
1

Modeling Continuous Time Sequences with Intermittent

Observations using Marked Temporal Point Processes

VINAYAK GUPTA, Indian Institute of Technology Delhi, India
SRIKANTA BEDATHUR, Indian Institute of Technology Delhi, India
SOURANGSHU BHATTACHARYA, Indian Institute of Technology Kharagpur, India
ABIR DE, Indian Institute of Technology Bombay, India

A large fraction of data generated via human activities such as online purchases, health records, spatial mobility
etc. can be represented as a sequence of events over a continuous-time. Learning deep learning models over
these continuous-time event sequences is a non-trivial task as it involves modeling the ever-increasing event
timestamps, inter-event time gaps, event types, and the influences between different events within and across
different sequences. In recent years neural enhancements to marked temporal point processes (MTPP) have
emerged as a powerful framework to model the underlying generative mechanism of asynchronous events
localized in continuous time. However, most existing models and inference methods in the MTPP framework
consider only the complete observation scenario i.e. the event sequence being modeled is completely observed
with no missing events – an ideal setting that is rarely applicable in real-world applications. A recent line
of work which considers missing events while training MTPP utilizes supervised learning techniques that
require additional knowledge of missing or observed label for each event in a sequence, which further restricts
its practicability as in several scenarios the details of missing events is not known apriori. In this work, we
provide a novel unsupervised model and inference method for learning MTPP in presence of event sequences
with missing events. Specifically, we first model the generative processes of observed events and missing
events using two MTPP, where the missing events are represented as latent random variables. Then, we devise
an unsupervised training method that jointly learns both the MTPP by means of variational inference. Such
a formulation can effectively impute the missing data among the observed events, which in turn enhances
its predictive prowess, and can identify the optimal position of missing events in a sequence. Experiments
with eight real-world datasets show that IMTPP outperforms the state-of-the-art MTPP frameworks for event
prediction, missing data imputation, and provides stable optimization.
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1 INTRODUCTION

The amount of data constantly generated via several human activities has grown exponentially
with time-series becoming pervasive across all such activities ranging from finance, social, online
purchases, andmanymore [36, 40, 47]. Learning the dynamics of these sequences is a non-trivial task
with the current neural models as it requires perpetual modeling of continuous-time and inter-event
relationships [11, 24, 62]. In the recent years, marked temporal point processes (MTPP) [7, 43, 51, 53]
have shown an outstanding potential to characterize asynchronous events localized in continuous
time that appear in a wide range of applications in healthcare [20, 30, 42], traffic [11, 15], web and
social networks [8, 11–13, 23, 24, 27, 49, 51], finance [1], activity sequences [18, 33] and many more.

A temporal point process represents an event using two quantities: (i) the time of its occurrence
and (ii) the associated mark, where the latter indicates the category of the event and therefore
bears different meanings for different applications. For example, in a social network setting, the
marks may indicate users’ likes, topics, and opinions of the posts; in finance, they may correspond
to the stock prices and the number of sales; in healthcare, they may indicate the state of the
disease of an individual. In this context, most of the MTPP models [11, 22, 51, 53, 62, 65]— with
a few recent exceptions [35, 46]— have considered only the settings where the training data is
completely observed or, in other words, there is no missing observation at all. While working with
fully observed data is ideal for understanding any dynamical system, this is not possible in many
practical scenarios. We may miss observing events due to constraints such as crawling restrictions
by social media platforms, privacy restrictions (certain users may disallow collection of certain
types of data), budgetary factors such as data collection for exit polls, or other practical factors e.g.
a patient may not be available at a certain time. This results in the poor predictive performance of
MTPP models [11, 62, 65] that skirt this issue.
Statistical analysis in presence of missing data has been widely researched in literature in

various contexts [48, 50, 61? ]. Little and Rubin [29] offer a comprehensive survey. It provides three
models that capture data missing mechanisms in the increasing order of complexity, viz., MCAR
(missing completely at random), MAR (missing at random), and MNAR (missing not at random).
Recently, Shelton et al. [46] and Mei et al. [35] proposed novel methods to impute missing events
in continuous-time sequences via MTPP from the viewpoint of the MNAR mechanism. However,
they focus on imputing missing data in between a-priori available observed events, rather than
predicting observed events in the face of missing events. Moreover, they deploy expensive learning
and sampling mechanisms, which make them often intractable in practice, especially in the case of
learning from a sequence of streaming events. For example, Shelton et al. [46] apply an expensive
MCMC sampling procedure to draw missing events between the observation pairs, which requires
several simulations of the sampling procedure upon arrival of a new sample. On the other hand, Mei
et al. [35] uses bi-directional RNN which re-generates all missing events by making a completely
new pass over the backward RNN, whenever one new observation arrives. As a consequence, it
suffers from quadratic complexity with respect to the number of observed events. On the other
hand, the proposal of Shelton et al. [46] depends on a pre-defined influence structure among the
underlying events, which is available in linear multivariate parameterized point processes. In more
complex point processes with neural architectures, such a structure is not explicitly defined, which
further limits their applicability in real-world settings.

1.1 Present Work

In this work, we overcome the above limitations by devising a novel modeling framework for point
processes called IMTPP (Intermittently-observed Marked Temporal Point Processes) 1, which

1IMTPP was first proposed in Gupta et al. [19]. However, it has been substantially refined and expanded in this paper.
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characterizes the dynamics of both observed and missing events as two coupled MTPP, conditioned
on the history of previous events. In our setup, the generation of missing events depends both on the
previously occurred missing events as well as the previously occurred observed events. Therefore,
they are MNAR (missing not at random), in the context of the literature of missing data [29]. In
contrast to the prior models [35, 46], IMTPP aims to learn the dynamics of both observed and
missing events, rather than simply imputing missing events in between the known observed events,
which is reflected in its superior predictive power over those existing models.

Precisely, IMTPP represents the missing events as latent random variables, which together with
the previously observed events, seed the generative processes of the subsequent observed and
missing events. Then it deploys three generative models— MTPP for observed events, prior MTPP
for missing events, and posterior MTPP for missing events, using recurrent neural networks (RNN)
that capture the nonlinear influence of the past events. We also show that such a formulation can
be easily extended to imputation tasks and still achieve significant performance gains over other
models. IMTPP includes several technical innovations over other models, that significantly boost
its training efficiency as well as its event prediction accuracy. We list them here:

(1) In a notable departure from almost all existingMTPPmodels [8, 11, 35, 49] which rely strongly
on conditional intensity functions, we use a log-normal distribution to sample arrival times
of the events. As suggested by Shchur et al. [45], such distribution allows efficient sampling
as well as a more accurate prediction than the standard intensity function-based models.

(2) The built-in RNNs in our model are designed to make forward computations. Therefore, they
incrementally update the dynamics upon the arrival of a new observation. Consequently,
unlike the prior models, it does not require to re-generate all the missing events responding
to the arrival of an observation, which significantly boosts the efficiency of both learning
and prediction as compared to both the previous approaches [35, 46].

Ourmodeling framework allows us to train IMTPP using an efficient variational inferencemethod,
that maximizes the evidence lower bound (ELBO) of the likelihood of the observed events. Such a
formulation highlights the connection of our model with the variational autoencoders (VAEs) [4, 6].
However, in sharp contrast to traditional VAEs, where the random noises or seeds often do not have
immediate interpretations, our random variables bear concrete physical explanations i.e. they are
missing events, which renders our model more explainable than an off-the-shelf VAE. In addition,
to further elucidate the predictive prowess of IMTPP, we constrain its optimization procedure to
identify the optimal positions of missing events in a sequence.

Finally, we perform exhaustive experiments with six diverse real-world datasets across different
domains to show that IMTPP can model missing observations within a stream of observed events
and enhance the predictive power of the original generative process for a full observation scenario.

1.2 Organization

The rest of this paper is organized as follows. We review the relevant related work in Section 2 and
present a formal problem formulation in Section 3, followed by an overview of IMTPP— including
the description of coupled MTPP based model — in Section 4. Section 5 gives a detailed development
of all components in IMTPP and Section 6 contains in-depth experimental analysis, qualitative, and
imputation studies over all datasets before concluding in Section 7.

2 RELATEDWORK

Our work is broadly related to the literature of (i) temporal point process, (ii) missing data models
for discrete-time series, and (iii) missing data models for temporal point process.
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2.1 Marked Temporal Point Process

Marked Temporal point processes are central to our work. In recent years, they emerged as a
powerful tool to model asynchronous events localized in continuous time [7, 21], which have
a wide variety of applications e.g., information diffusion, disease modeling, finance, etc. Driven
by these motivations, in recent years, there has been a surge of works on MTPP [12, 13, 42,
43]. They predominantly follow two approaches. The first approach which includes the Hawkes
process, self-correcting process, etc. considers fixed parameterization of the temporal point process.
Here, different parameterizations characterize the phenomena of interest. In particular, Hawkes
process models the self-exciting event arrival process, which is often exhibited by online social
networks. However, the fixed parameterization approach often constrains the expressive power
of the underlying model, which is often reflected in the sub-optimal predictive performance.
The second approach aims to overcome these challenges by modeling MTPP with a deep neural
network [11, 22, 34, 58]. For example, Du et al. [11] proposed recurrent marked temporal point
process (RMTPP)— an RNN driven model— to encapsulate the sequence dynamics and obtain a low
dimensional embedding of the event history. This led to further developments which include the
Neural Hawkes process that formulates the point process with a continuous-time LSTM [34] and
several other neural models of MTPP e.g., [22, 39, 58]. However, these approaches assume that the
underlying data fed into the model is complete, i.e., with no missing entries. This assumption of an
ideal setting leads to conjectured predictions if implemented in presence of missing data.

2.2 Missing Data Models for Discrete-Time Series

Our current work is also related to existing missing data models for discrete time-series, which do
not necessarily consider MTPP. In principle, training sequential models in presence of missing data
is essential for robust predictions across a wide range of applications e.g., traffic networks [50],
modeling disease propagation [2, 14] and wearable sensor data [54, 55]. Motivated by these applica-
tions, in recent years, there has been a considerable effort in designing learning tools for sequence
models with missing data [31, 61? ]. In particular, the proposal by ? ] compensate for a missing
event by applying a time decay factor to the previous hidden state in a GRU before calculating
the new hidden state. Yoon et al. [61] capture the effect of missing data by incorporating future
information using bidirectional-RNNs. While these approaches do not provide explicit generative
models of missing events, few other models generate them by imputing them in between available
observations. For example, Cao et al. [5] proposed a method of imputing missing events using a
bi-directional RNN [5]; Luo et al. [31] employs a generative adversarial approach for generating
missing events conditioned on the observed events. Luo et al. [32] and Li et al. [26] are used for
imputing in time-series, however, cannot be used to sample marks of missing events and thus,
cannot be extended to imputation in continuous-time event sequences. Thus, these models are
complementary to our proposal as they do not work with temporal point processes.

2.3 Missing Data Models for Temporal Point Process

Very recently, there has been a growing interest in modeling MTPP in presence of missing observa-
tions. However, the design of their learning paradigms is tailored too much to operate in an offline
setting. They deploy expensive learning and sampling mechanisms on an apriori-known complete
sequence of observations. More specifically, Shelton et al. [46] proposed a way of incorporating
missing data by generating children events for the observed events. They rely strongly on an expen-
sive MCMC sampling procedure to draw missing events between the observation pairs. In order to
adapt such a protocol, we need to run the entire sampling routine several times whenever a new
observation arrives. Such a method is extremely time-consuming and often intractable in practice.
Moreover, they require an underlying multi-variate parenthood structure which is not available
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in a complicated neural setting. Our work is closely related to the proposal by Mei et. al. [35]. It
employs two RNNs, in which, the forward RNN— initialized on 𝑡 = 0—models the observation
sequence and the backward RNN— initialized on 𝑡 = 𝑇— models the missing observations. To
operate a backward RNN in an online setting, we need to pass the entire sequence of observations
into it, whenever a new sample arrives, which in turn makes it super expensive in practice. While
re-running these methods after batch arrivals— instead of re-running after every single arrival—
may appear as a compromised solution, however, that is ineffective in practice. Other approaches
include the proposal by Xu et al. [59], which proposes a training method for MTPP when the future
and past events of a sequence window are censored; the work by Rasmussen [41], which assumes
certain characteristics of missing data, and Zhuang et al. [64] is limited to spatial modeling.

3 PROBLEM SETUP

In this section, we first introduce the notations and then the setup of our problem of learning
marked temporal point processes with observed and missing events over continuous time.

3.1 Preliminaries and Notations

A marked temporal point process (MTPP) is a stochastic process whose realization consists of
a sequence of discrete localized in time. Formally, we characterize an MTPP using the sequence
of observed events S𝑘 = {𝑒𝑖 = (𝑥𝑖 , 𝑡𝑖 ) |𝑖 ∈ [𝑘], 𝑡𝑖 < 𝑡𝑖+1}, where 𝑡𝑖 ∈ R+ is the time of occurrence
and 𝑥𝑖 ∈ C is a discrete mark of the 𝑖-th observed event that occurred at time 𝑡𝑖 , with C to be the
set of discrete marks. Here, S𝑘 denotes the sequence with first 𝑘 observed events. We denote the
inter-arrival times of the observed events as, Δ𝑡,𝑘 = 𝑡𝑘 − 𝑡𝑘−1.
However as highlighted in Section 1, there may be instances where an event has actually

taken place, but not recorded with the observed event sequence S. To this end, we introduce the
MTPP for missing events— a latent MTPP— which is characterized by a sequence of hidden events
M𝑟 = {𝜖 𝑗 = (𝑦 𝑗 , 𝜏 𝑗 ) | 𝑗 ∈ [𝑟 ], 𝜏 𝑗 < 𝜏 𝑗+1} where 𝜏 𝑗 ∈ R+ and 𝑦 𝑗 ∈ C are the times and the marks
of the 𝑗-th missing events. Therefore,M𝑟 defines the set of first 𝑟 missing events. Moreover, we
denote the inter-arrival times of the missing events as, Δ𝜏,𝑟 = 𝜏𝑟 − 𝜏𝑟−1.
Note that 𝜏•, 𝑦•, M• and Δ𝜏,• for the MTPP of missing events share similar meanings with 𝑡•,

𝑥•, S• and Δ𝑡,• respectively for the MTPP of observed events. For an intelligible description of our
model, we further define two critical notations 𝑘 and 𝑘 as follows:

𝑘 = argmin
𝑟

{𝜏𝑟 | 𝑡𝑘 < 𝜏𝑟 < 𝑡𝑘+1} (1)

𝑘 = argmax
𝑟

{𝜏𝑟 | 𝑡𝑘 < 𝜏𝑟 < 𝑡𝑘+1} (2)

Here, 𝑘 and 𝑘 are the indices of the first and the last missing events respectively, among those
which have arrived between 𝑘-th and 𝑘 + 1-th observed events. Figure 2 (a) illustrates our setup.

In practice, the arrival times (𝑡 and 𝜏 ) of both observed and missing events are continuous random
variables, whereas the marks (𝑥 and 𝑦) are discrete random variables. Therefore, following the
state-of-the-art MTPP models [11, 34], we model a density function to draw the event timings and a
probability mass function to draw marks, which in turn induce a net density function characterizing
the generative process.

3.2 Our Distinctive Goal

Our goal in this paper is to design an MTPP model which can generate the subsequent observed
(𝑒𝑘+1) and missing events (𝜖𝑟+1) in a recursive manner, conditioned on the history of all events
S𝑘 ∪M𝑟 that have occurred thus far.
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Fig. 1. Overall neural architecture of IMTPP. The figure illustrates the notations, the observed, and missing

point processes in IMTPP. The components concerning observed events and missing events are marked with

blue and red respectively. The figure also illustrates the generation process for events 𝑒𝑘+1 and 𝜖𝑟 .

Given the input sequence of observations S𝐾 consisting of first 𝐾 observed events {𝑒1, 𝑒2, ..., 𝑒𝐾 },
we first train our generative model and then recursively predict the next observed event 𝑒𝐾+1.
Though IMTPP can also predict the missing events but we evaluate the predictive performance
only on observed events since the missing events are not available in practice. We also evaluate the
imputation performance of our model by predicting synthetically deleted events.

Note that, this setting is in contrast to the proposal of [35] that aims to impute the missing events
based on the entire observation sequence S𝐾 using a bi-directional RNN. Specifically, whenever
one new observation arrives, it re-generates all missing events by making a completely new pass
over the backward RNN. As a consequence, such an imputation method not only suffers from the
quadratic complexity with respect to the number of observed events it also has limited practicability
as in a streaming or an online setting the future events are also not available beyond the current
timestamp. Furthermore, their approach is tailored towards imputing missing events based on
the complete observations and not well suited to predict observed events in the face of missing
observations. In contrast, our proposal is designed to generate subsequent observed and missing
events in between previously observed events. Therefore, it does not require to re-generate all
missing events whenever a new observation arrives, which allows it to enjoy a linear complexity
with respect to the number of observed events and can be easily extended to online settings.

4 COMPONENTS OF IMTPP

At the very outset, IMTPP, our proposed generative model, connects two stochastic processes—
one for the observed events, which samples the observed and the other for the missing events—
based on the history of previously generated missing and observed events. Note, that the sequence
of training events that are given as input to IMTPP consists of only the observed events. We model
the missing event sequence through latent random variables, which, along with the previously
observed events, drive a unified generative model for the complete (observed and missing) event
sequence. The overall neural architecture of IMTPP, including the different processes for observed
and missing events is given in Figure 1.
More specifically, given a stream of observed events S𝐾 = {𝑒1 = (𝑥1, 𝑡1), 𝑒2 = (𝑥2, 𝑡2), . . . , 𝑒𝐾 =

(𝑥𝐾 , 𝑡𝐾 )}, if we use the maximum likelihood principle to train IMTPP, then we should maximize the
marginal log-likelihood of the observed stream of events, i.e., log𝑝 (S𝐾 ). However, computation of
log𝑝 (S𝐾 ) demands marginalization with respect to the set of latent missing eventsM

𝐾−1, which
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is typically intractable. Therefore, we resort to maximizing a variational lower bound or evidence
lower bound (ELBO) of the log-likelihood of the observed stream of events S𝐾 . Mathematically, we
note that:

𝑝 (S𝐾 ) =
𝐾−1∏
𝑘=0

∫
M
𝑘

𝑝 (𝑒𝑘+1 | S𝑘 ,M𝑘
) 𝑝 (M

𝑘
) 𝑑𝜔 (M

𝑘
)

= E𝑞 (M
𝐾−1 | S𝐾 )

𝐾−1∏
𝑘=0

𝑝 (𝑒𝑘+1 | S𝑘 ,M𝑘
)

𝑘∏
𝑟=𝑘

𝑝 (𝜖𝑟 | S𝑘 ,M𝑟−1)

𝑘∏
𝑟=𝑘

𝑞(𝜖𝑟 | 𝑒𝑘+1,S𝑘 ,M𝑟−1)

(3)

where, 𝜔 (M) is the measure of the set M, 𝑞 is an approximate posterior distribution which aims
to interpolate missing events 𝜖𝑟 within the interval (𝑡𝑘 , 𝑡𝑘+1), based on the knowledge of the next
observed event 𝑒𝑘 , along with all previous events S𝑘 ∪M𝑟−1, and 𝑘 , 𝑘 . Recall that 𝑘 (𝑘) is the index
𝑟 of the first (last) missing event 𝜖𝑟 among those which have arrived between 𝑘-th and 𝑘 + 1-th
observed events, i.e., 𝑘 = argmin𝑟 {𝜏𝑟 | 𝑡𝑘 < 𝜏𝑟 < 𝑡𝑘+1} and 𝑘 = argmax𝑟 {𝜏𝑟 | 𝑡𝑘 < 𝜏𝑟 < 𝑡𝑘+1}. Next,
by applying Jensen inequality2 over the likelihood function, log𝑝 (S𝐾 ) is at-least:

E𝑞 (M
𝐾−1 | S𝐾

)

𝐾−1∑︁
𝑘=0

log𝑝 (𝑒𝑘+1 | S𝑘 ,M𝑘
) −

𝐾−1∑︁
𝑘=0

𝑘∑︁
𝑟=𝑘

KL
[
𝑞(𝜖𝑟 | 𝑒𝑘+1,S𝑘 ,M𝑟−1) | |𝑝 (𝜖𝑟 | S𝑘 ,M𝑟−1)

]
, (4)

While the above inequality holds for any distribution 𝑞, the quality of this lower bound depends on
the expressivity of 𝑞, which we would model using a deep recurrent neural network. Moreover, the
above lower bound suggests that our model consists of the following components.

(1) MTPP for observed events. The distribution 𝑝 (𝑒𝑘+1 | S𝑘 ,M𝑘
) models the MTPP for ob-

served events, which generates the (𝑘 + 1)-th event, 𝑒𝑘+1, based on the history of all 𝑘 observed
events S𝑘 and all missing eventsM

𝑘
generated so far.

(2) Prior MTPP for missing events. The distribution 𝑝 (𝜖𝑟 | S𝑘 ,M𝑟−1) is the prior model of
the MTPP for missing events. It generates the 𝑟 -th missing event 𝜖𝑟 after the observed event 𝑒𝑘 ,
based on the prior information— the history with all 𝑘 observed events S𝑘 and all missing events
M𝑟−1 generated so far.

(3) PosteriorMTPP formissing events.Given the set of observed eventsS𝑘+1 = {𝑒1, 𝑒2, . . . , 𝑒𝑘+1},
the distribution 𝑞(𝜖𝑟 | 𝑒𝑘+1,S𝑘 ,M𝑟−1) generates the 𝑟 -th missing event 𝜖𝑟 , after the knowledge of the
subsequent observed event 𝑒𝑘+1 is taken into account, along with information about all previously
observed events S𝑘 and all missing events M𝑟−1 generated so far.

5 ARCHITECTURE OF IMTPP

We first present a high-level overview of deep neural network parameterization of different compo-
nents of IMTPP model and then describe component-wise architecture in detail. Finally, we briefly
present the salient features of our proposal.

5.1 High-level Overview

We parameterize different components of IMTPP, introduced in the previous section using deep
neural networks. More specifically, we approximate the MTPP for observed events, 𝑝 (𝑒𝑘+1 | S𝑘 ,M𝑘

)
using 𝑝𝜃 and the posterior MTPP for missing events 𝑞(𝜖𝑟 | 𝑒𝑘+1,S𝑘 ,M𝑟−1) using 𝑞𝜙 , both implemented
as neural networks with parameters 𝜃 and 𝜙 respectively. We set the prior MTPP for missing events

2https://en.wikipedia.org/wiki/Jensen’s_inequality
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wwwx,v

<latexit sha1_base64="7nWGp6aX6bd1MBEULKoQHavVwBA=">AAAB9HicbVBNSwMxEJ2tX7V+VT16CRbBg5Rdqeix6MVjBfsB7VKyadqGJtk1yVbLsr/DiwdFvPpjvPlvTNs9aOuDgcd7M8zMCyLOtHHdbye3srq2vpHfLGxt7+zuFfcPGjqMFaF1EvJQtQKsKWeS1g0znLYiRbEIOG0Go5up3xxTpVko780kor7AA8n6jGBjJb8TiSB5TLvJ09k47RZLbtmdAS0TLyMlyFDrFr86vZDEgkpDONa67bmR8ROsDCOcpoVOrGmEyQgPaNtSiQXVfjI7OkUnVumhfqhsSYNm6u+JBAutJyKwnQKboV70puJ/Xjs2/Ss/YTKKDZVkvqgfc2RCNE0A9ZiixPCJJZgoZm9FZIgVJsbmVLAheIsvL5PGedmrlC/uKqXqdRZHHo7gGE7Bg0uowi3UoA4EHuAZXuHNGTsvzrvzMW/NOdnMIfyB8/kDXf+Sfw==</latexit>

+

<latexit sha1_base64="3DnS3vImeIO9jz1IyYjxDR65oEU=">AAAB6HicbVDLSgNBEOyNrxhfUY9eBoMgCGFXInoMevGYgHlAsoTZSW8yZnZ2mZkVQsgXePGgiFc/yZt/4yTZgyYWNBRV3XR3BYng2rjut5NbW9/Y3MpvF3Z29/YPiodHTR2nimGDxSJW7YBqFFxiw3AjsJ0opFEgsBWM7mZ+6wmV5rF8MOME/YgOJA85o8ZK9YteseSW3TnIKvEyUoIMtV7xq9uPWRqhNExQrTuemxh/QpXhTOC00E01JpSN6AA7lkoaofYn80On5MwqfRLGypY0ZK7+npjQSOtxFNjOiJqhXvZm4n9eJzXhjT/hMkkNSrZYFKaCmJjMviZ9rpAZMbaEMsXtrYQNqaLM2GwKNgRv+eVV0rwse5XyVb1Sqt5mceThBE7hHDy4hircQw0awADhGV7hzXl0Xpx352PRmnOymWP4A+fzB3QdjLc=</latexit>

WWW s,s,WWW s,v,

<latexit sha1_base64="10zWS9OWZHJUzLGj6ZpET3V8+Co=">AAACBnicbVDLSgMxFM3UV62vUZciBIvgopQZqeiy6MZlBfuAdhgyaaYNTTJDkimUYVZu/BU3LhRx6ze4829M21nU1gMXTs65l9x7gphRpR3nxyqsrW9sbhW3Szu7e/sH9uFRS0WJxKSJIxbJToAUYVSQpqaakU4sCeIBI+1gdDf122MiFY3Eo57ExONoIGhIMdJG8u3TXsyDtJ35qaqorAIXnuOs4ttlp+rMAFeJm5MyyNHw7e9eP8IJJ0JjhpTquk6svRRJTTEjWamXKBIjPEID0jVUIE6Ul87OyOC5UfowjKQpoeFMXZxIEVdqwgPTyZEeqmVvKv7ndRMd3ngpFXGiicDzj8KEQR3BaSawTyXBmk0MQVhSsyvEQyQR1ia5kgnBXT55lbQuq26tevVQK9dv8ziK4AScgQvggmtQB/egAZoAgyfwAt7Au/VsvVof1ue8tWDlM8fgD6yvXzYzmPY=</latexit>

wwws,k, aaas

<latexit sha1_base64="I0BAguJoKmtzIpAGE8TBlv3UxhU=">AAACAnicbVDLSsNAFL3xWesr6krcDBbBRSmJVHRZdOOygn1AG8JkOm2HTiZhZqKUENz4K25cKOLWr3Dn3zhts9DWAxfOnHMvc+8JYs6Udpxva2l5ZXVtvbBR3Nza3tm19/abKkokoQ0S8Ui2A6woZ4I2NNOctmNJcRhw2gpG1xO/dU+lYpG40+OYeiEeCNZnBGsj+fYh6sZhkD5kfqrKo6w8e+LMV75dcirOFGiRuDkpQY66b391exFJQio04VipjuvE2kux1IxwmhW7iaIxJiM8oB1DBQ6p8tLpCRk6MUoP9SNpSmg0VX9PpDhUahwGpjPEeqjmvYn4n9dJdP/SS5mIE00FmX3UTzjSEZrkgXpMUqL52BBMJDO7IjLEEhNtUiuaENz5kxdJ86ziVivnt9VS7SqPowBHcAyn4MIF1OAG6tAAAo/wDK/wZj1ZL9a79TFrXbLymQP4A+vzByd0l0o=</latexit>

sssk�1 ! sssk

<latexit sha1_base64="iSFQSzdozAoOLDhNGsPV8dHO2Kg=">AAACBHicbVDLSgMxFM3UV62vUZfdBIvgxjIjFV0W3bisYB/QGYZMmmnDJJkhyQhl6MKNv+LGhSJu/Qh3/o1pO4K2HggczrmXm3PClFGlHefLKq2srq1vlDcrW9s7u3v2/kFHJZnEpI0TlsheiBRhVJC2ppqRXioJ4iEj3TC+nvrdeyIVTcSdHqfE52goaEQx0kYK7KqX8jBXkyCPT90J9HQCf5Q4sGtO3ZkBLhO3IDVQoBXYn94gwRknQmOGlOq7Tqr9HElNMSOTipcpkiIcoyHpGyoQJ8rPZyEm8NgoAxgl0jyh4Uz9vZEjrtSYh2aSIz1Si95U/M/rZzq69HMq0kwTgeeHooxBE3XaCBxQSbBmY0MQltT8FeIRkghr01vFlOAuRl4mnbO626if3zZqzauijjKogiNwAlxwAZrgBrRAG2DwAJ7AC3i1Hq1n6816n4+WrGLnEPyB9fEN0BqYNg==</latexit>

WWW t,s,WWW t,m, aaat

<latexit sha1_base64="1iHBemziWrvYqeHh4k4f2dVDMaI=">AAACEHicbVDLSgMxFM3UV62vqks3wSK6KGVGKrosunFZwT6gHYZMmmlDk5khuSOUYT7Bjb/ixoUibl26829MH0JtPRA495x7ubnHjwXXYNvfVm5ldW19I79Z2Nre2d0r7h80dZQoyho0EpFq+0QzwUPWAA6CtWPFiPQFa/nDm7HfemBK8yi8h1HMXEn6IQ84JWAkr3jajaWftjIvhbLOyniulL8lyTzwiiW7Yk+Al4kzIyU0Q90rfnV7EU0kC4EKonXHsWNwU6KAU8GyQjfRLCZ0SPqsY2hIJNNuOjkowydG6eEgUuaFgCfq/ERKpNYj6ZtOSWCgF72x+J/XSSC4clMexgmwkE4XBYnAEOFxOrjHFaMgRoYQqrj5K6YDoggFk2HBhOAsnrxMmucVp1q5uKuWatezOPLoCB2jM+SgS1RDt6iOGoiiR/SMXtGb9WS9WO/Wx7Q1Z81mDtEfWJ8/CcydOg==</latexit>

xxxk�1

<latexit sha1_base64="U7AW9mQbAr7EmhBz7XjX3Ce7fVE=">AAAB9HicdVDLSsNAFJ3UV62vqks3g0VwY5iERNtd0Y3LCvYBbSiT6aQdOnk4MymWkO9w40IRt36MO//G6UNQ0QMXDufcy733+AlnUiH0YRRWVtfWN4qbpa3tnd298v5BS8apILRJYh6Ljo8l5SyiTcUUp51EUBz6nLb98dXMb0+okCyObtU0oV6IhxELGMFKS14vCf3sPu9n4zMr75cryER21XVsiEzbRTWrpomLrNq5Ay0TzVEBSzT65ffeICZpSCNFOJaya6FEeRkWihFO81IvlTTBZIyHtKtphEMqvWx+dA5PtDKAQSx0RQrO1e8TGQ6lnIa+7gyxGsnf3kz8y+umKqh6GYuSVNGILBYFKYcqhrME4IAJShSfaoKJYPpWSEZYYKJ0TiUdwten8H/Ssk3LMd0bp1K/XMZRBEfgGJwCC1yAOrgGDdAEBNyBB/AEno2J8Wi8GK+L1oKxnDkEP2C8fQJMS5J3</latexit>

p✓,�

<latexit sha1_base64="56uHtmYdlptV3mBeu9A0ZPepG0Q=">AAAB/HicbVDLSgNBEJz1GeNrNUcvg0HwIGFXInoM6sFjBPOAbAizk04yZPbBTK8QlvVXvHhQxKsf4s2/cZLsQRMLGoqqbrq7/FgKjY7zba2srq1vbBa2its7u3v79sFhU0eJ4tDgkYxU22capAihgQIltGMFLPAltPzxzdRvPYLSIgofcBJDN2DDUAwEZ2iknl1K46yXejgCZGfeLUhkWc8uOxVnBrpM3JyUSY56z/7y+hFPAgiRS6Z1x3Vi7KZMoeASsqKXaIgZH7MhdAwNWQC6m86Oz+iJUfp0EClTIdKZ+nsiZYHWk8A3nQHDkV70puJ/XifBwVU3FWGcIIR8vmiQSIoRnSZB+0IBRzkxhHElzK2Uj5hiHE1eRROCu/jyMmmeV9xq5eK+Wq5d53EUyBE5JqfEJZekRu5InTQIJxPyTF7Jm/VkvVjv1se8dcXKZ0rkD6zPHx7tlRQ=</latexit>

U•,•U•,•U•,•

<latexit sha1_base64="VD6Be3xssqIavdN04myoL1ym8ZA=">AAACAnicbVDLSsNAFJ34rPUVdSVuBovgQkoiFV0W3bisYNpCE8JkOmmHzkzCzEQoIbjxV9y4UMStX+HOv3HaZqGtBy73cM69zNwTpYwq7Tjf1tLyyuraemWjurm1vbNr7+23VZJJTDycsER2I6QIo4J4mmpGuqkkiEeMdKLRzcTvPBCpaCLu9TglAUcDQWOKkTZSaB/6KY9yL8z9KGOM6LOyF0Vo15y6MwVcJG5JaqBEK7S//H6CM06Exgwp1XOdVAc5kppiRoqqnymSIjxCA9IzVCBOVJBPTyjgiVH6ME6kKaHhVP29kSOu1JhHZpIjPVTz3kT8z+tlOr4KcirSTBOBZw/FGYM6gZM8YJ9KgjUbG4KwpOavEA+RRFib1KomBHf+5EXSPq+7jfrFXaPWvC7jqIAjcAxOgQsuQRPcghbwAAaP4Bm8gjfryXqx3q2P2eiSVe4cgD+wPn8AEj+X4A==</latexit>

�t,k+1 ⇠

<latexit sha1_base64="pFjsGzuG926XMggqRe4IEatf5tM=">AAAB/HicdVDJSgNBEO1xjXGL5uilMQiCMvSERJNbUA8eI5gFMkPo6XSSJj0L3TVCGOKvePGgiFc/xJt/Y2cRVPRBweO9Kqrq+bEUGgj5sJaWV1bX1jMb2c2t7Z3d3N5+U0eJYrzBIhmptk81lyLkDRAgeTtWnAa+5C1/dDn1W3dcaRGFtzCOuRfQQSj6glEwUjeXd6+4BNpN4XR04kywq0XQzRWITYqVcqmIiV0sk6pTNaRMnOpZCTs2maGAFqh3c+9uL2JJwENgkmrdcUgMXkoVCCb5JOsmmseUjeiAdwwNacC1l86On+Ajo/RwP1KmQsAz9ftESgOtx4FvOgMKQ/3bm4p/eZ0E+hUvFWGcAA/ZfFE/kRgiPE0C94TiDOTYEMqUMLdiNqSKMjB5ZU0IX5/i/0mzaDslu3xTKtQuFnFk0AE6RMfIQeeohq5RHTUQQ2P0gJ7Qs3VvPVov1uu8dclazOTRD1hvnzN2lII=</latexit>

xk+1 ⇠

<latexit sha1_base64="yNCJ+sRnZa97gTxjQuiqQETHxlA=">AAAB83icdVDLSsNAFJ3UV62vqks3g0UQhDApiba7ohuXFewDmlAm00k7dCYJMxOxhP6GGxeKuPVn3Pk3Th+Cih64cDjnXu69J0w5UxqhD6uwsrq2vlHcLG1t7+zulfcP2irJJKEtkvBEdkOsKGcxbWmmOe2mkmIRctoJx1czv3NHpWJJfKsnKQ0EHsYsYgRrI/n3/Xx85kyhr5jolyvIRtWa51Yhsqseqjt1Qzzk1M9d6NhojgpYotkvv/uDhGSCxppwrFTPQakOciw1I5xOS36maIrJGA9pz9AYC6qCfH7zFJ4YZQCjRJqKNZyr3ydyLJSaiNB0CqxH6rc3E//yepmOakHO4jTTNCaLRVHGoU7gLAA4YJISzSeGYCKZuRWSEZaYaBNTyYTw9Sn8n7SrtuPa3o1baVwu4yiCI3AMToEDLkADXIMmaAECUvAAnsCzlVmP1ov1umgtWMuZQ/AD1tsn466RnQ==</latexit>

tk � tk�1

<latexit sha1_base64="r+hbt0vdq3NjOIxREhydzj8suzo=">AAAB83icdVDJSgNBEO2JW4xb1KOXxiB4ydAzTDS5Bb14jGAWSELo6XSSZnoWumuEMOQ3vHhQxKs/482/sbMIKvqg4PFeFVX1/EQKDYR8WLm19Y3Nrfx2YWd3b/+geHjU0nGqGG+yWMaq41PNpYh4EwRI3kkUp6EvedsPrud++54rLeLoDqYJ74d0HImRYBSM1INBgMswyIKyMxsUS8QmbrXiuZjYboXUnJohFeLULjzs2GSBElqhMSi+94YxS0MeAZNU665DEuhnVIFgks8KvVTzhLKAjnnX0IiGXPezxc0zfGaUIR7FylQEeKF+n8hoqPU09E1nSGGif3tz8S+vm8Ko2s9ElKTAI7ZcNEolhhjPA8BDoTgDOTWEMiXMrZhNqKIMTEwFE8LXp/h/0nJtx7Mrt16pfrWKI49O0Ck6Rw66RHV0gxqoiRhK0AN6Qs9Waj1aL9brsjVnrWaO0Q9Yb5+HiZFh</latexit>

P✓,x

<latexit sha1_base64="mz8jU2InqNC3zJVRfwt/hqDygJA=">AAAB/nicbVDLSsNAFJ34rPUVFVdugkVwISWRii6LblxWsA9oQphMJ+3QySTM3IglBPwVNy4Ucet3uPNvnLRZaOuBgcM593LPnCDhTIFtfxtLyyura+uVjerm1vbOrrm331FxKgltk5jHshdgRTkTtA0MOO0lkuIo4LQbjG8Kv/tApWKxuIdJQr0IDwULGcGgJd88dCMMoyDIWrmfuTCigM8ec9+s2XV7CmuROCWpoRIt3/xyBzFJIyqAcKxU37ET8DIsgRFO86qbKppgMsZD2tdU4IgqL5vGz60TrQysMJb6CbCm6u+NDEdKTaJATxZh1bxXiP95/RTCKy9jIkmBCjI7FKbcgtgqurAGTFICfKIJJpLprBYZYYkJ6MaqugRn/suLpHNedxr1i7tGrXld1lFBR+gYnSIHXaImukUt1EYEZegZvaI348l4Md6Nj9noklHuHKA/MD5/AMUelgQ=</latexit>

LognormalLognormalLognormal

<latexit sha1_base64="s9Vo1MH8DLHX39G5frcLWVtJ3aQ=">AAACAXicdVDLSgNBEJz1bXxFvQheBoPgKWziLiY30YsHDxFMIiQhzE4mccg8lpleMSzx4q948aCIV//Cm3/j5CGoaEFDUdVNd1cUC27B9z+8mdm5+YXFpeXMyura+kZ2c6tmdWIoq1IttLmKiGWCK1YFDoJdxYYRGQlWj/qnI79+w4zlWl3CIGYtSXqKdzkl4KR2dqcZyyhtArsFS9Nz3VPaSCKGw3Y25+f9w3JYKmFHwjDwwxEpBkG5jAt5f4wcmqLSzr43O5omkimggljbKPgxtFJigFPBhplmYllMaJ/0WMNRRSSzrXT8wRDvO6WDu9q4UoDH6veJlEhrBzJynZLAtf3tjcS/vEYC3VIr5SpOgCk6WdRNBAaNR3HgDjeMghg4Qqjh7lZMr4khFFxoGRfC16f4f1Ir5gtBPrwIcscn0ziW0C7aQweogI7QMTpDFVRFFN2hB/SEnr1779F78V4nrTPedGYb/YD39glSoJgg</latexit>

mmmk

<latexit sha1_base64="REot61VLIHrAokEBYNyt6oFsEVc=">AAAB/3icdVDNS8MwHE39nPOrKnjxEhyCp9LJZrfb0IvHCe4D1lLSLNvCkrYkqTBqD/4rXjwo4tV/w5v/jelWQUUfBB7vvV/yywtiRqWy7Q9jaXlldW29tFHe3Nre2TX39rsySgQmHRyxSPQDJAmjIekoqhjpx4IgHjDSC6aXud+7JULSKLxRs5h4HI1DOqIYKS355qEb8yDlmZ+6kc7l16TTLPPNim05jUbdbkLbsufIybntOE1YLZQKKND2zXd3GOGEk1BhhqQcVO1YeSkSimJGsrKbSBIjPEVjMtA0RJxIL53vn8ETrQzhKBL6hArO1e8TKeJSznigkxypifzt5eJf3iBRo4aX0jBOFAnx4qFRwqCKYF4GHFJBsGIzTRAWVO8K8QQJhJWurKxL+Pop/J90z6xqzapf1yqti6KOEjgCx+AUVIEDWuAKtEEHYHAHHsATeDbujUfjxXhdRJeMYuYA/IDx9gnTQ5dL</latexit>

(a) MTPP for observations 𝑝𝜃

+

<latexit sha1_base64="3DnS3vImeIO9jz1IyYjxDR65oEU=">AAAB6HicbVDLSgNBEOyNrxhfUY9eBoMgCGFXInoMevGYgHlAsoTZSW8yZnZ2mZkVQsgXePGgiFc/yZt/4yTZgyYWNBRV3XR3BYng2rjut5NbW9/Y3MpvF3Z29/YPiodHTR2nimGDxSJW7YBqFFxiw3AjsJ0opFEgsBWM7mZ+6wmV5rF8MOME/YgOJA85o8ZK9YteseSW3TnIKvEyUoIMtV7xq9uPWRqhNExQrTuemxh/QpXhTOC00E01JpSN6AA7lkoaofYn80On5MwqfRLGypY0ZK7+npjQSOtxFNjOiJqhXvZm4n9eJzXhjT/hMkkNSrZYFKaCmJjMviZ9rpAZMbaEMsXtrYQNqaLM2GwKNgRv+eVV0rwse5XyVb1Sqt5mceThBE7hHDy4hircQw0awADhGV7hzXl0Xpx352PRmnOymWP4A+fzB3QdjLc=</latexit>

⌧r�1 � ⌧r�2

<latexit sha1_base64="hsoMvyWDtqYhPDBy61dyHySSc0A=">AAAB/3icdVDLSsNAFJ34rPUVFdy4GSyCm4akb3dFNy4r2Ae0IUymk3bo5MHMRCgxC3/FjQtF3Pob7vwbJ32Aih64cDjnXu69x40YFdI0P7WV1bX1jc3cVn57Z3dvXz847Igw5pi0cchC3nORIIwGpC2pZKQXcYJ8l5GuO7nK/O4d4YKGwa2cRsT20SigHsVIKsnRjwcSxU7Ci1YKi0teSh29YBr1RqNcK0PTMGfISK1yUa9Ca6EUwAItR/8YDEMc+ySQmCEh+pYZSTtBXFLMSJofxIJECE/QiPQVDZBPhJ3M7k/hmVKG0Au5qkDCmfp9IkG+EFPfVZ0+kmPx28vEv7x+LL2GndAgiiUJ8HyRFzMoQ5iFAYeUEyzZVBGEOVW3QjxGHGGpIsurEJafwv9Jp2RYFaN6Uyk0Lxdx5MAJOAXnwAJ10ATXoAXaAIN78AiewYv2oD1pr9rbvHVFW8wcgR/Q3r8AZKCVuQ==</latexit>

ggg⌧,� , bbb�

<latexit sha1_base64="u0hrz+0nD91QkA9CsvS+KiZ/bFY=">AAACDnicbZDLSsNAFIYn9VbrLerSzWApuCglkYoui25cVrAXaEI4mU7boTNJmJkIJeQJ3Pgqblwo4ta1O9/G6WWhrT8M/HznHM6cP0w4U9pxvq3C2vrG5lZxu7Szu7d/YB8etVWcSkJbJOax7IagKGcRbWmmOe0mkoIIOe2E45tpvfNApWJxdK8nCfUFDCM2YAS0QYFd8RIRZsM8yDwNadUbghCQV/EMh3kwB4FddmrOTHjVuAtTRgs1A/vL68ckFTTShINSPddJtJ+B1Ixwmpe8VNEEyBiGtGdsBIIqP5udk+OKIX08iKV5kcYz+nsiA6HURISmU4AeqeXaFP5X66V6cOVnLEpSTSMyXzRIOdYxnmaD+0xSovnEGCCSmb9iMgIJRJsESyYEd/nkVdM+r7n12sVdvdy4XsRRRCfoFJ0hF12iBrpFTdRCBD2iZ/SK3qwn68V6tz7mrQVrMXOM/sj6/AHm9Zym</latexit>

ggg⌧,�

<latexit sha1_base64="pFDMHO4bOfKma37Dwzkg7hy+GzI=">AAAB/3icbVBNS8NAEN34WetXVPDiZbEIHqQkUtFj0YvHCvYDmlAm2226dDcJuxuhxBz8K148KOLVv+HNf+O2zUFbHww83pthZl6QcKa043xbS8srq2vrpY3y5tb2zq69t99ScSoJbZKYx7ITgKKcRbSpmea0k0gKIuC0HYxuJn77gUrF4uhejxPqCwgjNmAEtJF69iH2EhFkYd7LPA3pmReCEJD37IpTdabAi8QtSAUVaPTsL68fk1TQSBMOSnVdJ9F+BlIzwmle9lJFEyAjCGnX0AgEVX42vT/HJ0bp40EsTUUaT9XfExkIpcYiMJ0C9FDNexPxP6+b6sGVn7EoSTWNyGzRIOVYx3gSBu4zSYnmY0OASGZuxWQIEog2kZVNCO78y4ukdV51a9WLu1qlfl3EUUJH6BidIhddojq6RQ3URAQ9omf0it6sJ+vFerc+Zq1LVjFzgP7A+vwBIsKWMQ==</latexit>

GGGm,m,GGGm,�

<latexit sha1_base64="FngvNzVJMxVFqaVzfyjqdi063y8=">AAACCnicbVC7TsMwFHXKq5RXgJHFUCExVFWCimCsYICxSPQhNVHkuG5r1XYi20Gqosws/AoLAwix8gVs/A1um6G0HOlKx+fcK997wphRpR3nxyqsrK6tbxQ3S1vbO7t79v5BS0WJxKSJIxbJTogUYVSQpqaakU4sCeIhI+1wdDPx249EKhqJBz2Oic/RQNA+xUgbKbCPvZiH6W0WpLzCswqce3oDxDnKArvsVJ0p4DJxc1IGORqB/e31IpxwIjRmSKmu68TaT5HUFDOSlbxEkRjhERqQrqECcaL8dHpKBk+N0oP9SJoSGk7V+YkUcaXGPDSdHOmhWvQm4n9eN9H9Kz+lIk40EXj2UT9hUEdwkgvsUUmwZmNDEJbU7ArxEEmEtUmvZEJwF09eJq3zqlurXtzXyvXrPI4iOAIn4Ay44BLUwR1ogCbA4Am8gDfwbj1br9aH9TlrLVj5zCH4A+vrF00smqk=</latexit>

mmmr�2 ! mmmr�1

<latexit sha1_base64="cNPEoHsRSELjwZcVuMBY6VsI1Wg=">AAACCHicbVC7TsMwFHV4lvIKMDJgUSGxUCVVEYwVLIxFog+piSLHdVqrthPZDlIVZWThV1gYQIiVT2Djb3DbDKXlSJaOzrlX1+eECaNKO86PtbK6tr6xWdoqb+/s7u3bB4dtFacSkxaOWSy7IVKEUUFammpGuokkiIeMdMLR7cTvPBKpaCwe9DghPkcDQSOKkTZSYJ94CQ8zngeZvKjl0NMxnFPcPLArTtWZAi4TtyAVUKAZ2N9eP8YpJ0JjhpTquU6i/QxJTTEjedlLFUkQHqEB6RkqECfKz6ZBcnhmlD6MYmme0HCqzm9kiCs15qGZ5EgP1aI3Ef/zeqmOrv2MiiTVRODZoShl0MSdtAL7VBKs2dgQhCU1f4V4iCTC2nRXNiW4i5GXSbtWdevVy/t6pXFT1FECx+AUnAMXXIEGuANN0AIYPIEX8AberWfr1fqwPmejK1axcwT+wPr6BZvumbc=</latexit>

sssk

<latexit sha1_base64="DV7kuerZAkVNuchtuNE0l5TlO/U=">AAAB8nicdVDLSsNAFJ3UV62vqks3g0VwFSah0XZXdOOygn1AGspkOmmHTiZhZiKUkM9w40IRt36NO//G6UNQ0QMXDufcy733hClnSiP0YZXW1jc2t8rblZ3dvf2D6uFRVyWZJLRDEp7IfogV5UzQjmaa034qKY5DTnvh9Hru9+6pVCwRd3qW0iDGY8EiRrA2kj9I4zBXxTCfFsNqDdnIbXh1FyLb9VDTaRriIad5UYeOjRaogRXaw+r7YJSQLKZCE46V8h2U6iDHUjPCaVEZZIqmmEzxmPqGChxTFeSLkwt4ZpQRjBJpSmi4UL9P5DhWahaHpjPGeqJ+e3PxL8/PdNQIcibSTFNBlouijEOdwPn/cMQkJZrPDMFEMnMrJBMsMdEmpYoJ4etT+D/purZTt73beq11tYqjDE7AKTgHDrgELXAD2qADCEjAA3gCz5a2Hq0X63XZWrJWM8fgB6y3T2L6kgA=</latexit>

q�,�

<latexit sha1_base64="n+IOPmm4XmDc+E2IQ4krum+ZYLc=">AAAB+HicdVDLSsNAFJ3UV62PRl26GSyCCwlJ7GtZ1IXLCvYBTQiT6aQdOnk4MxFq6Je4caGIWz/FnX/jpK2gogcuHM65l3vv8RNGhTTND62wsrq2vlHcLG1t7+yW9b39rohTjkkHxyzmfR8JwmhEOpJKRvoJJyj0Gen5k4vc790RLmgc3chpQtwQjSIaUIykkjy9fOtlTjKmp84lYRLNPL1iGuaZbTbrUJGaWbetnNi1RrUOLcOcowKWaHv6uzOMcRqSSGKGhBhYZiLdDHFJMSOzkpMKkiA8QSMyUDRCIRFuNj98Bo+VMoRBzFVFEs7V7xMZCoWYhr7qDJEci99eLv7lDVIZNN2MRkkqSYQXi4KUQRnDPAU4pJxgyaaKIMypuhXiMeIIS5VVSYXw9Sn8n3Rtw6oatetqpXW+jKMIDsEROAEWaIAWuAJt0AEYpOABPIFn7V571F6010VrQVvOHIAf0N4+AQVmk1k=</latexit>

Q�,y

<latexit sha1_base64="O82aKMQ7V2t4lWSCGzzjdf0Ocpw=">AAAB/HicbVDLSsNAFL3xWesr2qWbwSK4kJJIRZdFNy5bsA9oQphMJ+3QyYOZiRBC/BU3LhRx64e482+ctllo64GBwzn3cs8cP+FMKsv6NtbWNza3tis71d29/YND8+i4J+NUENolMY/FwMeSchbRrmKK00EiKA59Tvv+9G7m9x+pkCyOHlSWUDfE44gFjGClJc+sOSFWE9/PO4WXO8mEXWSFZ9athjUHWiV2SepQou2ZX84oJmlII0U4lnJoW4lycywUI5wWVSeVNMFkisd0qGmEQyrdfB6+QGdaGaEgFvpFCs3V3xs5DqXMQl9PzqLKZW8m/ucNUxXcuDmLklTRiCwOBSlHKkazJtCICUoUzzTBRDCdFZEJFpgo3VdVl2Avf3mV9C4bdrNx1WnWW7dlHRU4gVM4BxuuoQX30IYuEMjgGV7hzXgyXox342MxumaUOzX4A+PzByrxlR0=</latexit>

LogNormalLogNormalLogNormal

<latexit sha1_base64="D7WLE+j/etF66sbp45HBdkJhYag=">AAACAXicbVBNS8NAEN34WetX1IvgJVgETyWRih6LXjyIVLAf0ISy2W7bpbvZsDsRS4gX/4oXD4p49V9489+4bXPQ1gcDj/dmmJkXxpxpcN1va2FxaXlltbBWXN/Y3Nq2d3YbWiaK0DqRXKpWiDXlLKJ1YMBpK1YUi5DTZji8HPvNe6o0k9EdjGIaCNyPWI8RDEbq2Pt+LMLUB/oAmqTXsn8jlcA8yzp2yS27EzjzxMtJCeWodewvvytJImgEhGOt254bQ5BiBYxwmhX9RNMYkyHu07ahERZUB+nkg8w5MkrX6UllKgJnov6eSLHQeiRC0ykwDPSsNxb/89oJ9M6DlEVxAjQi00W9hDsgnXEcTpcpSoCPDMFEMXOrQwZYYQImtKIJwZt9eZ40TspepXx6WylVL/I4CugAHaJj5KEzVEVXqIbqiKBH9Ixe0Zv1ZL1Y79bHtHXBymf20B9Ynz+te5ew</latexit>

TruncatedTruncatedTruncated

<latexit sha1_base64="5afmuY5LTvc9ChZ+ecxRuveTuEo=">AAAB/3icbVBNS8NAEN3Ur1q/ooIXL8EieCqJVPRY9OKxQr+gDWWznbZLN5uwOxFLzMG/4sWDIl79G978N24/Dtr6YODx3gwz84JYcI2u+23lVlbX1jfym4Wt7Z3dPXv/oKGjRDGos0hEqhVQDYJLqCNHAa1YAQ0DAc1gdDPxm/egNI9kDccx+CEdSN7njKKRuvZRJw6DtIPwgGlNJdLo0Muyrl10S+4UzjLx5qRI5qh27a9OL2JJCBKZoFq3PTdGP6UKOROQFTqJhpiyER1A21BJQ9B+Or0/c06N0nP6kTIl0ZmqvydSGmo9DgPTGVIc6kVvIv7ntRPsX/kpl3GCINlsUT8RDkbOJAynxxUwFGNDKFPc3OqwIVWUoYmsYELwFl9eJo3zklcuXdyVi5XreRx5ckxOyBnxyCWpkFtSJXXCyCN5Jq/kzXqyXqx362PWmrPmM4fkD6zPHzwBluU=</latexit>

�⌧,r ⇠

<latexit sha1_base64="wK04djhaYV0BE5IR6vS1KgTHGrc=">AAAB/HicdVDJSgNBEO1xjXEbzdFLYxA8SJjRLOYW1IPHCGaBTAg9nZ6kSc9Cd40QhvgrXjwo4tUP8ebf2JOMoKIPCh7vVVFVz40EV2BZH8bS8srq2npuI7+5tb2za+7tt1UYS8paNBSh7LpEMcED1gIOgnUjyYjvCtZxJ5ep37ljUvEwuIVpxPo+GQXc45SAlgZmwbliAsggcYDEJ3LmKO4PzKJVqtXPKlUbWyVrjpRULbtewXamFFGG5sB8d4YhjX0WABVEqZ5tRdBPiAROBZvlnVixiNAJGbGepgHxmeon8+Nn+EgrQ+yFUlcAeK5+n0iIr9TUd3WnT2Csfnup+JfXi8E77yc8iGJgAV0s8mKBIcRpEnjIJaMgppoQKrm+FdMxkYSCziuvQ/j6FP9P2qclu1yq3JSLjYssjhw6QIfoGNmohhroGjVRC1E0RQ/oCT0b98aj8WK8LlqXjGymgH7AePsEOhSVKw==</latexit>

VVV •,•

<latexit sha1_base64="4kC6Y4YPWSdTLzlwx1AZuMIigvA=">AAACAnicbVDLSsNAFL3xWesr6krcDBbBhZREKrosunFZwT6gCWEynbZDZ5IwMxFKCG78FTcuFHHrV7jzb5y2WWjrgcs9nHMvM/eECWdKO863tbS8srq2Xtoob25t7+zae/stFaeS0CaJeSw7IVaUs4g2NdOcdhJJsQg5bYejm4nffqBSsTi61+OE+gIPItZnBGsjBfahl4gwa+VB5oUp51SfFT0P7IpTdaZAi8QtSAUKNAL7y+vFJBU00oRjpbquk2g/w1Izwmle9lJFE0xGeEC7hkZYUOVn0xNydGKUHurH0lSk0VT9vZFhodRYhGZSYD1U895E/M/rprp/5WcsSlJNIzJ7qJ9ypGM0yQP1mKRE87EhmEhm/orIEEtMtEmtbEJw509eJK3zqlurXtzVKvXrIo4SHMExnIILl1CHW2hAEwg8wjO8wpv1ZL1Y79bHbHTJKnYO4A+szx8VVZfh</latexit>

gggm,⌧ , bbbm

<latexit sha1_base64="t4m4aMlz5oXUR+/f1IhWp1HKHuo=">AAACBHicbVDLSsNAFJ3UV62vqMtuBovgopREKrosunFZwT6gCWEynbZDZyZhZiKUkIUbf8WNC0Xc+hHu/BunaRbaeuDC4Zx7ufeeMGZUacf5tkpr6xubW+Xtys7u3v6BfXjUVVEiMengiEWyHyJFGBWko6lmpB9LgnjISC+c3sz93gORikbiXs9i4nM0FnREMdJGCuyqF/MwHWdByuueRklWh7kSZgEP7JrTcHLAVeIWpAYKtAP7yxtGOOFEaMyQUgPXibWfIqkpZiSreIkiMcJTNCYDQwXiRPlp/kQGT40yhKNImhIa5urviRRxpWY8NJ0c6Yla9ubif94g0aMrP6UiTjQReLFolDCoIzhPBA6pJFizmSEIS2puhXiCJMLa5FYxIbjLL6+S7nnDbTYu7pq11nURRxlUwQk4Ay64BC1wC9qgAzB4BM/gFbxZT9aL9W59LFpLVjFzDP7A+vwBD/GYXg==</latexit>

yyyr�1

<latexit sha1_base64="hPTM4VPV+xBFLD8chs9ef202tdU=">AAAB+HicdVDLSsNAFJ34rPXRqEs3g0VwY0js013RjcsK9gFtCJPppB06eTAzEWLIl7hxoYhbP8Wdf+OkjaCiBy4czrmXe+9xI0aFNM0PbWV1bX1js7RV3t7Z3avo+wd9EcYckx4OWciHLhKE0YD0JJWMDCNOkO8yMnDnV7k/uCNc0DC4lUlEbB9NA+pRjKSSHL0yjnw3TTInTfmZlWWOXjWNVrtda9agaZgL5KRZv2g1oFUoVVCg6+jv40mIY58EEjMkxMgyI2mniEuKGcnK41iQCOE5mpKRogHyibDTxeEZPFHKBHohVxVIuFC/T6TIFyLxXdXpIzkTv71c/MsbxdJr2ykNoliSAC8XeTGDMoR5CnBCOcGSJYogzKm6FeIZ4ghLlVVZhfD1Kfyf9M8Nq240burVzmURRwkcgWNwCizQAh1wDbqgBzCIwQN4As/avfaovWivy9YVrZg5BD+gvX0ClW2Ttg==</latexit>

yyyr ⇠

<latexit sha1_base64="pxLij24zbOEvFr/TSM/WefIUseY=">AAAB+3icdVDLSgMxFM3UV62vsS7dBIvgqkzt013RjcsK9gFtGTJp2oYmmSHJiMMwv+LGhSJu/RF3/o2ZdgQVPXDhcM693HuPFzCqtON8WLm19Y3Nrfx2YWd3b//APiz2lB9KTLrYZ74ceEgRRgXpaqoZGQSSIO4x0vcWV6nfvyNSUV/c6iggY45mgk4pRtpIrl0cBdyLo8SNY5kkcKQod+2SU262WtVGFTplZ4mUNGoXzTqsZEoJZOi49vto4uOQE6ExQ0oNK06gxzGSmmJGksIoVCRAeIFmZGioQJyocby8PYGnRpnAqS9NCQ2X6veJGHGlIu6ZTo70XP32UvEvbxjqaWscUxGEmgi8WjQNGdQ+TIOAEyoJ1iwyBGFJza0Qz5FEWJu4CiaEr0/h/6R3Xq7UyvWbWql9mcWRB8fgBJyBCmiCNrgGHdAFGNyDB/AEnq3EerRerNdVa87KZo7AD1hvnzpulTs=</latexit>

GGG⌧,m,GGG⌧,s, bbb⌧

<latexit sha1_base64="yUTDIdUUCYeX6z9GKX/2Q7e5bso=">AAACGHicdZDLSsNAFIYn9VbrrerSzWARXJSahLZ2WXShywr2Ak0Jk+m0HTqThJmJUEIew42v4saFIm67822cpBWs6A8DP985hzPn90JGpTLNTyO3tr6xuZXfLuzs7u0fFA+POjKIBCZtHLBA9DwkCaM+aSuqGOmFgiDuMdL1ptdpvftAhKSBf69mIRlwNPbpiGKkNHKLF07IvfgmcWNHoajMk/IqkEkZZsRL3BS4xZJZMat2w7SgNpZdszNjNurVOrS0SVUCS7Xc4twZBjjixFeYISn7lhmqQYyEopiRpOBEkoQIT9GY9LX1ESdyEGeHJfBMkyEcBUI/X8GM/pyIEZdyxj3dyZGayN+1FP5V60dq1BjE1A8jRXy8WDSKGFQBTFOCQyoIVmymDcKC6r9CPEECYaWzLOgQvi+F/5uOXbGqldpdtdS8WsaRByfgFJwDC1yCJrgFLdAGGDyCZ/AK3own48V4Nz4WrTljOXMMVmTMvwAWMKET</latexit>

(b) Posterior MTPP for missing events 𝑞𝜙

Fig. 2. Architecture of different processes in IMTPP. Panel (a) shows the neural architecture of the MTPP of

observations 𝑝𝜃 . Panel (b) shows the neural architecture of the posterior MTPP of missing events 𝑞𝜙 . Note

that, the information of 𝑒𝑘+1 here is used to truncate the log-normal distribution for missing data generation,

whereas the log-normal distribution for observed is non-truncated.

𝑝 (𝜖𝑟 | S𝑘 ,M𝑟−1) as a known distribution 𝑝prior using the history of all the events it is conditioned
on. In this context, we design two recurrent neural networks (RNNs) which embed the history of
observed events S into the hidden vectors 𝒔 and the missing eventsM into the hidden vector 𝒎,
similar to several state-of-the art MTPP models [11, 34, 35]. In particular, the embeddings 𝒔𝑘 and
𝒎𝑟 encode the influence of the arrival time and the mark of the first 𝑘 observed events from S𝑘 and
first 𝑟 missing events fromM𝑟 respectively. Therefore, we can represent the model for predicting
the next observed event as:

𝑝 (𝑒𝑘+1 | S𝑘 ,M𝑘
) = 𝑝𝜃 (𝑒𝑘+1 | 𝒔𝑘 ,𝒎𝑘

). (5)

Following the above MTPP model for observed events, both the prior MTPP model and the posterior
MTPP model for missing events offer similar conditioning with respect to 𝒔• and 𝒎•. Similar to
other MTPP models [11, 34], the RNN for the observed events updates 𝒔𝑘−1 to 𝒔𝑘 by incorporating
the effect of 𝑒𝑘 . Similarly, the RNN for the missing events updates𝒎𝑟−1 to𝒎𝑟 by taking into account
of the event 𝜖𝑟 .

As mentioned in Section 3, each event has two components, its mark and the arrival-time, which
are discrete and continuous random variables respectively. Therefore, we characterize the event
distribution as a density function which is the product of the density function (𝑝𝜃,Δ, 𝑞𝜙,Δ, 𝑝prior,Δ) of
the inter-arrival time and the probability distribution (P𝜃,𝑥 ,Q𝜙,𝑦, Pprior,𝑦) of the mark, i.e.,

𝑝𝜃 (𝑒𝑘+1 = (𝑥𝑘+1, 𝑡𝑘+1) | S𝑘 ,M𝑘
) = P𝜃,𝑥 (𝑥𝑘+1 | Δ𝑡,𝑘+1, 𝒔𝑘 ,𝒎𝑘

) · 𝑝𝜃,Δ (Δ𝑡,𝑘+1 | 𝒔𝑘 ,𝒎𝑘
), (6)

𝑞𝜙 (𝜖𝑟 = (𝑦𝑟 , 𝜏𝑟 ) | 𝑒𝑘+1,S𝑘 ,M𝑟−1) = Q𝜙,𝑦 (𝑦𝑟 | Δ𝜏,𝑟 , 𝑒𝑘+1, 𝒔𝑘 ,𝒎𝑟−1) · 𝑞𝜙,Δ (Δ𝜏,𝑟 | 𝑒𝑘+1, 𝒔𝑘 ,𝒎𝑟−1), (7)

𝑝prior (𝜖𝑟 = (𝑦𝑟 , 𝜏𝑟 ) | S𝑘 ,M𝑟−1) = Pprior,𝑦 (𝑦𝑟 | Δ𝜏,𝑟 , 𝒔𝑘 ,𝒎𝑟−1) · 𝑝prior,𝜏 (Δ𝜏,𝑟 | 𝒔𝑘 ,𝒎𝑟−1), (8)
where, as mentioned, the inter-arrival times Δ𝑡,𝑘 and Δ𝜏,𝑟 are given as Δ𝑡,𝑘 = 𝑡𝑘 − 𝑡𝑘−1 and Δ𝑟 =
𝜏𝑟 − 𝜏𝑟−1. Moreover, 𝑝𝜃,Δ, 𝑞𝜙,Δ and 𝑝prior,Δ denote the density of the inter-arrival times for the
observed events, posterior density and the prior density of the inter-arrival times of the missing
events; and, P𝜃,𝑥 , Q𝜙,𝑦 and Pprior,𝑦 denote the corresponding probability mass functions of the mark
distributions. Figure 2 denotes the neural architecture of the MTPP for observed events and the
posterior MTPP for missing events in IMTPP. For brevity, we omitted the schematic diagram for
the prior MTPP for missing events as it had a simpler architecture.
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Point Processes with Intermittent Observations 1:9

5.2 Parameterization of 𝑝𝜃

Given 𝑘 observed events and 𝑟 = 𝑘 missing events, the generative model 𝑝𝜃 samples the next event
𝑒𝑘+1 based on S𝑘 andM𝑟 . To this aim, the underlying neural network takes the embedding vectors
𝒉 and 𝒔 as input and provides the density 𝑝𝜃,Δ and P𝜃,𝑥 as output, which in turn are used to draw
the event 𝑒𝑘+1. More specifically, we realize 𝑝𝜃 in Eq. 6 using a three layer architecture.

(1) Input layer.The first level is the input layer, which takes the last event as input and represents
it through a suitable vector. In particular, upon arrival of 𝑒𝑘 , it computes the corresponding vector
𝒗𝑘 as:

𝒗𝑘 = 𝒘𝑡,𝑣𝑡𝑘 +𝒘𝑥,𝑣𝑥𝑘 +𝒘𝑡,Δ (𝑡𝑘 − 𝑡𝑘−1) + 𝒂𝑣, (9)
where𝒘•,• and 𝒂𝑣 are trainable parameters.

(2) Hidden layer The next level is the hidden layer that embeds the sequence of observations
into finite dimensional vectors 𝒔•, computed using RNN. Such a layer takes 𝒗𝑖 as input and feed it
into an RNN to update its hidden states in the following way.

𝒔𝑘 = tanh(𝑾𝑠,𝑠𝒔𝑘−1 +𝑾𝑠,𝑣𝒗𝑘 + (𝑡𝑘 − 𝑡𝑘−1)𝒘𝑠,𝑘 + 𝒂𝑠 ), (10)

where𝑾𝑠,• and 𝒂𝑠 are trainable parameters. This hidden state 𝒔𝑘 can also be considered as a sufficient
statistic of S𝑘 , the sequence of the first 𝑘 observations.

(3) Output layer The next level is the output layer which computes both 𝑝𝜃,Δ (·) and P𝜃,𝑥 (·)
based on 𝒔𝑘 and 𝒎

𝑘
. To this end, we have the density of inter-arrival times as

𝑝𝜃,Δ (Δ𝑡,𝑘+1 | 𝒔𝑘 ,𝒎𝑘
) = Lognormal

(
𝜇𝑒 (𝒔𝑘 ,𝒎𝑘

), 𝜎2
𝑒 (𝒔𝑘 ,𝒎𝑘

)
)
, (11)

with [𝜇𝑒 (𝒔𝑘 ,𝒎𝑘
), 𝜎𝑒 (𝒔𝑘 ,𝒎𝑘

)] =𝑾⊤
𝑡,𝑠𝒔𝑘 +𝑾⊤

𝑡,𝑚𝒎𝑘
+ 𝒂𝑡 ; and, the mark distribution as,

P𝜃,𝑥 (𝑥𝑘+1 = 𝑥 | Δ𝑡,𝑘+1, 𝒔𝑘 ,𝒎𝑘
) =

exp(𝑼⊤
𝑥,𝑠𝒔𝑘 + 𝑼⊤

𝑥,𝑚𝒎𝑘
)∑

𝑥 ′∈C exp(𝑼⊤
𝑥 ′,𝑠𝒔𝑘 + 𝑼⊤

𝑥 ′,𝑚𝒎𝑘
) , (12)

The distributions are finally used to draw the inter-arrival time Δ𝑡,𝑘+1 and the mark 𝑥𝑘+1 for the
event 𝑒𝑘+1. The sampled inter-arrival time Δ𝑡,𝑘+1 gives 𝑡𝑘+1 = 𝑡𝑘 + Δ𝑡,𝑘 . Here, the mark distribution
is independent of Δ𝑡,𝑘+1.
Finally, we note that 𝜃 = {𝑾•,•,𝒘•,•, 𝑼•,•, 𝒂•} are trainable parameters.

We would like to highlight that, the proposed lognormal distribution of inter-arrival times Δ𝑡,𝑘
allows an easy re-parameterization trick— Lognormal(𝜇𝑒 , 𝜎𝑒 ) = exp(𝜇𝑒+𝜎𝑒 ·Normal(0, 1))—which
mitigates variance of estimated parameters and facilitates fast training and accurate prediction.

5.3 Parameterization of 𝑞𝜙

At the very outset, 𝑞𝜙 (• | 𝑒𝑘 , 𝒔𝑘 ,𝒎𝑟−1) (Eq. 7) generates missing events that are likely to be omitted
during the interval (𝑡𝑘 , 𝑡𝑘+1) after the knowledge of the subsequent observed event 𝑒𝑘+1 is taken into
account. To ensure that missing events are generated within desired interval, (𝑡𝑘 , 𝑡𝑘+1), whenever
an event is drawn with 𝜏𝑟 > 𝑡𝑘+1, then 𝑞𝜙 (• | 𝑒𝑘+1, 𝒔𝑘 ,𝒎𝑟−1) is set to zero and 𝑘 is set to 𝑟 − 1.
Otherwise, 𝑘 is flagged as 𝑘 . Note that, 𝑞𝜙 (• | 𝒔𝑘 ,𝒎𝑟−1) generates all potential missing events in
this interval. That said, it generates multiple events sequentially in one single run in contrast to
the 𝑝𝜃 . Similar to the generator for observed events 𝑝𝜃 , it has also a three level neural architecture.

(1) Input layer Given the subsequent observed event 𝑡𝑘+1 along with S𝑘 and 𝜖𝑟−1 = (𝑦𝑟−1, 𝜏𝑟−1)
arrives with 𝜏𝑟−1 < 𝑡𝑘+1 or equivalently if 𝑟 − 1 ≠ 𝑘 , then we first convert 𝜏𝑟−1 into a suitable
representation.

𝜸𝑟−1 = 𝒈𝜏,𝛾𝜏𝑟−1 + 𝒈𝑦,𝛾𝑦𝑟−1 + 𝒈Δ,𝛾 (𝜏𝑟−1 − 𝜏𝑟−2) + 𝒃𝛾 , (13)
where 𝒈•,• and 𝒃𝛾 are trainable parameters.
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(2) Hidden layer Similar to the hidden layer used in the 𝑝𝜃 model, the hidden layer here too
embeds the sequence of missing events into finite-dimensional vectors𝒎•, computed using RNN in
a recurrent manner. Such a layer takes 𝜸𝑟−1 as input and feeds it into an RNN to update its hidden
states in the following way.

𝒎𝑟−1 = tanh
(
𝑮𝑚,𝑚𝒎𝑟−2 + 𝑮𝑚,𝛾𝜸𝑟−1 + (𝜏𝑟−1 − 𝜏𝑟−2)𝒈𝑚,𝜏 + 𝒃𝑚

)
, (14)

where 𝑮•,•,𝒈•,• and 𝒃𝑚 are trainable parameters.
(3) Output layer The next level is the output layer which computes both 𝑞𝜙,Δ (·) and Q𝜙,𝑦 (·)

based on𝒎𝑟 and 𝒔𝑘 . To compute these quantities, it takes five signals as input: (i) the current update
of the hidden state 𝒎𝑟 for the RNN in the previous layer, (ii) the current update of the hidden state
𝒔𝑘 that embeds the history of observed events, and (iii) the timing of the last observed event, 𝑡𝑘 , (iv)
the timing of the last missing event, 𝜏𝑟−1 and (v) the timing of the next observation, 𝑡𝑘+1. To this
end, we have the density of inter-arrival times as

𝑞𝜙,Δ (Δ𝜏,𝑟 | 𝑒𝑘+1, 𝒔𝑘 ,𝒎𝑟−1) = Lognormal
(
𝜇𝜖 (𝒎𝑟−1, 𝒔𝑘 ), 𝜎2

𝜖 (𝒎𝑟−1, 𝒔𝑘 )
)
⊙ ⟦𝜏𝑟−1 + Δ𝜏,𝑟 < 𝑡𝑘+1⟧, (15)

with [𝜇𝜖 (𝒎𝑟−1, 𝒔𝑘 ), 𝜎𝜖 (𝒎𝑟−1, 𝒔𝑘 )] = 𝑮⊤
𝜏,𝑚𝒎𝑟−1 + 𝑮⊤

𝜏,𝑠𝒔𝑘 + 𝒃𝜏 ; and, the mark distribution as,

P𝜃,𝑥 (𝑦𝑟 = 𝑦 | Δ𝜏,𝑟 , 𝑒𝑘+1, 𝒔𝑘 ,𝒎𝑟−1) =
⟦𝜏𝑟−1 + Δ𝜏,𝑟 < 𝑡𝑘+1⟧ ⊙ exp(𝑽⊤

𝑦,𝑠𝒔𝑘 + 𝑽⊤
𝑦,𝑚𝒎𝑟−1)∑

𝑦′∈C exp(𝑽⊤
𝑦′,𝑠𝒔𝑘 + 𝑽⊤

𝑦′,𝑚𝒎𝑟−1)
, (16)

Hence, we have:

Δ𝜏,𝑟 ∼ 𝑞𝜙,Δ (• | 𝑒𝑘+1, 𝒔𝑘 ,𝒎𝑟−1)
If Δ𝜏,𝑟 < 𝑡𝑘+1 − 𝜏𝑟−1 :

𝜏𝑟 = 𝜏 𝑗 + Δ𝜏,

𝑦𝑟 ∼ P𝜃,𝑥 (𝑦𝑟 = 𝑦 | Δ𝜏,𝑟 , 𝑒𝑘+1, 𝒔𝑘 ,𝒎𝑟−1)

𝑘 = ∞ (Allow more missing events)

Otherwise:

𝑘 = 𝑟 − 1.

Here, note that the mark distribution depends on Δ𝜏,𝑟 . 𝜙 = {𝑮•,•,𝒈•,•, 𝑽•,•, 𝒃•} are trainable parame-
ters. The distributions in Eqs. 15 and 16 ensure that given the first 𝑘 + 1 observations, 𝑞𝜙 generates
the missing events only for (𝑡𝑘 , 𝑡𝑘+1) and not for further subsequent intervals.

5.4 Prior MTPP model 𝑝prior

We model the prior density (Eq. 8) of the arrival times of the missing events as,

𝑝prior,Δ (Δ𝜏,𝑟 | 𝒔𝑘 ,𝒎𝑟−1) = Lognormal
(
𝜇 (𝒔𝑘 ,𝒎𝑟−1), 𝜎2 (𝒔𝑘 ,𝒎𝑟−1)

)
, (17)

with [𝜇 (𝒔𝑘 ,𝒎𝑟−1), 𝜎2 (𝒔𝑘 ,𝒎𝑟−1] = 𝒒⊤𝜇,𝑚𝒎𝑟−1 + 𝒒⊤𝜇,𝑠𝒔𝑘 + 𝒄 ; and, the mark distribution of the missing
events as,

Pprior,𝑦 (𝑦𝑟 = 𝑦 | Δ𝜏,𝑟 , 𝒔𝑘 ,𝒎𝑟−1) =
exp(𝑸⊤

𝑦,𝑠𝒔𝑘 + 𝑸⊤
𝑦,𝑚𝒎𝑟−1)∑

𝑦′∈C exp(𝑸⊤
𝑦′,𝑠𝒔𝑘 + 𝑸⊤

𝑦′,𝑚𝒎𝑟−1)
, (18)

All parameters 𝑸•,•, 𝒒•,• and 𝒄 are scaled a-priori using a hyper-parameter 𝜇. Thus, 𝜇 determines
the importance of the 𝑝prior in the missing event sampling procedure of IMTPP. We specify the
optimal value for 𝜇 based on the prediction performance in the validation set.
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5.5 Training 𝜃 and 𝜙

Note that the trainable parameters for observed and posterior MTPPs are 𝜃 = {𝒘•,•,𝑾•,•, 𝒂•, 𝑼•,•}
and 𝜙 = {𝒈•,•, 𝑮•,•, 𝒃•, 𝑽•,•} respectively. Given a history S𝐾 of observed events, we aim to learn 𝜃
and 𝜙 by maximizing ELBO, as defined in Eq. 4, i.e.

max
𝜃,𝜙

ELBO(𝜃, 𝜙). (19)

We compute optimal parameters 𝜃 ∗ and 𝜙∗ that maximizes ELBO(𝜃, 𝜙) using stochastic gradient
descent (SGD) [44]. More details regarding the hyper-parameter values are given in Section 6.

5.6 Optimal Position for Missing Events

To better explain the missing event modeling procedure of IMTPP while simultaneously enhancing
its practicability, we present a novel application of IMTPP++, a novel variant that offers a trade-off
between the number of missing events and the model scalability. In sharp contrast to the original
problem setting of generating missing events between observed events, IMTPP++ is designed to
impute a fixed number of events in a sequence. Specifically, given an input sequence and a user-
determined parameter of the number of missing events to be imputed (denoted by 𝑁 ), IMTPP++
determines the optimal time and mark of 𝑁 events that when included with the observed MTPP
achieve superior event prediction prowess. Note that these events may be missing at random
positions that are not considered while training IMTPP++. IMTPP++ achieves this by constraining
the missing event sampling procedure of the posterior MTPP (𝑞𝜙,Δ (•)) to limited iterations while
simultaneously maximizing the likelihood of observed MTPP. Mathematically, it optimizes the
following objective:

max
𝑞imp,Δ
E𝑞imp,Δ

𝐾−1∑︁
𝑘=0

log𝑝 (𝑒𝑘+1 | S𝑘 ,M𝑁
), (20)

where
∫ 𝑇

0
𝑞imp,Δ𝑑𝑡 = 𝑁, (21)

where 𝑞imp,Δ and 𝑝 (𝑒𝑘+1) denote the constrained posterior MTPP and the observed MTPP. However,
determining the optimal position of missing events is a challenging task as while imputing events
the generator must consider the dynamics of future events in the sequence. Therefore, IMTPP++
includes a two-step training procedure: (i) training observed and missing MTPP using the training-
set with unbounded missing events (as in Section 5.5); and then (ii) fine-tuning the parameters
of the constrained posterior MTPP and observed MTPP by maximizing the objective in Eqn 20.
For the latter stage, we use the optimal positions of 𝑁 missing events sampled from the posterior
MTPP determined by their occurrence probabilities. Later, we assume these events represent all
missing events(M

𝑁
), followed by a fine-tuning using Eqn 20 i.e. the likelihood of observed events.

5.7 Salient Features of IMTPP

It is worth noting the similarity of our modeling and inference framework to variational autoen-
coders [4, 6, 10], with 𝑞𝜙 and 𝑝𝜃 playing the roles of encoder and decoder respectively, while 𝑝prior
plays the role of the prior distribution of latent events. However, the random seeds in our model
are not simply noise as they are interpreted in autoencoders. They can be concretely interpreted in
IMTPP as missing events, making our model physically interpretable.
Secondly, note that the proposal of [35] aims to impute the missing events based on the entire

observation sequence S𝐾 , rather than to predict observed events in the face of missing events. For
this purpose, it uses a bi-directional RNN and, whenever a new observation arrives, it re-generates
all missing events by making a completely new pass over the backward RNN. As a consequence,
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such an imputation method suffers from the quadratic complexity with respect to the number of
observed events. In contrast, our proposal is designed to generate subsequent observed and missing
events rather than imputing missing events in between observed events3. To that aim, we only
make forward computations, and therefore, it does not require to re-generate all missing events
whenever a new observation arrives, which makes it much more efficient than [35] in terms of both
learning and prediction. Through our experiments, we also show the exceptionally time-effective
operation of IMTPP over other missing-data models.

Finally, unlike most of the prior work [11, 34, 35, 46, 62, 65] we model our distribution for inter-
arrival times using log-normal. Such a modeling procedure has major advantages over intensity-
based models – (i) scalable sampling during prediction as opposed to Ogata’s thinning/inverse
sampling; and (ii) efficient training via re-parametrization. Moreover, our generative procedure
for missing events requires iterative sampling in the absence of new observed events and such an
unsupervised procedure can largely benefit from the prowess of intensity-free models in forecasting
future events in a sequence [9].

While Shchur et al. [45] also use model inter-arrival times using log-normal, they do not focus to
predict observations in the face of missing events. However, it is important to reiterate (see Shchur
et al. [45] for details) that this modeling choice offers significant advantages over intensity-based
models in terms of providing ease of re-parameterization trick for efficient training, allowing a
closed-form expression for expected arrival times, and usability for supervised training as well.
Importance of IMTPP++. On a broader level, IMTPP++ may be similar to IMTPP, however, they
vary significantly. Specifically, the main distinctions are (1) IMTPP++ offers higher practicability as
it can be used for predicting future events and for imputing a fixed number of missing events; (2)
IMTPP cannot achieve the latter as it involves an unconstrained procedure for generating missing
events; and (3) IMTPP++ has an added feature to identify the optimal position of missing events
in a sequence. Moreover, as the training procedure of IMTPP++ involves a pre-training step, the
missing event generator has the knowledge of future events in a sequence. This is a sharp contrast
to IMTPP which only involves forward temporal computations. To the best of our knowledge,
IMTPP++ is the first-of-its-kind application of neural point process models that can be several
real-world problems ranging from smooth learning curve and extending the sequence lengths.

6 EXPERIMENTS

In this section, we report a comprehensive empirical evaluation of IMTPP alongwith its comparisons
with several state-of-the-art approaches. For our experiments in this paper, we make our code public
at https://github.com/data-iitd/imtpp. Our code uses Tensorflow4 v.1.13.1 and Tensorflow-
Probability v0.6.05. Through these experiments, we aim to answer the following research questions.
RQ1 Can IMTPP accurately predict the dynamics of the missing events?
RQ2 What is the mark and time prediction performance of IMTPP in comparison to the state-of-

the-art baselines? Where are the gains and losses?
RQ3 How does IMTPP perform in the long term forecasting and with limited data?
RQ4 How does the efficiency of IMTPP compare with the proposal of Mei et al. [35]?

6.1 Experimental Setup

Here we present the details of all datasets, baselines, and the hyperparameter values for all models.
Datasets. For our experiments, we use eight real datasets from different domains: Amazon movies

3However, note that we also use the posterior distribution 𝑞𝜙 to impute missing events between already occurred events.
4https://www.tensorflow.org/
5https://www.tensorflow.org/probability
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Table 1. Statistics of all real and synthetic datasets used in our experiments.

Dataset Movies Toys Taxi Twitter SO Foursquare Celebrity Health Synthetic

Sequences |D| 27747 14365 11000 22000 6103 2317 10000 10000 4000
Mean Length E|S𝑇 | 48.27 35.30 15.79 108.84 72.48 145.53 120.8 297.3 132.31
Event Types E|C| 5 5 5 3 22 10 16 5 2

(Movies) [38], Amazon toys (Toys) [38], NYC-Taxi (Taxi), Twitter [63], Stackoverflow (SO) [11],
Foursquare [60], Celebrity [37], and Health [3]. The statistics of all datasets are summarized in
Table 1 and we describe them as follows:

(1) Amazon Movies [38]. For this dataset we consider the reviews given to items under the
category "Movies" on Amazon. For each item we consider the time of the written review as the
time of event in the sequence and the rating (1 to 5) as the corresponding mark.

(2) Amazon Toys [38]. Similar to Amazon Movies, but here we consider the reviews given to
items under the category "Toys".

(3) NYC Taxi
6. In this dataset, each sequence corresponds to a series of time-stamped pick-up

and drop-off events of a taxi in New York City, and location-IDs are considered as event marks.
(4) Twitter [63]. Similar to [34], we group retweeting users into three classes based on their

connectivity: ordinary user (degree lower than the median), a popular user (degree lower than
95-percentile), and influencers (degree higher than 95-percentile). Each stream of retweets is treated
as a sequence of events with retweet time as the event time, and user class as the mark.

(5) Stack Overflow. Similar to [11], we treat the badge awarded to a user on the stack over-
flow forum as a mark. Thus we have each user corresponding a sequence of events with times
corresponding to the time of mark affiliation.

(6) Foursquare. As a novel evaluation dataset, we use Foursquare (a location search and dis-
covery app) crawls [17, 60] to construct a collection of check-in sequences of different users from
Japan. Each user has a sequence with the mark corresponding to the type of the check-in location
(e.g. "Jazz Club") and the time as the timestamp of the check-in [16].

(7) Celebrity [37]. In this dataset, we consider the series of frames extracted from youtube
videos of multiple celebrities as event sequences where event-time denotes the video-time and the
type is decided upon the coordinates of the frame where the celebrity is located.

(8) Health [3]. The dataset contains ECG records for patients suffering from heart-related
problems. Since the length of the ECG record for a single patient can be up to a few millions, we
sample smaller individual sequences and consider each such sequence as independent with event
type as the normalized change in the signal value and the time of recording as event time.
Synthetic Dataset. In addition, we utilize a publicly available synthetic dataset [62] generated
using the open-source library tick7. Specifically, it consists of a two-dimensional Hawkes process
with base intensities 𝜇1 = 0.1 and 𝜇2 = 0.2, with triggering kernels as – power law, exponential,
sum of two exponentials, and a sine kernel. Mathematically,

𝜌1,1 (𝑡) = 0.2 × (0.5 + 𝑡)−1.3,

𝜌1,2 (𝑡) = 0.03 × exp(−0.3𝑡),
𝜌2,1 (𝑡) = 0.05 × exp(−0.2𝑡) + 0.16 × exp(−0.8𝑡),
𝜌2,2 (𝑡) = max(0, sin(𝑡)/8), where 0 ≤ 𝑡 ≤ 4,

where 𝜌•,•, denote the respective influence kernels between the two processes.
Baselines.We compare IMTPPwith the following state-of-the-art baselines formodeling continuous-
time event sequences:
6https://chriswhong.com/open-data/foil_nyc_taxi/
7https://github.com/X-DataInitiative/tick
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(1) HP [21]. A conventional Hawkes process or self-exciting multivariate point process model
with an exponential kernel i.e. the past events raise the intensity of the next event of the same type.

(2) SMHP [28]. A self-modulating Hawkes process wherein the intensity of the next event is
not ever-increasing as in standard Hawkes but learned based on the past events.

(3) RMTPP [11]. A state-of-the-art neural point process that embeds sequence history using
inter-event time-differences and event marks using a recurrent neural network.

(4) SAHP [62]. A self-attention-based Hawkes process that learns the embedding for the tempo-
ral dynamics using a weighted aggregation of all historical events.

(5) THP [65]. Transformer Hawkes process is the state-of-the-art MTPP framework that extends
the transformer model [52] to include time and mark influences between events to calculate the
conditional intensity function for the arrival of future events in the sequence.

(6) PFPP [35]. A particle filtering process for MTPP that learns the sequence dynamics using a
bi-directional recurrent neural network.

(7) HPMD [46]. Models the sequences using a linear multivariate parameterized point processes
and learns the inter-event influence using a predefined structure.
We omit the comparisons with other MTPP models [34, 39, 45, 56, 57] as they have already been
outperformed by these approaches. Moreover, recent research [25] has shown that the performance
of other RNN based models such as Mei and Eisner [34] is comparable to RMTPP [11].

Evaluation protocol. Given a stream of 𝑁 observed events S𝑁 , we split them into training S𝐾
and test set S𝑁 \S𝐾 , where the training set (test set) consists of first 80% (last 20%) events, i.e.,
𝐾 = ⌈0.8𝑁 ⌉. We train IMTPP and the baselines on S𝐾 and then evaluate the trained models on
the test set S𝑁 \S𝐾 in terms of (1) mean absolute error (MAE) of predicted times, and (2) mark
prediction accuracy (MPA).

𝑀𝐴𝐸 =
1

|S𝑁 \S𝐾 |
∑︁

𝑒𝑖 ∈S𝑁 \S𝐾

E[|𝑡𝑖 − 𝑡𝑖 |], 𝑀𝑃𝐴 =
1

|S𝑁 \S𝐾 |
∑︁

𝑒𝑖 ∈S𝑁 \S𝐾

P(𝑥𝑖 = 𝑥𝑖 ), (22)

Here 𝑡𝑖 and 𝑥𝑖 are the predicted time and mark the 𝑖-th event in the test set. Note that such
predictions are made only on observed events in real datasets. For time prediction, given the varied
temporal distribution across the datasets, we normalize event times across each dataset [11]. We
report results and confidence intervals based on three independent runs.

6.2 Implementation Details

Parameter Settings. For our experiments, we set dim(𝒗•) = 16, and dim(𝛾•) = 32, where 𝒗• and 𝛾•
are the output of the first layers in 𝑝∗

𝜃
and 𝑞∗

𝜙
respectively; the sizes of hidden states as dim(𝒉•) = 64

and dim(𝒛•) = 128; batch-size 𝐵 = 64. In addition we set an 𝑙2 regularizer over the parameters with
regularizing coefficient as 0.001.

System Configuration. All our experiments were done on a server running Ubuntu 16.04. CPU:
Intel(R) Xeon(R) Gold 5118 CPU @ 2.30GHz, RAM: 125GB and GPU: NVIDIA Tesla T4 16GB DDR6.

Baseline Implementation Details. For implementations regarding RMTPP we use the Python-
based implementation8. For Hawkes process(HP) and self-modulating Hawkes process(SMHP),
we use the codes9 made available by Mei and Eisner [34]. Since HP and SMHP [28] generate a
sequence of events of a specified length from the weights learned over the training set, we generate

8https://github.com/musically-ut/tf_rmtpp
9https://github.com/HMEIatJHU/neurawkes
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Fig. 3. Qualitative Analysis of mark and time prediction performance of IMTPP over the synthetic dataset. In

the top figure, we show the observed (bars in blue) as well as events hidden (bars in brown) during learning

between timestamps 6.0 and 6.4. In the lower figure, we show the events predicted by IMTPP for the same

sequence. Marks are represented using different colored (cyan and purple) circles.

|𝑁 | sequences as per the data as S = {𝑠1, 𝑠2, · · · 𝑠𝑁 } each with maximum sequence length. For
evaluation, we consider the first 𝑙𝑖 set of events for each sequence 𝑖 . For rest of the baselines,
we used the implementations provided by the respective authors — PFPP10, HPMD11, THP12 and
SAHP13. For Markov Chains, we use the code14 made public by Du et al. [11]. For RMTPP, we set
hidden dimension and BPTT is selected among {32, 64} and {20, 50} respectively. For THP, and
SAHP, we set the number of attention heads as 2, hidden, key-matrix, value-matrix dimensions are
selected among {32, 64}. If applicable, for each model we use a dropout of 0.1. For PFPP, we set
𝛾 = 1 and use a similar procedure to calculate the embedding dimension as in the THP. All other
parameter values are the ones recommended by the respective authors.

6.3 Prediction of Missing Events (RQ1)

To address the research question RQ1, we first qualitatively demonstrate the ability of IMTPP in
predicting missing events in sequences from the synthetic dataset. To do so, we randomly sample
10% events from each sequence and tag them to be missing. Later, we train IMTPP over the observed
events and use our trained model to predict both observed and missing events. Figure 3 provides an
illustrative setting of our results. It shows that IMTPP provides many accurate mark predictions. In
addition, it qualitatively shows that the predicted inter-arrival times and marks closely match with
the true inter-arrival times. Thus supporting the ability of IMTPP to accurately identify the marks
and times of missing events as well as the total number of events missing between two timestamps.
Note that we utilize synthetic deletion only for the results in Figure 3 and for other results in the
paper, we use complete sequences unless mentioned specifically.

6.4 Event Prediction Performance (RQ2)

Next, we evaluate the event prediction ability of IMTPP. More specifically, we compare the per-
formance of IMTPP with all the baselines introduced above across all six datasets. Tables 2 and 3
summarizes the results, which sketches the comparative analysis in terms of mean absolute error
(MAE) on time and mark prediction accuracy (MPA), respectively. From the results we make the
following observations:

10https://github.com/HMEIatJHU/neural-hawkes-particle-smoothing
11https://github.com/cshelton/hawkesinf
12https://github.com/SimiaoZuo/Transformer-Hawkes-Process
13https://github.com/QiangAIResearcher/sahp_repo
14https://github.com/dunan/NeuralPointProcess
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Table 2. Performance of all the methods in terms of mean absolute error across all datasets on the 20% test

set. Numbers with bold font (boxes) indicate best (second best) performer. Results marked
†
are statistically

significant (two-sided Fisher’s test with 𝑝 ≤ 0.1) over the best baseline.

Dataset Mean Absolute Error (MAE)

Movies Toys Taxi Twitter SO Foursquare Celebrity Health
HP [21] 0.060 0.062 0.220 0.049 0.010 0.098 0.044 0.023
SMHP [28] 0.062 0.061 0.213 0.051 0.008 0.091 0.043 0.024
RMTPP [11] 0.053 0.048 0.128 0.040 0.005 0.047 0.036 0.021
SAHP [62] 0.072 0.073 0.174 0.081 0.017 0.108 0.051 0.027
THP [65] 0.068 0.057 0.193 0.047 0.006 0.052 0.040 0.026
PFPP [35] 0.058 0.055 0.181 0.042 0.007 0.076 0.039 0.022
HPMD [46] 0.060 0.061 0.208 0.048 0.008 0.087 0.043 0.023
IMTPP 0.049

†
0.045

†
0.108

†
0.038

†
0.005 0.041

†
0.032

†
0.019

†

Table 3. Performance of all the methods in terms of mark prediction accuracy (MPA). Numbers with bold

font (boxes) indicate best (second best) performer. Results marked
†
are statistically significant (two-sided

Fisher’s test with 𝑝 ≤ 0.1) over the best baseline.

Dataset Mark Prediction Accuracy (MPA)

Movies Toys Taxi Twitter SO Foursquare Celebrity Health
HP [21] 0.482 0.685 0.894 0.531 0.418 0.523 0.229 0.405
SMHP [28] 0.501 0.683 0.893 0.554 0.423 0.520 0.238 0.401
RMTPP [11] 0.548 0.734 0.929 0.572 0.446 0.605 0.255 0.421
SAHP [62] 0.458 0.602 0.863 0.461 0.343 0.459 0.227 0.353
THP [65] 0.537 0.724 0.931 0.526 0.458 0.624 0.268 0.425
PFPP [35] 0.559 0.738 0.925 0.569 0.437 0.582 0.256 0.427
HPMD [46] 0.513 0.688 0.907 0.558 0.439 0.531 0.247 0.409
IMTPP 0.574

†
0.746

†
0.938

†
0.577 0.451 0.612 0.273 0.438

†

(1) IMTPP exhibits steady improvement over all the baselines in most of the datasets, in case of
both time and mark prediction. However, for Stackoverflow and Foursquare datasets, THP
outperforms all other models including IMTPP in terms of MPA.

(2) RMTPP is the second-best performer in terms of MAE of time prediction almost in all datasets.
In fact, in Stackoverflow (SO) dataset, it shares the lowestMAE together with IMTPP. However,
there is no consistent second-best performer in terms of MPA. Notably, PFPP and IMTPP,
which take into account missing events, are the second-best performers for four datasets.

(3) Both PFPP [35] and HPMD [46] fare poorly with respect to IMTPP in terms of both MAE and
MPA. This is because PFPP focuses on imputing missing events based on the complete obser-
vations and, is not well suited to predict observed events in the face of missing observations.
In fact, PFPP does not offer a joint training mechanism for the MTPP for observed events and
the imputation model. Rather it trains an imputation model based on the observation model
learned a-priori. On the other hand, HPMD only assumes a linear Hawkes process with a
known influence structure. Therefore it shows poor performance with respect to IMTPP.

Qualitative Analysis. In addition, we also perform a qualitative analysis to identify if IMTPP can
model the inter-event time-intervals in a sequence. Figure 4 provides some real-life event sequences
taken from Movies and Toys datasets and the time-intervals predicted by IMTPP. The results
qualitatively show that the predicted inter-arrival times closely match with the true inter-arrival
times. Moreover, the results also show that IMTPP can event efficiently model the large spikes in
inter-event time-intervals.
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Fig. 4. Real life examples of true and predicted inter-arrival times Δ𝑡,𝑘 of different events 𝑒𝑘 , against 𝑘 for

𝑘 ∈ {𝑘 + 1, . . . , 𝑁 }. Panels (a) and (b) show the results for Movies and Toys datasets respectively.
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Fig. 5. Performance gain in terms of AE(baseline) −AE(IMTPP)— the gain (above x-axis) or loss (below x-axis)

of the average error per event E[|𝑡𝑘 − ˆ𝑡𝑘 |] of IMTPP— with respect to two competitive baselines: RMTPP and

PFPP. Events in the test set are sorted by decreasing gain of IMTPP along 𝑥-axis. Panels (a) and (b) show the

results for Movies and Toys datasets respectively.

Drill-down Analysis. Next, we provide a comparative analysis of the time prediction performance
at the level of every event in the test set. To this end, for each observed event 𝑒𝑖 in the test set,
we compute the gain (or loss) IMTPP achieves in terms of the time-prediction error per event
E[|𝑡𝑘 −𝑡𝑘 |], i.e., AE(baseline)−AE(IMTPP) for two competitive baselines, e.g., RMTPP and PFPP for
Movies and Toys datasets. Figure 5 summarizes the results, which shows that IMTPP outperforms
the most competitive baseline i.e. RMTPP for more than 70% events across both Movies and Toys
datasets. It also shows that the performance gain of IMTPP over PFPP is ever more significant.

6.5 Ablation Study

We also conduct an ablation study for two key contributions in IMTPP: missing event MTPP and
the intensity-free modeling of time-intervals. We denote IMTPPSas the variants of IMTPP without
the missing MTPP and IMTPPRas the variant without the lognormal distribution for inter-event
arrival times. More specifically, for IMTPPRwe follow [11] to determine an intensity function 𝜆𝑝

𝑘

for observed events using the output of the RNN, 𝒔𝑘 .

𝜆∗𝑝 (𝑡𝑘 ) = exp(𝒘𝜆,𝑠𝒔𝑘 +𝒘𝜆,𝑚𝒎𝑘
+𝒘𝜆,Δ (𝑡𝑘 − 𝑡𝑘−1) + 𝒃𝜆), (23)

Later, we use the intensity function at a given timestamp to estimate the probability distribution of
future events as:

𝑝𝜃,𝑡 (𝑡𝑘+1) = 𝜆∗𝑝 (𝑡𝑘 ) exp
(
−
∫ 𝑡

𝑡𝑘

𝜆∗𝑝 (𝜏) 𝑑𝜏
)
, (24)

Similar to RQ2, we report the performance of IMTPP and its variants in terms of MAE and MPA in
Tables 4 and 5 respectively. The results show that IMTPP outperforms IMTPPSand IMTPPRacross
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Table 4. Time prediction performance of IMTPP and its variants – IMTPPSand IMTPPR in terms of MAE on

the 20% test set. Numbers with bold font indicate the best performer.

Dataset Mean Absolute Error (MAE)

Movies Toys Taxi Twitter SO Foursquare Celebrity Health
IMTPPS 0.054 0.047 0.115 0.042 0.005 0.044 0.034 0.021
IMTPPR 0.056 0.051 0.120 0.041 0.006 0.043 0.037 0.023
IMTPP 0.049 0.045 0.108 0.038 0.005 0.041 0.032 0.019

Table 5. Mark prediction performance of IMTPP and its variants in terms of MPA on the 20% test set. Numbers

with bold font indicate the best performer.

Dataset Mark Prediction Accuracy (MPA)

Movies Toys Taxi Twitter SO Foursquare Celebrity Health
IMTPPS 0.569 0.742 0.929 0.574 0.450 0.603 0.267 0.425
IMTPPR 0.563 0.724 0.927 0.568 0.449 0.598 0.261 0.433
IMTPP 0.574 0.746 0.938 0.577 0.451 0.612 0.273 0.438
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Fig. 6. Variation of forecasting performance of IMTPP and RMTPP in terms of MAE and MPA at predicting

next 𝑖-th event, against 𝑖 for Movies and Toys dataset. Panels (a–b) show the variation of MAE while panels

(c–d) show the variation of MPA. They show that as 𝑛 increases, the performance deteriorates for both the

metrics and both datasets as the prediction task becomes more and more difficult.

all metrics. The performance gain of IMTPP over IMTPPSsignifies the importance of including
missing events for modeling event sequences. We also note that the performance gain of IMTPP
over IMTPPRreinforces our modeling design of using an intensity-free model for MTPPs.

6.6 Forecasting Future Events (RQ3)

To make a more challenging evaluation of IMTPP against its competitors we design a difficult
event prediction task, where we predict the next 𝑛 events given only the current event as input.
To do so, we keep sampling events using the trained model 𝑝

𝜃
and 𝑞

𝜙
till 𝑛-th prediction. Such

an evaluation protocol effectively requires accurate inference of the missing data distribution,
since, unlike during the training phase, the future observations are not fed into the missing event
model. To this end, we compare the forecasting performance of IMTPP against RMTPP, the most
competitive baseline. Figure 6 summarizes the results for Movies and Toys datasets, which shows
that (1) the performances of all the algorithms deteriorate as 𝑛 increases and; (2 IMTPP achieves 5.5%
improvements in MPA and significantly better 10.12% improvements in MAE than RMTPP across
both datasets. The results further reinforce the ability of IMTPP to model the long-term distribution
of events in a sequence.

6.7 Performance Comparison with Markov Chains

Previous research [11] has shown that the mark prediction performance of neural MTPP models is
comparable to Markov Chains (MCs). Therefore, in addition to the mark prediction experiments
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Table 6. Mark prediction performance of Markov Chains and IMTPP across all datasets. We use MC of orders

1,2, and 3 and report results for the best performing model.

Dataset Mark Prediction Accuracy (MPA)

Movies Toys Taxi Twitter SO Foursquare Celebrity Health
MC 0.542 0.702 0.829 0.548 0.443 0.575 0.249 0.416
IMTPP 0.574 0.746 0.938 0.577 0.451 0.612 0.273 0.438
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Fig. 7. Impact of missing observations on model performance for Movies, Toys and Synthetic dataset. We

randomly delete 40% and 60% events from the observed sequence and then train and test IMTPP and best

performing baselines on rest of the observed events. Panels (a–c) show the results for time prediction while

panels (d–f) show the results for mark prediction. The performance improvement of IMTPP in such a situation

is still significant as in the original setting— without any artificial data deletion.

with MTPP models in Table 3, we also report the results for the comparison between IMTPP
and MCs of orders 1 to 3 in Table 6. Note that we only report the results of the best-performing
MC. The results show that the Markov models perform quite well in terms of mark prediction
accuracy across all datasets. A careful investigation revealed that the datasets exhibit significant
repetitive characteristics of marks in a small window. Thus for some datasets with large repetitions
within a short history window, using a deep point process-based model is an overkill. On the other
hand, for NYC Taxi, the mobility distribution clearly shows long-term dependencies, thus severely
hampering the performance of Markov Chains. In these cases, point process-based models show
better performance by being able to model the inter-event complex dependencies more efficiently.

6.8 Performance with Missing Data

To further emphasize the applicability of IMTPP in the presence of missing data, we perform event
prediction on sequences with limited training data. Specifically, we synthetically delete events
from a sequence i.e. we randomly (via a normal distribution) delete 40% (and 60%) of events from
the original sequence and then train and test our model on the rest 60% events(40%). Figure 7
summarizes the results across Movies, Toys, and the Synthetic dataset. From the results, we note
that with synthetic data deletion, the performance improvement of IMTPP over best-performing
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Fig. 8. Runtime performance of PFPP and IMTPP for across Movies dataset with complete sequences. Panel

(a) shows time vs. length of training sequence and panel (b) shows time vs. number of epochs.

Table 7. Runtime comparison between IMTPP and PFPP in a streaming setting. Here, DNF indicates that the

code did not finish within 24:00hrs.

Dataset Runtime (Hours)

Movies Toys Taxi Twitter SO Foursquare Celebrity Health
IMTPP <2hr <2hr <1hr <2hr <1hr <1hr <2hr <2hr
PFPP [35] DNF DNF DNF DNF DNF DNF DNF DNF

baselines – RMTPP, THP and PFPP– is significant event after 40% events are deleted. This is because
IMTPP is trained to capture the missing events and as a result, it can exploit the underlying setting
with data deletion more effectively than the other models. Though this performance gains saturate
with further increase in missing data as the added noise in the datasets severely hampers the
learning of both models. Interestingly, we note that RMTPP outperforms THP and PFPP even in
the situations with limited data.

6.9 Scalability Analysis (RQ4)

Here we compare the runtime of IMTPP with PFPP [35] in two settings: (1) training over complete
sequences, and (2) training in a streaming setting.

6.9.1 With Complete Sequences. To highlight the time-effective learning ability of IMTPP, we
compare the runtimes of IMTPP and PFPP across no. of training epochs as well as the length of
training sequence |S𝐾 |. Figure 8 summarizes the results, which shows that IMTPP enjoys a better
latency than PFPP. In particular, we observe that the runtime of PFPP increases quadratically with
respect to |S𝐾 |, whereas, the runtime of IMTPP increases linearly. The quadratic complexity of
PFPP is due to the presence of a backward RNN which requires a complete pass whenever a new
event arrives. The larger run-times of both models can be attributed to the massive size of Movies
dataset with 1.4 million events.

6.9.2 Streaming-based Runtime. As mentioned in Section 4, our setting differs significantly from
PFPP [35] as it requires the complete data distribution, missing as well as observed, upfront for
operating. However, we evaluate if their model can be extended to our setting i.e. a streaming setting
wherein complete sequences are not available upfront rather they arrive as we progress with time
along a sequence. In a streaming setting, the model is trained as per the arrival of events, and the
only way for PFPP to be extended in this setting is to update the parameters at each arrival. This
repetitive training is expensive and can withdraw the practicability of the model. To further assert
our proposition, we evaluate the runtime of their model across the different datasets and compare
with IMTPP. We report the results for training across only a few epochs (10) in a streaming setting
in Table 7. We note that across all datasets PFPP fails to scale as expected. This delay in training
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Fig. 9. Missing event imputation performance of IMTPP and PFPP for Movies and Toys datasets. Panels (a–b)

show the results for time prediction while panels (c–d) show the results for mark prediction.
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Fig. 10. Epoch-wise event prediction performance of IMTPP for Movies and Toys datasets. Panels (a–b) show

the results for time prediction while panels (c–d) show the results for mark prediction. The results show that

IMTPP exhibits a stable optimization procedure. The MAE before the first training epoch is clipped to 0.5.

could be attributed to the two-phase training of their model; (1) particle filtering, where they learn
the underlying complete data distribution, and (2) particle smoothing, in which they filter out
the inadequate events generated during particle filtering. Secondly, since PFPP requires complete
data during training, an online setting would require repetitive parameter optimization on the
arrival of each event. Thus, their model cannot be extended to such a scenario while maintaining
its practicality. Thus, IMTPP is the singular practical approach for learning MTPPs in an online
setting with intermittent observational data.

6.10 Imputation Performance

Here, we evaluate the ability of IMTPP and PFPP to impute missing events in a sequence. Specifically,
we evaluate the ability of both models to generate the missing events that were not present during
training. Thus, for Movies and Toys datasets where we synthetically remove all the ratings between
the first month and the third month for all the entities in both datasets. We evaluate across the
imputed events for test sequences. One important thing to note is that IMTPP only takes into
account the history, but PFPP uses both, history and future events. We report the results across
the Movies and Toys datasets in Figure 9. To summarize, our results show that even with limited
historical information, IMTPP outperforms PFPP in time-prediction whereas both models perform
competitively for mark prediction of missing events.

6.11 Convergence Analysis

Here, we highlight the stable convergence of the optimization procedure of IMTPP event after
modeling the dynamics of observed as well as missing events. Therefore, we plot the epoch-wise
best event prediction performance of IMTPP in terms of MAE and MPA in Figure 10. The results
show that despite the coupled MTPP model and its variational inference-based learning, IMTPP
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Fig. 11. Predicting observed events using IMTPP++ across different values of 𝑁 . The results show that as we

increase 𝑁 , the performance gap between IMTPP++ and IMTPP is decreased.

1 3 5 7 10 13 15

N →
0.0

0.1

0.2

M
A

E
→

PFPP

IMTPP++

(a) Movies

1 3 5 7 10 13 15

N →
0.0

0.1

0.2
M

A
E
→

PFPP

IMTPP++

(b) Toys

Fig. 12. Compared the imputation performance of IMTPP++ and PFPP across different numbers of missing

events. Note that this setting differs from Figure 9, as here the events are missing at random positions.

exhibits stable optimization procedure. We also note that mark prediction performance shows
better convergence and outperforms other models only in a few training iterations. However, the
time prediction ability of IMTPP requires longer training to achieve state-of-the-art performance.

6.12 Performance of IMTPP++

In this section, we evaluate the performance of IMTPP++ across two settings – (1) predicting future
observed events, and (2) imputing missing events.

6.12.1 Observed Event Prediction. Here we evaluate the ability of IMTPP++ to predict the observed
events in a sequence. Specifically, we report the time prediction performance of IMTPP++ across
a different number of permitted missing events (𝑁 ) and compare them with IMTPP i.e. with an
unbounded number of missing events. Figure 11 summarizes our results which show that as we
increase 𝑁 , the time prediction performance for IMTPP++ increases and it narrows the performance
gapwith IMTPP. However, IMTPP still performs better than IMTPP++. From the results, we conclude
that IMTPP++ acts as a trade-off between the number of missing events and the prediction quality.
This is a significant improvement over IMTPP as sampling missing events can be an expensive
procedure. Moreover, as IMTPP++ involves a fine-tuning over pre-trained IMTPP, it has an added
advantage of fine-tuning at amounts of missing events. From our experiments, we found that
fine-tuning IMTPP++ took less than 15 minutes across all values of 𝑁 . We also note that with small
𝑁 , IMTPP is comparable to RMTPP i.e. the best performer for time prediction.

6.12.2 Imputing Missing Events. Our main contribution via IMTPP++ is to predict the missing
events located randomly in a sequence. We evaluate this by performing an additional experiment
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Fig. 13. Variation of forecasting performance of IMTPP against 𝜇, the prior rate of missing events, for Movies

dataset. Panels (a–c) show the variation of MAE while panels (d–f) show the variation of MPA. As 𝜇 increases

MAE first decreases and then increases, indicating the presence of an optimal 𝜇 across training data sizes.

The results for MPA against 𝜇 also show the presence of an optimal 𝜇 across training data sizes.

using synthetic deletion. Specifically, we randomly sample 𝑁 events from each sequence and tag
them to be missing. Later, we evaluate the ability of IMTPP++ and PFPP in imputing these missing
events. Figure 12 summarizes the results and we note that IMTPP++ easily outperforms PFPP across
all values of 𝑁 . Moreover, we note that as we increase 𝑁 , the imputation performance becomes
better. Naturally, it can be attributed to relatively lesser variance in position of missing events with
large 𝑁 . We reiterate that all confidence intervals are calculated using three independent runs.

6.13 Performance Variation with 𝑝prior

Here, we train our model with different values of the prior scaling factor (𝜇) and then probe the
variation of predictive performance.We highlight that 𝜇 differs from themean of the log-normal flow
of prior MTPP, though they share similar notations. To get a deeper insight into the contribution
of the prior MTPP and the dataset dynamics, we also experiment with different training set sizes as
in Section 6.8. For this evaluation, we consider the Movies dataset across 40% and 60% training data
and plot the MPA and MAE against 𝜇. Figure 13 summarizes the results and we note that there exist
two particular trends corresponding to MAE and MPA across different 𝜇. For MAE, as 𝜇 increases
its first decreases and then increases, whereas, for MPA, it first increases and then decreases. Both
the trends indicate the presence of an optimal value of 𝜇. This tendency of IMTPP is consistent
across different subsets of training data as well. Moreover, we also note that the optimal value for 𝜇
also changes as per the size of the training set.

7 CONCLUSION

Modeling continuous-time events with irregular observations is a non-trivial task that requires
learning the distribution of both – observed and missing events. Standard MTPP models ignore this
aspect and assume that the underlying data is complete with nomissing events – an ideal assumption
that is not practicable in many settings. In order to solve these shortcomings, in this paper, we
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provide a method for incorporating missing events for training marked temporal point processes,
that simultaneously samples missing as well as observed events across continuous time. The
proposedmodel IMTPP uses a coupledMTPP approach with its parameters optimized via variational
inference. Experiments on several real datasets from diverse application domains show that our
proposal outperforms other state-of-the-art approaches for predicting the dynamics of observed
events. We also evaluate the ability of IMTPP to impute synthetically deleted missing events within
observed events. In this setting as well, IMTPP outperforms other alternatives along with better
scalability and guaranteed convergence. Since including missing data, improves over standard
learning procedures, this observation opens avenues for further research that includes modeling or
sampling missing data. However, one unaddressed aspect of the missing data problem is partially
missing events i.e. events with either the time or mark as missing. In addition, the constrained
optimization procedure in IMTPP++ can be improved by using Lagrangian multipliers. This would
prevent the two-step procedure mentioned in Section 5.6 while simultaneously facilitating faster
convergence. Therefore, we plan to extend our model for modeling partially missing events and
using the enhanced learning procedure for IMTPP++ as future works of this paper.
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