-GATs, we use the meta-learning
and alignment loss based training only for Φ1 and Φ2. We denote this variant as Axolotl-Φ1,2.
Similarly for location-GATswe use Axolotl-Φ3,4. We also include a GCN [31] based implementation
of Axolotl denoted as Axolotl-gcn. From the results in Figure 6, we observe that Axolotl with
joint training of user and location GATs has better prediction performance than Axolotl-Φ1,2
and Axolotl-Φ3,4. Interestingly, transferring across users leads to better prediction performance
than transferring across locations. This could be attributed to a larger difference in the number of
locations between source and target regions in comparison to the number of users. Axolotl-gcn
has significant performance improvements over the preceding approaches with Axolotl further
having modest improvements due to weighted neighborhood aggregation.
Contribution of SSML: To further assert the importance of our SSML (Section 4.3.1), we compare
the state-of-the-art MAML-based model, viz., MeLU, with our proposed learning procedure, and
also include results after training Axo-basic with MAML. From the results given in Figure 7, we
note that MeLU, when trained with SSML, easily outperforms its MAML based counterpart. It not
only demonstrates the effectiveness of the proposed learning method, but also its versatility to be
incorporated with other baselines. This claim is substantiated further by the poorer performance of
Axo-basic with MAML over the complete Axolotl model.

5.5 Transfer of Weights across Regions (RQ3)

Another important contribution we make in this paper is the cross-region transfer via cluster-
based alignment loss. We show that Axolotl encapsulates the cluster-wise analogy by plotting
the attention-weights corresponding to the similarity between location clusters (L𝑡𝑔𝑡𝑐 and L𝑠𝑟𝑐𝑐 ).
We quantify the similarity using Damerau-Levenshtein distance [12] across category distribution
for all clusters in source and target regions. Later, we group them into five equal buckets as per
their similarity score, i.e. bucket-5 will have clusters with higher similarity as compared to other
buckets. Figure 8 shows the mean attention value across each bucket for all datasets. We observe
that Axolotl is able to capture the increase in inter-cluster similarity by increasing its attention
weights. This feature is more prominent for Aizu and comparable for Berlin.

5.6 Prediction Performance for New Users

Though the focus of this paper is recommending locations to existing users, we perform an auxiliary
cold-start recommendation experiment where we recommend candidate locations for users unseen
in the training set. In this case, we obtain the final user embedding 𝑼 𝑓 of a new user based on
her social network by avg-pooling [25]. We compare this with the state-of-the-art recommender
system, i.e. MeLU [33] and NGCF [61]. From the results in terms for precision at different thresholds
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Fig. 6. Ablation Study across different graph architectures possible in Axolotl along with a GCN variant.
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Fig. 7. Contribution of novel spatio-social meta-learning in Axolotl and the corresponding gains over MeLU.
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Fig. 8. Bucket-wise Mean Attention Transfer Weights between Source and Target regions.

in Figure 9, we note that Axolotl performs significantly better than the other approaches, thus
demonstrating that Axolotl is more suitable for POI recommendation even for a user with no past
check-in records. We also note that MeLU easily outperforms NGCF and thus it further reinforces
the need to incorporate out-of-region data for designing recommendation systems.

5.7 Axolotl for Source Regions

We also report the recommendation performance of Axolotl across different source regions,
i.e. California(CA), Tokyo(TY), and North-Rhine Westphalia (NR). Here as well, we compare our
model with MeLU [33] and NGCF [61]. From the results in in Figure 10, we note that even when
recommending for users in the source region, Axolotl performs comparable, if not better, than
the state-of-the-art single region baseline NGCF. The results further support the practical usability
of Axolotl even in data-rich source regions over its ability for limited data regions. We also note
that for a source region, the performance of MeLU is significantly inferior than the other two
approaches.
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Fig. 9. Recommending candidate POIs to a new user in the network i.e. with no past check-in records.
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Fig. 10. Recommendation performance of Axolotl, NGCF and MeLU for users in the source region.

5.8 Additional Experiments and Runtime

Transfer across Datasets: Finally, to further signify the ability of Axolotl to even work across
different datasets, we design a novel task wherein we use the check-in data from Foursquare(FSQ)
and Gowalla(GOW) for a specific region, train on the data-rich variant then later test on the data-
scarce variant. Specifically we perform two more experiments of (i) training our model on Gowalla
(1.8k Users, 15k POIs) derived section of Washington and predicted on its Foursquare(0.6k Users,
5.2k POIs) variant, and (ii) training on Foursquare(1.9k Users, 3.4k POIs) derived variant of Aizu
and test on the Gowalla(0.9k Users, 1.7k POIs) variant. In contrast to the original datasets in Table 2,
here we use a more lenient criteria to filter out unnecessary users and locations, with each user
having more than 2 check-ins, 2 social connections and each location with more than 3 check-ins.
We plot the results for Washington and Aizu in Figure 11(a) and Figure 11(b) respectively. From
the results we note that a standard fine tuning-based model Axo-f is not suitable for transferring
across different datasets. However, meta-learning based models such as MeLU, Axo-m and Axolotl
perform significantly better. We also note that even when predicting across different datasets,
Axolotl considerably outperforms MeLU across all metrics.

Runtime Analysis: We also report on the run-time of Axolotl to verify its applicability in real-
world settings. We report the run-times for Axolotl over the largest datasets, i.e. the states in
the U.S. CA(42.1k POIs)→WA(16.7k POIs), MA(10.5k POIs), OH(8.5k POIs). From the results in
Figure 11(c), we note that even for transferring across largest dataset, i.e Washington, the overall
training time of Axolotl on a Tesla V100 GPU is comparable to those of MeLU. We also highlight
that these differences were even lower in smaller datasets which we exclude for brevity. Though
the training times are feasible for deployment, the large run-time is mainly due to the inefficient
CPU based batch-sampling. With a GPU-based sampling alternatives [2, 7, 52], this run-time can
be significantly improved which we consider as a future work. Though the current single-threaded
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Fig. 11. Cross-dataset recommendation performance for regions (a) Washington and (b) Aizu. (c) Training

times of MeLU and different variants of Axolotl for all target datasets from the US.
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Fig. 12. Axolotl sensitivity across for WA dataset. Since fig(c) only considers varying cluster sizes, we omit

performance of other Axolotl variants and report only on the complete Axolotl model.
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Fig. 13. Axolotl sensitivity across for AI dataset. Following Figure 12, we only report the results of the

complete Axolotl model in fig (c).
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Fig. 14. Axolotl sensitivity across for BE dataset. Following Figure 12, we only report the results of the

complete Axolotl model in fig (c).

sampling affects the training time of Axolotl, the time-taken (in seconds) for inference, being:
3.27, 3.19, and 5.74 for Aizu, Berlin and Washington respectively, are well within range for practical
deployment. We also note that the cluster-alignment loss improves the prediction performance of
Axolotl and yet includes a minor computation cost over the meta-learning variant Axo-m.

5.9 Parameter Sensitivity (RQ4)

Finally, we perform the sensitivity analysis of Axolotl over key parameters: (1) 𝐷 , the dimension
of embeddings; (2) 𝑁𝑢 , no. of meta-updates on a target batch before a source batch update; (3)𝑀𝑡 ,
epochs after which we initiate cluster based transfer; and (4) 𝐾 , no. of clusters for source and target
(see Table 1). We report the results for WA, AI and BE in Figure 12, 13, and 14 respectively. We
note that as we increase the embedding dimension the performance first increases since it leads
to better modeling. However, beyond a point, the complexity of the model increases requiring
more training to achieve good results, and hence we see its performance deteriorating. Across
𝑁𝑢 , we note that increasing the number of updates with batches from the target region leads to
better results before saturating at a certain point. We found 𝑁𝑢 = 4 to be the optimal point across
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datasets in our experiments. Across𝑀𝑡 , we notice that a delayed transfer based on clusters leads
to a degradation in performance. This could be attributed to the saturation of parameters due to
continuous updates through meta-learning iterations. Finally across 𝐾 , we observe the presence of
an optimal number of clusters for the source and target regions. Specifically, increasing 𝐾 leads to a
better recommendation performance as it provides higher flexibility to POI and users with similar
characteristics to be assigned the same cluster while simultaneously discarding the noisy entities.
However, we note that beyond a certain threshold the performance deteriorates as it reduces the
variance between clusters and creates artificial boundaries within similar clusters.

6 CONCLUSION

In conclusion, we developed a novel architecture called Axolotl that incorporates mobility data
from other regions to design a location recommendation system for data-scarce regions. We also
propose a novel procedure called spatio-social meta learning approach that captures the regional
mobility patterns as well as the graph structure. We address the problems associated with an
extremely data-scarce region and devise a suitable cluster-based alignment loss that enforce similar
embeddings for communities of user and locations with similar dynamics. Our novel graph attention
basedmodel captures the complex user-location influence patterns for a specific region. Experiments
over diverse mobility datasets revealed that Axolotl is able to significantly improve over the state-
of-the-art baselines for POI recommendation in limited data regions and even performs considerably
better across datasets and data-rich source regions. As a future work for this paper, we plan to
modify the transfer procedure of Axolotl to incorporate novel meta-learning approaches, namely
ProtoMAML [56] and Reptile [48]. Additionally, we plan to experiment with approaches [8, 35, 73]
that automatically identify the number of clusters within a region while simultaneously maintaining
the scalability of our model.
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