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Modeling Spatial Trajectories using
Coarse-Grained Smartphone Logs

Vinayak Gupta and Srikanta Bedathur

Abstract—Every user carries their smartphones wherever they go – a crucial aspect ignored by the current models for spatial
recommendations. In detail, the current approaches learn the points-of-interest (POI) preferences of a user via the standard spatial
features i.e. the POI coordinates and the social network, and thus ignore the features related to the smartphone usage of a user.
Moreover, with growing privacy concerns, users refrain from sharing their exact geographical coordinates as well as their social media
activity. In this paper, we present REVAMP, a sequential POI recommendation approach that uses smartphone app-usage logs to
identify the mobility preferences of a user. Our work aligns with the recent psychological studies of online urban users which show that
their spatial mobility behavior is largely influenced by the activity of their smartphone apps. Specifically, our proposal of coarse-grained
data refers to data logs collected in a privacy-conscious manner consisting only of (a) category of smartphone app-used and (b)
category of check-in location. Thus, REVAMP is not privy to precise geo-coordinates, social networks, and the specific app being
used. Buoyed by the efficacy of self-attention models, REVAMP learns the POI preferences of a user using two forms of positional
encodings – absolute and relative – with each extracted from the inter-check-in dynamics in the check-in sequence of a user. Extensive
experiments across two large-scale datasets from China show that REVAMP outperforms the state-of-the-art sequential POI
recommendation approaches and can be extended to app- and POI-category prediction.

Index Terms—Sequential Recommendation; Smartphone Apps; Spatial and Temporal Data; Self-Attention;
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1 INTRODUCTION

THE rapid advancements in the smartphone industry and
the ubiquitous internet access have led to an exponen-

tial growth in the number of available users and internet-
based applications. Specifically, smartphones have become
increasingly prevalent across the entire human population
with up to 345 million units sold in the first quarter of
2021 1. Accordingly, the online footprint of a user spans
multiple applications with an average smartphone owner
accessing 10 smartphone applications (or apps) every day
and 30 apps each month 2. These footprints can be perceived
as the digitized nature of the user’s proclivity in different
domains. Recent research [1], [22] has shown that the online
web activity of a user exhibits revisitation patterns i.e. a user
is likely to visit certain apps repetitively with similar time
intervals between corresponding visits. [14] and [30] have
shown that these online revisitation patterns are analogous
to her spatial mobility preferences i.e. the current geograph-
ical location can influence the web-browsing activities of
a user. Moreover, such cross-domain information of app-
preferences of a user can be collected without using any per-
sonally identifiable information (PII) 3 and thus maintaining
the privacy of a user [12], [49], [53]. Thus, to enhance the
performance of a points-of-interest (POI) recommendation
system, it is crucial to model the app-revisitation users along
with their location preferences.

• V. Gupta and S. Bedathur are with the Department of Computer Science
& Engineering, Indian Institute of Technology, Delhi, New Delhi, India
E-mail: {vinayak.gupta, srikanta}@cse.iitd.ac.in

Manuscript received XX XX, 2021.
1. https://www.canalys.com/newsroom/canalys-worldwide-

smartphone-market-Q1-2021
2. https://buildfire.com/app-statistics/
3. https://en.wikipedia.org/wiki/Personal data

1.1 Limitations of Prior Works

Modern POI recommendation approaches [13], [32], [52]
utilize the standard features specific to a user and a POI –
social network, geo-coordinates, and category classifications
of POI – to learn the mobility patterns of a user. The situation
has been exacerbated in recent times due to the advent
of restrictions on personal data collection and a growing
awareness (in some geopolitical regions) about the need
for personal privacy [3], [50]. Moreover, current approaches
overlook two crucial aspects of urban computing – the
exponential growth of online platforms and the widespread
use of smartphones. Undeniably, everyone carries and si-
multaneously uses a smartphone wherever they go. Thus,
standard approaches are inappropriate to design POI recom-
mender systems that must capture the location influence on
the apps used by a user. To highlight this importance of the
POI-app relationship, we plot the category of the app used
by all users and the location-ID of the ten popular locations
from our Shanghai-Telecom dataset [53] in Figure 1. The plot
shows that the check-in locations can influence a user to visit
apps of certain categories more than other apps. Moreover,
it also shows that this POI influence over the category of the
app being accessed is similar across different users.
The correlation between spatial mobility and smartphone
use is essential to address the problems related to user
demographics [39], [46], trajectory analysis [35], app rec-
ommendation [56], and to identify hotspots for network
operators [30]. However, utilizing smartphone usage for
sequential POI recommendations is not addressed in the
past literature. The papers most similar to our work are
by [48] and [45]. [48] utilizes a Dirichlet process to determine
the next user location, but it completely disregards the
user’s privacy i.e. requires precise geo-coordinates, and [45]
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is limited to the cold-start recommendation.

1.2 Our Proposal
In this paper, we present REVAMP(Relative position Vector
for App-based Mobility Prediction), a sequential POI recom-
mendation model that learns the location and app affinities
of smartphone users while simultaneously maintaining their
privacy needs. Specifically, we consider each check-in as
an event involving a smartphone activity, and the physical
presence at a POI and REVAMP models the correlation be-
tween the smartphone-app preferences and the spatial mo-
bility preferences of a user. Parallelly, to preserve the privacy
restrictions, it solely utilizes two aspects of urban mobility:
(a) the types of smartphone apps used during a check-in and
(b) the category of the check-in location. Thus, the proposed
approach is not privy to any kind of identifiable information
(PII) related features such as the precise smartphone-app
being accessed, e.g. ‘Facebook’, ‘Amazon’ etc., the accurate
geo-location, inter-check-in distance, or the social network
of a user. Buoyed by the success of self-attention [47] mod-
els in sequence modeling, REVAMP encodes the dynamic
check-in preferences in the user trajectory as a weighted
aggregation of all past check-ins. Moreover, to better capture
the evolving POI and app preferences, it models the varia-
tion between each check-in in the sequence using absolute
and relative positional encodings [5], [42]. Specifically, we
embed three properties associated with each check-in– the
smartphone app-category, POI-category, and the time of
check-in– and model the temporal evolution as the inter-
check-in embedding differences, independently across these
features. Figure 2 demonstrates how REVAMP embeds and
adaptively learns the inter-check-in dynamics between app
and POI categories to determine the next check-in location
for a user. Moreover, REVAMP grants the flexibility to
predict the category of the most likely smartphone app
to be accessed and the POI-category at the next check-in.
Predicting the app-preferences of a user has limitless appli-
cations ranging from smartphone app recommendation and
bandwidth modeling by cellular network providers [45],
[46], [56]. To summarize, the key contributions we make in
this paper are three-fold:

(i) We propose a self-attention-based neural model, called
REVAMP, to learn the POI-preferences of a user via
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Fig. 1: The probability of a smartphone-app category –
among ‘Social’, ‘Travel’, ‘Shopping’, ‘Navigation’, and ‘Music’
– to be used at 10 most popular locations from Shanghai-
Telecom dataset. The plot indicates that the smartphone
app-usage depends on the check-in location.

Fig. 2: A schematic diagram of inter-check-in time, app and
POI variation-based learning approach of REVAMP. Here,
∆a

•,• and ∆d
•,• denote the smartphone-app and POI-based

differences respectively.

the coarse-grained smartphone usage logs. REVAMP
returns a ranked list of candidate POIs and the most
likely app and POI category for the next check-in.

(ii) REVAMP preserves the privacy needs of a user by
learning a personalized sequence encoding indepen-
dently for each user and is not privy to accurate
geo-locations and social networks. Later, it models
the evolving spatial preferences using the variations
between each check-in in the sequence based on app
category, POI category, and time of the check-in.

(iii) Exhaustive experiments over two large-scale datasets
from China show that REVAMP outperforms other
state-of-the-art methods for sequential POI recom-
mendation, next app, and location-category prediction
tasks. Moreover, we perform a detailed analysis of each
component of REVAMP, a convergence analysis, and
parameter sensitivity to ascertain its practicability.

2 RELATED WORK

In this section, we highlight some relevant works to our
paper. It mainly falls into three categories – modeling
smartphone and mobility, sequential recommendation, and
positional encodings for self-attention models.

2.1 Modeling Smartphone and Mobility
Understanding the mobility dynamics of a user has wide ap-
plications ranging from location-sensitive advertisements,
social community of user, and disease propagation [8],
[33], [35]. Traditional mobility prediction models utilized
a function-based learning for spatial preferences but were
highly susceptible to irregular events in the user trajec-
tory [7], [32]. Therefore, modern approaches [13], [29], [37]
utilize a neural network to model the complex user-POI
relationships, geographical features, travel distances, and
category distribution. These approaches consider the user
trajectory as a check-in sequence and train their model
parameters by capturing the influences across different se-
quences. Other approaches [16], [17], [34], [54] include the
continuous-time contexts for modeling the time-evolving
preferences of a user. However, prior research has shown
that users exhibit revisitation patterns on their web activi-
ties [1], [22] and these revisitation patterns resonate with
the mobility preferences of a user [6], [48]. As per the
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permissions given by a user to an app, leading corporations,
such as Foursquare, utilize smartphone activities to better
understand the likes and dislikes of a user to give better
POI recommendations [9]. The correlation between spatial
mobility and smartphone use is essential to address the
problems related to user demographics [39], [46], trajectory
analysis [35], app recommendation [56], and to identify
hotspots for network operators [30]. However, utilizing
smartphone usage for sequential POI recommendations is
not addressed in the past literature. The papers most similar
to our work are by [48] and [45]. [48] utilizes a Dirichlet
process to determine the next user location, but it com-
pletely disregards the user’s privacy i.e. requires precise
geo-coordinates, and [45] is limited to cold-start POI recom-
mendation rather than sequential recommendations.

2.2 Sequential Recommendation

Standard collaborative filtering (CF) and matrix factoriza-
tion (MF) based recommendation approaches [19], [46] re-
turn a list of most likely items that a user will purchase in
the future. However, these approaches ignore the temporal
context associated with the preferences i.e. it evolves with
time. The task of a sequential recommender system is to
continuously model the user-item interactions in the past
purchases (or check-ins) and predict the future interactions.
Traditional sequence modeling approaches such as per-
sonalized Markov chains [41] combine matrix factorization
with inter-item influences to determine the time-evolving
user preferences. However, it has limited expressivity and
cannot model complex functions. Neural models such as
GRU4Rec [21] utilize a recurrent neural network(RNN) to
embed the time-conditioned user preferences which led to
multiple developments like GRU4Rec+ [20]. Recent research
has shown that including attention [2] within the RNN
architecture achieved better prediction performances than
standard RNN models even in the case of POI recom-
mendations [28], [34], [55]. However, all these approaches
were outperformed by the self-attention-based sequential
recommendation models [24], [27]. In detail, the underly-
ing model of [24] is a transformer architecture [47] that
embeds user preferences using a weighted aggregation of
all past user-item interactions. However, due to largely the
heterogeneous nature of data in spatial datasets e.g. POI
category, geographical distance, etc. extending such models
for sequential POI recommendation is a non-trivial task.

2.3 Relative Positional Encodings and Self-Attention

The self-attention models are oblivious of the position of
events in the sequence and thus, the original proposal
to capture the order of events used fixed function-based
encodings [47]. However, recent research on positional en-
codings [5], [42] has shown that modeling the position as a
relative pairwise function between all events of a sequence,
in addition to the fixed-function encodings, achieves sig-
nificant improvements over the standard method. Thus,
such relative encodings have been used in a wide range
of applications – primarily for determining the relative
word order in natural language tasks [11], [15] and image
order in computer vision problems [4], [51]. Such relative

encodings have also been incorporated in item-based rec-
ommender systems [27] through time-interval based inter-
event relevance and in POI recommendation [31] through
geographical distance-based variances. However, the former
approach cannot be extended to model the heterogeneous
nature of smartphone mobility data and the latter requires
precise geographical coordinates. Moreover, including the
app-category and POI-category-based relevance is not a
trivial task as unlike time and distance, these are context-
dependent i.e. two categories such as ‘Burger Joint’ and ‘Sushi
Restaurant’ differ in terms of the semantic meaning of the
category term. Such differences are not explicit and must be
learned via natural language embeddings.

3 PROBLEM FORMULATION

We consider a setting with a set of users, U and a set
of locations (or POIs), L. We embed each POI using a D
dimensional vector and denote the embedding matrix as
L ∈ R|L|×D . We represent the mobile trajectory of a user
ui as a sequence of check-ins, eui

k ∈ Eui , with each check-in
comprising of the smartphone app and location details. For
a better understanding of our model, let us consider a toy
sequence with five check-ins to POIs with categories, – ‘Bar’,
‘Cafe’, ‘Burger-Joint’, ‘Cafe’, and ‘Sushi Restaurant’, while us-
ing smartphone apps categories – ‘Social’, ‘Shopping’, ‘Game’,
‘Social’, and ‘Travel’, respectively. Thus, for this example,
REVAMP will use the details of the first four check-ins to
predict the last check-in.

Definition 1 (Check-ins). We define a check-in as a timestamped
activity of a user with her smartphone and location details. Specifi-
cally, we represent the k-th check-in in E as ek = {lk, tk,Ak,Sk}
where lk and tk denote the POI and check-in time respectively.
Here, Ak denotes the categories set of the smartphone-app accessed
by a user Sk denotes the set of POI categories.

With a slight abuse of notation, we denote a check-in se-
quence as E and the set of all app- and location categories till
a k-th check-in as A∗

k =
⋃k

i=1 Ak and S∗
k =

⋃k
i=1 Sk respec-

tively. Now, we formally define the problem of sequential
POI recommendation. For our example, A will consist of
‘Shopping’, ‘Game’, ‘Social’, and ‘Travel’, while S will include
‘Bar’, ‘Burger-Joint’, ‘Cafe’, and ‘Sushi Restaurant’ respectively.

Problem Statement (Personalized Sequential Recommen-
dation). Using the user’s past check-in records consisting of app
and POI categories, we aim to get a ranked list of the most
likely locations the user is expected to visit in her next check-
in. Specifically, learn the time-evolving variation in smartphone
and physical mobility to estimate her future preference towards
different locations in her vicinity.

Mathematically, Given the first k check-ins in a sequence
as Ek, we aim to identify the set of candidate POI for the
next check-in i.e. ek+1, conditioned on the app- and location-
categories of all check-ins in the past history. Specifically,
maximize the following probability:

P∗ = argmax
Θ

{E[ek+1|Ek,A∗
k,S∗

k ]} (1)

where E[ek+1] calculates the expectation of ek+1 being in the
sequence of the user, Ek given the past check-ins of a user.
Here, Θ denotes the REVAMP model parameters.
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Fig. 3: Overview of the neural architecture of REVAMP.

4 REVAMP FRAMEWORK

In this section, we first present a high-level overview of
the deep neural network architecture of REVAMP and then
describe component-wise architecture in detail.

4.1 High-level Overview

REVAMP comprises of two components – (i) an Embedding
Initiator (EI) and (ii) Sequential Recommender (SR). Figure 3
shows the overall architecture of REVAMP with different
components and a schematic diagram of both the compo-
nents is given in Figure 4. The workflow of REVAMP in-
cludes three steps: (i) determining the embeddings of all POI
and app categories using the EI module; (ii) calculating the
relative positional encodings in terms of app category, POI
category, and time of check-in, and determining embedding
matrices for each; and (iii) using the category embeddings
from EI module and the newly derived relative embeddings,
determine the mobility preferences of a user via the SR
module.

As we model the differences between the category of POI
and smartphone apps across check-ins, we must capture the
semantic meaning associated with each category e.g. the dif-
ference between a ‘Sushi restaurant’ and a ‘Cafe’. Accordingly,
EI takes the check-in sequence of a user as input, learns the
representations of all smartphone app- and POI-categories,
and calculates the evolving user preferences as the variation
between check-ins.

A,S = GEI(Ek,A∗
k,S∗

k), (2)

where A,S denote the learned embeddings for app and POI
categories respectively, and GEI(•) denotes the Embedding
Initiator. Moreover, REVAMP works by modelling the varia-
tions between different check-ins in a sequence. Specifically,
it learns how the mobility preference of a user has evolved
based on the difference in the current and past check-ins.
Capturing and feeding these differences to our self-attention
model is a non-trivial task as we denote each check-in via
its POI and app category embeddings. Therefore, we use our
RE module to derive these differences and simultaneously
embed them to be fed into a self-attention model. These
variations are used to assign relative positional encodings to
the check-ins in the self a stacked self-attention architecture
in SR.

J ,K,T = fRE(Ek,A,S), (3)

where J ,K,T are the relative positional encodings for
app categories, POI categories, and time respectively. Here,

TABLE 1: Summary of Notations Used.

Notation Description

U ,L Set of all user and locations
ek ∈ E k-th check-in in the sequence
A,S Set of all smartphone and POI categories
A,S Smartphone and POI category embeddings
D Embedding Dimension
J ,K,T App, POI, and time based relative encodings
P key,P val Absolute positional encodings
Jkey,Kkey,T key Key matrices for relative embeddings
Jval,Kval,T val Value matrices for relative embeddings
LMF,LBert Trajectory and BERT-based loss
LRec POI recommendation loss for SR
LApp,LPOI Smartphone and POI category loss

fRE(•) denotes the function to calculate these relative
encodings. Note that these encodings are personalized i.e.
they are calculated independently for each user. SR then
combines these relative encodings with absolute positional
encodings to model the sequential POI preference of a user.
Through this, we aim to get a ranked list of the most
probable candidate POIs for the next check-in of a user.

l̂k+1 = GSR(Ek,J ,K,T ), (4)

where l̂k+1 is the candidate POI for the k+1-th check-in of a
user and GSR(•) denotes the sequential recommender. Fig-
ure 4 shows a schematic diagram of REVAMP architecture.
The training process of REVAMP is divided into two-steps
– train the category embeddings using EI and then use them
for sequential recommendation in SR section. More details
are given in Section 4.5.

4.2 Embedding Initiator (EI)

A major contribution of this paper is to learn the mo-
bility preferences conditioned only on the categories of
smartphone apps and POI rather than the exact location
coordinates and app preferences. Learning from such coarse
data is not a trivial task and training with randomly-initialized
embeddings may not capture the category semantics, e.g. if
‘Burger-Joints’ and ‘Asian-Restaurants’ are frequently visited
then a training process with random initialization will lead
to similar the trained embeddings. Therefore, our category
embeddings must simultaneously capture the user prefer-
ences towards each category and the category semantics via
pre-trained word embeddings. We highlight this through an
example – a user checks a mobile-app of category ‘Social’
frequently at two separate locations, say ‘Cafe’ and ‘Sushi
Restaurant’, the category embeddings should capture the
POI influence that persuaded a user to use apps of a similar
category(‘Social’ in this case) as well as the semantic differ-
ence between a coffee joint and an Asian restaurant. There-
fore, we use a two-channel training procedure, wherein we
use pre-trained embeddings to extract the semantic meaning
of all app and location categories and learn user prefer-
ences towards these categories via a lightweight matrix-
factorization.
Specifically, given a check-in sequence ek ∈ E we follow a
four-layer architecture:

(1) Input Layer. We initially embed the app and location
categories, A∗ and S∗, as A ∈ R|A∗|×D and S ∈ R|S∗|×D

respectively. Each row ai ∈ A represents a D-dimension
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Fig. 4: Architecture of different components in REVAMP. Panel (a) illustrates an the setup of Embedding Initiator (EI) that
learns the category representations. Panel (b) shows the self-attention architecture in Sequential Recommender (SR). Note
that only the check-in-sequence till k−1-th index is used to predict the next check-in i.e. ek, and the input is an aggregation
of all past events and relative positional encodings.

representation of a smartphone app category. Similarly, si ∈
S is a representation for a POI category.

(2) MF Layer. To learn the interaction between app
and POI categories, we follow a lightweight collaborative
filtering approach, wherein we concatenate the entries in A
and S that appear together in a check-in ek ∈ E . Specifically,
we concatenate the app and POI category embeddings for a
check-in and then use a feed-forward network.

v̂ai,sj = ReLU (wv(ai||sj) + bv) , (5)

where v̂ai,sj denotes the probability of an app of category
ai to be accessed at a POI of category sj , || denotes the
concatenation operator, and w•, b• are trainable parameters.
We train our embeddings via a cross-entropy loss:

LMF = −
|E|∑
k=1

∑
ai∈Ak
sj∈Sk

[
log

(
σ(v̂ai,sj )

)
+ log

(
1− σ(v̂ai,s′j

)
)

+ log
(
1− σ(v̂a′

i,sj
)
)]
,

where v̂•,• denotes the estimated access probability (i) v̂ai,sj

between a true app- and location-category i.e. ai ∈ Ak, sj ∈
Sk, (ii) v̂a′

i,sj
for a negatively sampled app-category with a

true location-category i.e. ai /∈ Ak, sj ∈ Sk, and (iii) v̂ai,s′i
for a negatively sampled location-category with a true app-
category i.e. ai ∈ Ak, sj /∈ Sk.

(3) BERT Layer. To capture the real-world semantics of
a category, we use a pre-trained BERT [10] model with over
110M parameters. Specifically, we extract the embeddings
for each smartphone app and POI category from the pre-
trained model. Later, we maximize the similarity between
these embeddings and our category representations, A and
S by optimizing a mean squared loss.

LBert =
1

|E|

|E|∑
k=1

∑
ai∈Ak
sj∈Sk

[
||ai − Φ1(ai)||2 + ||si − Φ2(si)||2

]
,

(6)
where, ai ∈ A and sj ∈ S are our trainable embedding
for categories ai and sj respectively, and Φ• denotes a two-
step function that extracts pre-trained embeddings for all

categories and uses a feed-forward network to normalize
the embedding dimension to D. Specifically,

Φ1(ai) = ReLU
(
w1 · B(ai) + b1

)
, (7)

Φ2(si) = ReLU
(
w2 · B(si) + b2

)
, (8)

where B denotes the set of all pre-trained embeddings, B(ai)
and B(si) denote the extracted app and location category
embedding, and w•, b• are trainable parameters.

(4) Optimization. We train our embeddings using a
two-channel learning procedure consisting of app-location
interaction loss, LMF, and pre-trained embedding loss,
LBert, by optimizing a weighted joint loss.

LEI = γLMF + (1− γ)LBert, (9)

where γ denotes a scaling parameter. Later, we use A and S
to identify the inter-check-in differences and model the POI
preferences of a user.

4.3 Relative or Inter-check-in Variations
Buoyed by the efficacy of relative encodings for self-
attention models [5], [42], REVAMP captures the evolving
preferences of a user as relative encodings based on three
inter-check-in differences: (i) Smartphone App-based dy-
namics, (ii) Location category distribution, and (iii) Time-
based evolution across the event sequence.
Smartphone App-based Variation. Recent research [5], [42]
has shown that users’ preference towards smartphone apps
is influenced by their geo-locations and other POI-based
semantics. Seemingly, it is more likely for a user to be
active on a multiplayer game at a social joint rather than
her workplace. We quantify the differences in the app
preferences of a user via the differences in the embeddings
of the smartphone-app category being used at a check-in.
Specifically, for each check-in ek, we calculate the net app-
category as a mean of all category embeddings.

µa
k =

1

|Ak|
∑

ai∈Ak

ai, (10)

where µa
k, ai ∈ Ak,ai ∈ A represent the net app-category

embedding for a check-in ek, the app-category used in the
check-in and the corresponding embedding learned in the EI
(see Section 4.2). Following [42], we use these embeddings to
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calculate a inter-check-in variance matrix J ∈ W|E|×|E| for
each check-in sequence. Specifically, the i-th row in matrix
J denotes the difference between the mean app-category
embedding of check-in ei with all other check-ins in the
sequence and is calculated as:

J i,j =

⌊
fcos(µ

a
i ,µ

a
j )−minf (E)

maxf (E)−minf (E)
· Ia

⌋
, (11)

where fcos(•, •),minf (E),maxf (E) denote the function for
normalized cosine-distance, the minimum and maximum
cosine distance between the mean category embedding for
any two check-ins in a sequence. We use Ia as a clipping
constant and a floor operator to discretize the entries in
J . Such a discretization makes it convenient to extract
positional encodings for the self-attention model in SR.
POI-based Variation. We derive the inter-check-in differ-
ences between POI categories using a similar procedure
for app-based differences. Specifically, we calculate a net
POI category embedding, µl

k for each check-in as µl
k =

1
|Sk|

∑
si∈Sk

si and similar to Eqn 11, we calculate the POI-
based inter-check-in variance matrix K ∈ W|E|×|E| using a
clipping constant Il. Here, the i-th row in matrix K denotes
the difference between the mean POI-category embedding
of check-in ei with all other check-ins in the sequence.
Time-based Variation. Ostensibly, there may be irregular-
ities in the smartphone app usage of a user, e.g. a user
browsing ‘Amazon’ may receive a message ‘Twitter’ that she
immediately checks and then later continues her shopping
on Amazon. Notably, the ‘Amazon’ app did not influence
the user to access ‘Twitter’ and vice-versa, as such a change
between apps was coincidental. To model these nuances in
REVAMP we use the time interval between accessing differ-
ent smartphone apps. Specifically, similar to app- and POI-
category based inter-check-in differences, we derive a time-
based variations matrix, T ∈ W|E|×|E|, using the absolute
time-difference between each check-in.

T i,j =

⌊
|ti − tj |
tmin

· It

⌋
, (12)

where ti, tj , tmin, and It denote the time of check-in ei and
ej , minimum time-interval between check-ins of a user and
the normalizing constant for time respectively.

4.4 Sequential Recommender (SR)
In this section, we elaborate on the sequential recommenda-
tion procedure of REVAMP that is responsible for modeling
the app and POI preferences of a user and then recommend
candidate POI for the next check-in. Specifically, it uses a
self-attention architecture consisting of five layers:

(1) Input Layer. The SR model takes the check-in se-
quence of a user (E), relative app, POI, and time encod-
ings, (K,J , and T respectively), and the mean app and
location category representations (µa

•,µ
l
•) as input to the

self-attention model. Since, the self-attention models require
a fixed input sequence, we limit our training to a fixed
number of check-ins i.e. we consider the N most recent
check-ins in E for training our model and if the number of
check-ins is lesser than N , we repeatedly add a [pad] vector
for the initial check-ins within the sequence.

(2) Embedding Retrieval Layer. Since, the self-attention
models are oblivious of the position of each check-in in the
sequence, we use a trainable positional embedding for each
check-in [24], [27]. Specifically, we initialize two distinct
vectors denoted by P key ∈ RN×D and P val ∈ RN×D where
the i-th rows, pkey

i and pval
i , denote the positional encoding

for the check-in ei in the sequence. Similarly, we embed
the relative positional matrices K, J , and T into encoding
matrices Jkey,Jval ∈ RN×N×D , Kkey,Kval ∈ RN×N×D ,
and T key,T val ∈ RN×N×D respectively.

Kkey =


kkey
1,1 · · · kkey

1,N
...

...
...

kkey
N,1 · · · kkey

N,N

 , Kval =


kval
1,1 · · · kval

1,N
...

...
...

kval
N,1 · · · kval

N,N

 ,

(13)
We use two separate matrices to avoid any further linear
transformations [42]. Each entry in Kkey and Kval denotes
a D dimensional vector representation of corresponding
value in in K. We follow a similar procedure to initialize
Jkey,Jval,T key and T val for J and T respectively.

(3) Self-Attention Layer. Given the check-in sequence
of a user, the self-attention architecture learns the sequential
preference of a user towards POIs. Specifically, for an input
sequence consisting of POI embeddings of locations visited
by a user, LE = (le1 , le2 , · · · leN ) where lei ∈ ei and
lei ∈ L are the location visited in check-in ei the POI
embedding for lei respectively, we compute a new sequence
Z = (z1, z2, · · · zN ), where z• ∈ RD . Each output embed-
ding is calculated as a weighted aggregation of embeddings
of all POIs visited in the past.

zi =
N∑
j=1

αi,j

(
wv,jlej + µj + pval

j + jvali,j + kval
i,j + tvali,j

)
,

(14)
where lej is the POI embedding, µj = µa

j +µl
j is the sum of

smartphone app and POI category mean embeddings, and
wv,j is a trainable parameter. The attention weights α•,• are
calculated using a soft-max over other input embeddings as:

αi,j =
exp

(
xi,j

)∑N
k=1 exp

(
xi,k

) , (15)

where xi,j denotes the compatibility between two check-
ins– ei and ej – and is computed using both – relative- as
well as absolute-positional encodings.

xi,j =
wq,ilei

(
wk,jlej + pkey

j + jkeyi,j + kkey
i,j + tkeyi,j

)⊤

√
D

,

(16)
where wq,•,wk,• and D denote the input query projection,
key projection, and the embedding dimension respectively.
We use the denominator as a scaling factor to control the
dot-product gradients. As our task is to recommend candi-
date POI for future check-ins and should only consider the
first k check-ins to predict the (k + 1)-th check-in, we in-
troduce a causality over the input sequence. Specifically, we
modify the procedure to attention in Eqn.(16) and remove all
links between the future check-ins and the current check-in.
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(4) Point-wise Layer. As the self-attention lacks any
non-linearity, we apply a feed-forward layer with two
linear-transformation with ReLU activation.

PFFN(zk) = ReLU (zkwp,1 + b1)wp,2 + b2, (17)

where wp,•, b• are trainable layer parameters.
The combination of a self-attention layer and the point-wise
layer is referred to as a self-attention block and stacking self-
attention blocks gives the model more flexibility to learn
complicated dynamics [47]. Thus, we stack Mb such blocks
and to stabilize the learning process, we add a residual
connection between each such block.

z
(r)
k = z

(r−1)
k + PFFN

(
fln(z

(r−1)
k )

)
, (18)

where 1 ≤ r ≤ Mb, fln(•) denote the level of the current
self-attention block and layer-normalization function respec-
tively. The latter is used to further accelerate the training of
self-attention and is defined as follows:

fln(zk) = β ⊙ zk − µz√
σ2
z + ϵ

+ γ, (19)

where ⊙, µz, σz, β, γ, ϵ denote the element-wise product,
mean of all input embeddings, the variance of all input em-
beddings, learned scaling factor, bias term, and the Laplace
smoothing constant respectively.

(5) Prediction Layer. A crucial distinction between RE-
VAMP and standard self-attention model is that REVAMP
not only predicts the candidate POIs for next check-in, but
also the category of the smartphone app and POI category
to be used in the next check-in. Here, we describe the
prediction procedure for each of them.
POI Recommendation. We predict the next POI to be
visited by a user in the check-in sequence using a matrix-
factorization [19] based approach between the transformer
output Z(Mb) = (z1, z2, · · · zk) and the embeddings of POIs
visited by the user, (le2 , le3 , · · · lek+1

)

v̂ui,lek
= zk−1l

⊤
ek
, (20)

where v̂ui,lek
is the calculated probability of user, ui, to

visit the POI, lek , for her next check-in. We learn the model
parameters by minimizing the following cross-entropy loss.

LRec = −
∑
ui∈U

N∑
k=1

[
log

(
σ(v̂ui,lek

)
+ log

(
1− σ(v̂ui,l′ek

)
)]

+ λ||Θ||2F ,

where v̂ui,l′ek
denotes the check-in probability for a nega-

tively sampled POI i.e. a randomly sampled location that
will not be visited by a user. λ, σ,Θ denote regularization
parameter, sigmoid function4, and the trainable parameters
respectively.
Predicting App Categories. Predicting the next smartphone
app to be accessed by a user has numerous applications
ranging from smartphone system optimization, resource
management in mobile operating systems, and battery op-
timization [39], [56]. Therefore, to predict the category of
the next app to be used, we follow a matrix-factorization
approach to calculate the relationship between the user

4. https://en.wikipedia.org/wiki/Sigmoid function

preference embedding, zk and the mean of smartphone app
embeddings for the next check-in.

q̂ui,Ak
= zk−1µ

a
k
⊤, (21)

where q̂ui,Ak
,µa

k denote the usage probability of apps of
categories in Ak and the mean embedding for all apps used
in check-in ek. Later, we minimize a cross entropy loss with
negatively sampled apps i.e. apps that were not used by the
user, denoted as LApp.
Predicting Location Categories. As in app-category predic-
tion, we calculate the preference towards a POI-category
using the mean of POI category embedding µl

k and learn
the parameters by optimizing a similar cross-entropy loss
denoted as LPOI.
The net loss for sequential recommendation is a weighted
combination of POI recommendation loss, app-category
loss, and location- category loss.

LSR = LRec + κ(LApp + LPOI), (22)

Here, κ is a tunable hyper-parameter for determining the
contribution of category prediction losses. All the param-
eters of REVAMP including the weight matrices, relative-
position weights, and embeddings are learned using an
Adam optimizer [25].

4.5 REVAMP: Training
As mentioned in Section 4.1, REVAMP involves a two-step
training procedure. Specifically, it consists of the following
steps: (i) learning the app and POI category embeddings
using the embedding initiator(EI) and (ii) training the self-
attention model in SR to recommend candidate POI to
the user. In detail, we first train the parameters of EI by
minimizing the LEI loss for multiple epochs and later use
the trained category embeddings in SR and recommend
candidate POI by minimizing the recommendation loss,
LSR.

We highlight that a joint training of both, EI and SR, is not
suitable in the presence of relative positional encodings, as
they are conditioned on the category embeddings learned
in EI. Therefore, during joint training, an update in the
category embedding will make the trained parameters of
SR across the previous epochs as unsuitable for prediction
in the future. Moreover, these encodings are calculated
relatively i.e. conditioned on the embedding of other cate-
gories in a sequence, and thus any change in the category
embedding will affect the category embeddings.

5 EXPERIMENTS

In this section, we report a comprehensive empirical eval-
uation of REVAMP and compare it with other state-of-
the-art approaches. We evaluate the POI recommendation
performance of REVAMP using two real-world datasets
from China. These datasets vary significantly in terms of
data sparsity, the no. of app categories, and POI categories.
With our experiments, we aim to answer the following
research questions:
RQ1 How does REVAMP fare against state-of-the-art mod-

els for sequential POI recommendation? Where are the
gains and losses?
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TABLE 2: Statistics of all datasets used in this paper. Here,
|U|, |P|, |E|, |A|, and |S| denote the number of users, POIs,
check-ins, app categories, and POI categories respectively.

Dataset |U| |P| |E| |A| |S|
Shanghai-Telecom 869 32680 3668184 20 17

TalkingData 14544 37113 438570 30 366

RQ2 What is the contribution of relative positional encod-
ings?

RQ3 What is the scalability of REVAMP and the stability of
the learning procedure?

RQ4 What is the impact of different hyper-parameter val-
ues on the prediction performance of REVAMP?

All our algorithms were implemented in Tensorflow5 and to
support reproducibility, we pledge to release our implemen-
tations to the public upon acceptance.

5.1 Experimental Setup
Dataset Description. As our goal is to recommend POIs to a
user based on her smartphone usage, the mobility datasets
used in our experiments must contain the user trajectory
data i.e. geographical coordinates, time of a check-in, as well
as the smartphone-usage statistics – applications used across
different locations, the categories of different apps based on
online app-stores, etc. Therefore we consider two popular
large-scale datasets – Shanghai-Telecom and TalkingData and
their statistics are given in Table 2. Moreover, we highlight
the high variance between the category semantics of both
the datasets by plotting the location category word clouds
in Figure 5.

1) Shanghai-Telecom: This smartphone usage and the
physical-mobility dataset was collected by a major net-
work operator in China [53]. The trajectories were col-
lected from Shanghai in April 2016. It contains the de-
tails of a user’s physical mobility and the time- and geo-
stamped smartphone app usage records. More specifi-
cally for each user, we have the time-stamped records
of the smartphone apps being used and the different
cellular-network base stations to which the smartphone
was connected during the data collection procedure.
For the region covered by each cellular network base
station, we also have the details of the internal POIs and
their corresponding categories. For our experiments, we
consider each user→base-station entry as a check-in and
all the apps and their categories associated with that
check-in as the events in the sequence E . We adopt a
commonly followed data cleaning procedure [32], [37]
and filter out users and POI with less the five check-ins.

2) TalkingData: A large-scale public app-usage dataset
that was released by TalkingData6, a leading data in-
telligence solution provider based in China. The orig-
inal dataset released by the company [23] consists of
location- and time-stamped records of smartphone app
usage and physical trajectories of a user. However, in
this dataset, we lack the categories associated with
each POIs. We overcome this by extracting location
categories and geo-coordinates from publicly available

5. www.tensorflow.org
6. www.talkingdata.com/

(a) Shanghai-Telecom (b) TalkingData

Fig. 5: Word-cloud for POI Categories for both Shanghai-
Telecom and TalkingData datasets. Larger the font-size
indicates a larger frequency of location of the category.
The variance across the datasets is due to the different
sources used for extracting location categories – the at-hand
location-categories for Shanghai-Telecom and Foursquare-
based categories for TalkingData.

check-in records [52] for users in Foursquare – a lead-
ing social mobility network, and map each check-in
location in Foursquare to a location in the TalkingData
within a distance of 50m based on geographical coor-
dinates. For our experiments using this dataset, we re-
strict our check-in records to only the locations situated
in mainland China. As in the Shanghai-Telecom dataset,
we filter out the users and POI with lesser than five
check-ins.

System Configuration. All our experiments were done on
a server running Ubuntu 16.04. CPU: Intel(R) Xeon(R) Gold
5118 CPU @ 2.30GHz, RAM: 125GB and GPU: NVIDIA Tesla
V100 32GB.
Evaluation Metric. We evaluate REVAMP and the other
sequential recommendation baselines, using a widely used
leave-one-out evaluation, i.e. next check-in prediction task.
Specifically, for each user, we consider the last check-in
of the trajectory sequence as the test check-in, the second
last check-in for validation, and all preceding events as the
training set [24], [27]. We also follow a common testing
strategy wherein we pair each ground truth check-in in the
test set with 100 randomly sampled negative events [19],
[24]. Therefore, the task becomes to rank the negative check-
ins with the ground truth check-in. In this setting, the hit-
rate, HR@k, is equivalent to Recall@k and proportional to
Precision@k and mean reciprocal rank (MRR) is equivalent
to mean average precision (MAP). To evaluate the effective-
ness of all approaches, we use Hits@k and NDCG@k, with
k ∈ {1, 5, 10} and report the confidence intervals based on
five independent runs.
Parameter Settings. For all results in Section 5.2 and 5.4,
we set N = 200 and N = 100 for Shanghai-Telecom
and TalkingData respectively. We set Ia = Il = It = 64,
D = 64, and λ = 0.002, We search the batch-size in
{128, 256}, the no of attention-heads in {1, 2, 4, 8}, κ, γ are
searched in {0.2, 0.5, 0.8}, and the dropout probability is
set to 0.2. However, for parameter sensitivity experiments
in Section 5.3, we show the prediction performance across
different hyper-parameter values.
Baselines. We compare REVAMP with the state-of-the-art
methods based on their architectures below:
(1) Standard Recommendation Systems.
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TABLE 3: Next check-in recommendation performance of REVAMP and state-of-the-art baselines. As the Shanghai-
Telecom dataset lacks precise geographical coordinates for every check-in, we exclude a comparison with STGN [55].
Numbers with bold font and superscript * indicate the best and the second best performer respectively. All results of
REVAMP are statistically significant (i.e. two-sided Fisher’s test with p ≤ 0.1) over the best baseline.

Shanghai-Telecom TalkingData
Baselines NDCG/Hits@1 NDCG@5 NDCG@10 Hits@5 Hits@10 NDCG/Hits@1 NDCG@5 NDCG@10 Hits@5 Hits@10
FPMC [41] 0.5906 0.6021 0.6402 0.6162 0.6481 0.7224 0.7362 0.7704 0.7408 0.7892

TransRec [18] 0.5437 0.5803 0.6055 0.5839 0.6081 0.6872 0.6892 0.7691 0.6902 0.7784
GRU4Rec+ [20] 0.6291 0.6432 0.6796 0.6443 0.6867 0.7319 0.7654 0.7913 0.7703 0.7962

Caser [44] 0.6418 0.6472 0.6782 0.6507 0.6991 0.7321 0.7802 0.8079 0.8157 0.8482
STGN [55] - - - - - 0.6694 0.7981 0.8132 0.8224 0.8549
AUM [48] 0.5718 0.6089 0.6358 0.6097 0.6433 0.7184 0.7395 0.7646 0.7782 0.8179

Bert4Rec [43] 0.7031 0.7346 0.7442 0.7188 0.7301 0.7728 0.8247 0.8281 0.8614 0.8743
SASRec [24] 0.7279 0.7530 0.7562* 0.7583 0.7648 0.8295 0.8621* 0.8680 0.9027* 0.9108*
TiSRec [27] 0.7284* 0.7542* 0.7558 0.7618* 0.7663* 0.8307* 0.8619 0.8693* 0.8998 0.9014
REVAMP 0.7865 0.8021 0.8186 0.8203 0.8340 0.8793 0.9324 0.9371 0.9492 0.9594

FPMC [41] FPMC utilizes a combination of factor-
ized first-order Markov chains and matrix factorization
for recommendation and encapsulates a user’s evolv-
ing long-term preferences as well as the short-term
purchase-to-purchase transitions.
TransRec [18] A first-order sequential recommendation
model that captures the evolving item-to-item prefer-
ences of a user through a translation vector.

(2) POI Recommendation Systems.
STGN [55] Uses a modified LSTM network that cap-
tures the spatial and temporal dynamic user-preferences
between successive check-ins using spatio-temporal
gates. Hence, it requires the exact location coordinates
as input to the model.

(3) Smartphone App-based.
AUM [48] Models the user mobility as well as app-
usage dynamics using a Dirichlet process to predict next
successive check-in locations.

(4) Recurrent and Convolutional Neural Network.
GRU4Rec+ [20] A RNN-based approach that models
the user action sequences for a session-based recom-
mendation. It is an improved version of GRU4Rec [21]
with changes in the loss function and the sampling
techniques.
Caser [44] A state-of-the-art CNN-based sequential rec-
ommendation method that applies convolution opera-
tions on the N -most recent item embeddings to capture
the higher-order Markov chains.

(5) Self-Attention.
Bert4Rec [43] A bi-directional self-attention [10] based
sequential recommendation model that learn user pref-
erences using a Cloze-task loss function, i.e. predicts the
artificially masks events form a sequence.
SASRec [24] A self-Attention [47] based sequential rec-
ommendation method that attentively captures the
contribution of each product towards a user’s item-
preference embedding.
TiSRec [27] A recently proposed enhanced version of
SASRec model that uses relative-position embeddings
using the difference in the time of consecutive purchases
made by the user.

We omit comparisons across other approaches for sequential
recommendations, such as GRU4Rec [21], MARank [36]

as they already have been outperformed by the current
baselines. We calculate the confidence intervals based on the
results obtained after three independent runs.

5.2 Performance Comparison (RQ1)

In this section, we report the location recommendation per-
formance of different methods across both mobility datasets.
The results for Shanghai-Telecom and TalkingData datasets
are given in Table 3. From these results, we make the
following observations.
• REVAMP consistently outperforms all other baselines

for sequential mobility prediction across both datasets.
The superior performance signifies the importance of
including the smartphone usage pattern of a user to
determine her mobility preferences. We also note that the
performance gains over other self-attention based models
– Bert4Rec [43], SASRec [24], and TiSRec [27] further
reinforce our claim that including relative positional en-
codings based on the smartphone, spatial and temporal
characteristics enhances the user-modeling ability of a
model.

• We also note that the self-attention-based architecture
such as Bert4Rec, SASRec, TiSRec, and REVAMP con-
sistently yield the best performance on all the datasets
and easily outperform CNN and RNN based models
namely Caser [44] and GRU4Rec+ [20]. This further sig-
nifies the unequaled proficiency of the transformer [47]
architecture to capture the evolution of user preferences
across her trajectory sequence. More importantly, it out-
performs the state-of-the-art location recommendation
model STGN [55] that uses the additional information of
precise geographical coordinates of each POI location.

• REVAMP also outperforms the other smartphone-
activity-based approach AUM [48] by up to 34% across
different metrics.

• We also note that neural baselines such as Caser [44],
GRU4Rec+ [20] achieve better results as compared to
FPMC [41] and TransRec [18]. It asserts the utmost im-
portance of designing modern recommender systems us-
ing neural architectures. Moreover, GRU4Rec+ achieves a
similar performance compared to Caser.

To sum up, our empirical analysis suggests the follow-
ing: (i) the state-of-the-art models, including self-attention
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Fig. 6: POI recommendation performance of REVAMP with
different methods for obtaining the relative positional en-
codings i.e. the inter-check-in differences between app- and
location embeddings. Here, the time-based representations
are kept consistent across all the models.

and standard neural models, are not suitable for modeling
mobile-user trajectories, and (ii) REVAMP achieves better
recommendation performances as it captures the mobility
dynamics as well as the smartphone-activity of a user.

5.3 Ablation Study(RQ2)

We also perform an ablation study to estimate the efficacy
of different components in the REVAMP architecture. More
specifically we aim to calculate the contribution of (i) the
embedding initiator and (ii) relative positional embeddings.

Analysis of Embedding Initiator. We reiterate that EI,
defined in Section 4.2, is used to learn the semantic meaning
of each app- and POI category as well as the influence
between these embeddings in a mobility sequence. We
accomplish this via a joint loss that consists of – minimizing
the divergence between the category vector and the pre-
trained BERT [10] vectors and a collaborative-filtering (CF)
loss. These trained embeddings are later used to learn
the inter-check-in differences through relative positional
encodings. To emphasize its importance, we compare
the prediction performances of REVAMP with different
procedures to learn category embeddings and thus the
relative embeddings. Specifically we consider: (i) word-
movers-distance(WMD) [26] between the word2vec [38]
representations of each category, (ii) WMD on Glove [40]
based representations, (iii) WMD based on BERT [10]
initialized vectors, (iv) a simple collaborative filtering based
parameter training, (v) using pre-trained BERT, and (vi)
the EI proposed in the paper. From the results in Figure 6,
we note that our proposed EI achieves the best prediction
performance compared to other approaches. We also note
that standard pre-trained BERT vectors outperform other
WMD-based approaches.

Relative Positional Encodings. Relative positional embed-
dings are a crucial element in our model. We calculate
the performance gains due to the different relative encod-
ings – app-, time- and location-based by estimating the
recommendation performance of the following approaches:
SASRec [24]; (i) TiSRec [27]; (ii) REVAMP with time-based

5 10
k→

0.68

0.72

0.76

0.80

N
D

C
G

@
k
→

(a) Shanghai-Telecom

5 10
k→

0.72

0.78

0.84

0.90

N
D

C
G

@
k
→

(b) TalkingData
SASRec

TiSRec

ReVAMP-t

ReVAMP-a

ReVAMP-l

ReVAMP

Fig. 7: Ablation study with different relative positional en-
codings used in REVAMP and their comparison with SAS-
Rec [24] and TiSRec [27].

relative positional encoding called REVAMP-t; (iii) RE-
VAMP with app-based encodings, denoted as REVAMP-
a; (iv) REVAMP with location-based encodings, denoted as
REVAMP-l; and (v) the complete REVAMP model with all
relative encodings.

Figure 7 summarizes our results in which we ob-
serve that including relative positional encodings of any
form, whether app-based or location-based, leads to better
prediction performances. Interestingly, the contribution of
location-based relative positional embeddings is more sig-
nificant than the app-based and could be attributed to larger
variations in location-category than the app-category across
an event sequence. For example, the difference between
location categories of a university region and an office
space will capture larger dynamics than the differences
in the smartphone app usage across these two regions.
However, jointly learning all positional encoding leads to
the best performance over both datasets. The improvements
of REVAMP-t over TiSRec [27] could be attributed to the
inclusion of absolute event encodings (both app and location)
in REVAMP.

In addition, we report the results in terms of mean
reciprocal rank (MRR) for REVAMP and the best perform-
ing baselines, i.e., SASRec and TiSRec in Figure 8. The
results across MRR show a similar trend with REVAMP
easily outperforming other approaches across both datasets.
Interestingly, here we note that the performance difference
between the baselines SASRec and TiSRec drops, i.e., the
performance is similar without any significant differences.

5.4 App and Location Prediction Category
Since our goal via REVAMP is to understand the smart-
phone activity of a user and correlate it with her mobile
trajectories. Therefore, we perform an additional experiment
to evaluate how effectively is REVAMP able to predict the
app- and the location-category for the next user check-in.
We also introduce an additional state-of-the-art smartphone-
activity modeling baseline, Appusage2Vec [56] which con-
siders the category of the app and the time spent on the
app by the user to learn an app-preference embedding of a
user. We also compare with the state-of-the-art transformer-
based models – SASRec [24] and TiSRec [27]. For an even
comparison, we rank the models using the root-mean-
squared (RMS) distance between the final user preference
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Fig. 8: Next check-in recommendation performance of SAS-
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Fig. 9: Root-mean squared distance between the user-
preference vector estimated by the model and the mean
of app- and location- category vectors of events in the test
set. It shows that REVAMP is the best performer for all the
datasets.

embedding obtained after learning on N consecutive events
of a user and the mean of location and category embeddings
of the N + 1 event in the sequence. Accordingly, we also
modify the architectures of SASRec and TiSRec to predict
user-affinity across the location and app category affinities.
From the results in Figure 9, we make the following observa-
tions: (i) REVAMP easily outperforms all other baselines for
both apps and location category prediction. This illustrates
the better user-preference modeling power of REVAMP
over other approaches, (ii) For app-category prediction, Ap-
pusage2Vec also outperforms both SASRec and TiSRec even
with its shallow neural architecture. However REVAMP
easily outperforms Appusage2Vec across both datasets.

5.5 Scalability of REVAMP (RQ3)

To determine the scalability of REVAMP with different
positional encodings – absolute and relative, we present the
epoch-wise time taken for training REVAMP in Table 4.
Note that these running times exclude the time for pre-
processing where we calculate the inter-event app and
location category-based differences. We note that the run-
time of REVAMP is linear with the number of users and
secondly, even for a large-scale dataset, like TalkingData, we
can optimize all parameters in REVAMP well within 170
minutes. These run times are well in range for designing
recommender systems.

TABLE 4: Run-time Statistics of training REVAMP in min-
utes on a 32GB Tesla V100 GPU with 256 batch-size.

Epochs 20 60 100 160 200 300

Shanghai-Telecom 2.43 6.31 10.48 16.72 21.47 32.01
TalkingData 11.39 33.73 56.12 89.81 112.35 168.49

TABLE 5: Run-time statistics of REVAMP in minutes for
different subsets of data – 40%, 60%, and 80%.

Shanghai-Telecom TalkingData
40% 60% 80% 40% 60% 80%

Time 17.8 22.3 28.4 71.3 105.2 141.6
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Fig. 10: Epoch-wise recommendation performance of RE-
VAMP for both datasets in terms of Hits@1, 5, 10.
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Fig. 11: Parameter Sensitivity for Shanghai-Telecom Dataset

In addition, we report the training times for different
subsets of data in Table 5. Specifically, we show results
where we use 40%, 60%, 80% of all users in the dataset.
These users are selected randomly among all users in the
complete dataset and the training-test sets are modified
accordingly. All other parameters are same as before. From
the results, we make the following observations: (i) the run-
times increase linearly as per the subset of users; and (ii) the
training times of REVAMP are well within the acceptable
range for practical deployment.
Convergence of REVAMP Training. As we propose the
first-ever application of the self-attention model for smart-
phones and human mobility, we also perform a convergence
analysis during training REVAMP. To emphasize on the
stability of REVAMP training procedure, we plot the epoch-
wise best prediction performance of REVAMP across both
datasets in Fig 10. From the results, we note that despite
the multi-variate nature of data and the disparate positional
encodings, REVAMP converges only in a few training it-
erations. It is also important to note that the REVAMP
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significantly outperforms other RNN based baselines even
with limited training of 40 iterations.

5.6 Parameter Sensitivity (RQ4)

Finally, we perform the sensitivity analysis of REVAMP.
The key parameters we study are (i) D, the dimension
of embeddings; (ii) N , no. of latest events considered for
training; and (iii) Ia,l,t, predefined normalizing constant
for cosine-similarity for all relative encodings. (see Table
I). In this section, we evaluate the model on NDCG@10
and Hits@10. We report the recommendation performance
across different hyperparameter values for the Shanghai-
Telecom dataset and omit results for TalkingData for brevity.
However, we noted a similar behavior for the TalkingData
dataset as well.

From the results in Figure 11, we note that as we in-
crease the embedding dimension, D, the performance first
increases since it leads to better modeling. However, beyond
a point, the complexity of the model increases requiring
more training to achieve good results, and hence we see
some deterioration in performance. Next, increasing the
no. of events for recommendation leads to better results
before saturating at a certain point. We found N = 100
and N = 200 to be the optimal point across Shanghai-
Telecom and TalkingData in our experiments. Finally, for
normalizing constant I , an interesting insight is that on
increasing the constant value the performance increases and
later plateaus after a certain point. This could be due to
saturation after a further increase in no. of distinct positional
encodings.

6 CONCLUSION

In this paper, we highlighted the drawbacks of modern POI
recommender systems that ignore the smartphone usage
characteristics of users. We also proposed a novel sequential
POI recommendation model, called REVAMP, that incorpo-
rates the smartphone usage details of a user while simul-
taneously maintaining user privacy. Inspired by the success
of relative positional encodings and self-attention models,
REVAMP uses relative as well as absolute positional en-
codings determined by the inter-check-in variances in the
smartphone app category, POI category, and time over the
check-ins in the sequence. Our experiments over two di-
verse datasets from China show that REVAMP significantly
outperforms other state-of-the-art baselines for POI recom-
mendation. Moreover, we also show that the contribution
of each component in the REVAMP architecture, analyze
the learning stability of the model, and the performance
sensitivity across different hyperparameter values. A draw-
back of the current REVAMP formulation is the need for the
entire data together. Specifically, modern privacy-conscious
techniques use a federated learning approach to train the
model parameters with decentralized data. As future work,
we plan to expand REVAMP to such an architecture.
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