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ABSTRACT

The lack of robust representation learning techniques tailored for
relational data has led to the underwhelming application ofMLmod-
els to handle database relevant downstream tasks. Recent works
that attempt to embed tabular data into a low dimensional latent
space have focused solely on Web tables. A relational database is
quite different from a Web table corpus and is way more sophisti-
cated. Existing approaches cannot handle the intricacy of relational
databases and often fail to learn meaningful embeddings. To this
end, we propose an attention based novel learning technique called
RelBert, that intelligently computes the context of entities and
learns column semantic aware embeddings. We have implemented
an end-to-end system, RelBert, and have evaluated its perfor-
mance for two tasks, missing value imputation (MVI) and instance
classification. RelBert has reduced the mean rank by ∼40% on an
average for MVI task compared to the state-of-the-art approach.
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1 INTRODUCTION

The majority of valuable data is still stored in traditional relational
databases. In particular, data-centric applications like e-commerce,
finance, and organization management systems are powered by
enterprise database engines like IBM DB2, Apache Derby, Monet
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DB, Oracle DB, etc. However, the research question of employing
sophisticated deep learning based models to improve the standard
database issues like missing value imputation, data integration, clas-
sification, and so on is under-explored. It can be explained by the
scarcity of robust representation learning approaches for relational
databases. The success of deep-learning (DL) models in address-
ing the same issue in the domain of NLP [2, 12, 27, 32], computer
vision[13, 18, 21, 23], and graphs [17, 20, 33] has led to signifi-
cant improvement in downstream tasks like question-answering,
co-reference resolution, text generation, summarization, object de-
tection, link prediction, node classification, and so on. However,
the inherent characteristics of relational databases such as their
domain-specific vocabulary, the presence of explicit constraints on
data, and the semantic types associated with entities, etc., result in
the ineffectiveness of using these models off-the-shelf.

There have been a few recent efforts to tailor the DL models
for handling the tabular data [1, 3, 7–11, 24, 35]. Based on which
DL model is adapted, these can be categorized into two classes –
transformer-based models and GNN-based models. The majority
of works using transformer encoders work only with Web tables
[9, 11, 24, 35]. Such tables are reasonably different from relational
databases and are not as sophisticated as databases. Importantly,
Web tables are derived from large encyclopedias like Wikipedia,
where tokens (cell values) of Web tables are often associated with
an entity in the knowledge source. For instance, in a Web table
listing all UN members, the token USA can be associated with the
entity United_States_of_America of Wikipedia. Existing solutions
[11, 35] are heavily dependent on this association and restrict their
focus to only tokens with an associated entity. General databases
do not comply with this strong restriction and often have tokens
that are part of the domain-specific vocabulary of the database.
GNN-based solutions [3, 10] are more relational database-centric
as they consider database schema while transforming tables to a
graph. However, most of them rely on feature engineering as a
pre-processing step.

1.1 Challenges

We identify the following key challenges for the use of deep learning
based methods for solving a variety of tasks in database settings:

Domain Specific Vocabulary:Many of the existing works [9,
11, 35] leverage the knowledge gathered by large language models
(LLMs) like BERT [12], GPT[27], T5 [28], etc. These approaches
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Actor Director Movie Role Year

Matt Damon Christopher
Nolan Interstellar Mann 2014

Anne
Hathaway

Christopher
Nolan Interstellar Brand 2014

Anne
Hathaway

Nancy
Meyers The Intern Jules 2015

MID Actor Movie Role Year

001 Matt Damon Interstellar Mann 2014

001 Anne
Hathaway Interstellar Brand 2014

003 Anne
Hathaway

The Intern Jules 2015

MID Director Movie Year

001 Christopher
Nolan Interstellar 2014

002 Nancy
Meyers The Intern 2015

RelBERT

Embedding of Tokens

Figure 1: Schematic diagram of embedding learning proce-

dure of RelBert for two tables from the IMDb dataset.

fine-tune these LLMs with their tabular data. However, a domain-
specific database has its dedicated vocabulary, and language models
are not trained on those. For instance, MIMIC is a data warehouse of
anonymized hospitalization information of patients. Multiple tables
in the database have columns that contain special medical codes
that represent different medical emergencies, diagnosis groups, etc.
In such cases, an LLM-based solution may turn out to be not helpful.

Web tables collection is not a database:Web tables and a data-
base (collection of tables) can be differentiated on two factors that
are relevant to this work, (i) coherence among tables and (ii) the
table size (number of tuples).

• A database stores information about a few principal enti-
ties and relationships among them. These relationships are
often expressed either using a pair of primary key, foreign
key (PK-FK pair), or relationship tables that associate two
primary entity tables. For instance, in the IMDb database,
Movie andDirector are the principal entities, and relationship
table Movies_Directors relates each movie to its director(s).
In essence, the information about a principal entity is spread
across multiple tables. While on the other hand, each Web
table is a standalone piece of information. Therefore, rela-
tional databases solution has an additional requirement of
capturing the full context of the principal entities.

• Generally, database tables are orders of magnitude larger
than Web tables. Existing attention-based models [9, 11, 35]
serialize the entire table, one tuple followed by the next,
and feed this sequence as an input to the model. Usually,
attention-based models can take an input of size 512, and a
flattened relational table is likely to exceed this limit by a
huge margin. Thus, flattening a table for input construction
is impractical in database settings.

Same token different semantics: Tabular data is more struc-
tured than textual data, and each token in a table is tightly coupled
with a semantic type. For example, entity New_Delhi can have mul-
tiple semantics, like geo-location, capital, union_territory, associated
to it, but the column to which the token New_Delhi belongs dictates
its semantic type. Further, a single token can appear in different
columns, but its semantics can be different based on the column. E.g.,
in the IMDb database, token 1991 under the date_of_birth column
of an actor is different from its presence in release_year column in
movie table. The same token under different columns has different

types. Therefore, capturing the semantics of tokens in the database
is essential.

1.2 Contributions

In this work, we are focusing on the use of transformer-based
models with relational databases and make the following key con-
tributions:

• We propose an end-to-end self-supervised learning system,
called RelBert, that employs an attention-based encoder
tailored for relational databases. The novel learning strategy
of embedding tokens in a column to a single latent space
effectively captures the token type information. To the best
of our knowledge, this is the first work to provide a solu-
tion at the cross-section of attention models and relational
databases.

• Similar to [10], we utilize specified referential integrity con-
straints of a database to define the complete context of a
principal entity in a database. Particularly, we work with Pri-

mary Key-Foreign Key joins to capture the context and then
generate the input sequences for pre-training an attention-
based encoder from scratch .

• We assess the quality of embedding using two database-
specific tasks, viz., missing value imputation and instance
classification, over two real-world datasets –IMDb andMIMIC-
III– and observe a significant improvement.

Our codebase is made public at: https://github.com/data-iitd/relbert.

2 RELATEDWORK

This section will provide an overview of the research surrounding
the projection of tabular data into latent space. Numerous efforts
have been made to learn the mapping of tabular data to latent space
[1, 3, 5, 6, 8–11, 26, 34, 37, 38]. Each method focuses on data at a
different granularity of detail, from representing the entire table as
single vector [37, 38] to mapping each token of the table to a vector
[5, 8]. From considering tables as graph [3, 10] to considering them
as linear sentences [1, 8, 9]. From treating a tuple in the table as
a sentence [1] to constructing sentences using random walk on
tables [8].

With the increasing research on tabular data, are addressing
various table-related tasks, such as [37, 38] learning the table em-
beddingswith the intent of finding related tables. Recently, the focus
has shifted to addressing downstream tasks such as missing value
imputation, join prediction, schema matching, question-answering,
and link prediction.

Bai et al. [3] and Cvitkovic [10] use GNN-based technique to
learn tabular data embeddings. Typically, These models initially
associate the graphical ideas of nodes, edges, and vertices with the
table’s defining attributes of rows, columns, and cell entities. [3]
transforms multiple tables with relationships into a heterogeneous
hyper-graph where vertices are joinable attributes and tuples are
treated as the hyper-edges. Furthermore, [10] transforms relational
tables into a directedmulti-graph inwhich rows are viewed as nodes
and foreign key references are handled as directed vertices. These
graphs are later fed into GNN, which learns embeddings from the
respective graph. Graph-based models helped in solving challenges
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that conventional NNs were unable to address adequately. However,
extensive feature engineering is required for these models.

The universal model TURL [11], is a transformer-based frame-
work for learning deep contextualized representations of table en-
tities. It learns embeddings for each entity during pre-training
and uses a visibility matrix to capture intra-row and intra-column
relations of entities in the table. Furthermore, to get the final em-
bedding, it uses type embedding, position embedding, mention
representation, and entity embedding of the entities and fed them
to a structure-aware transformer with Masked Language Model
(MLM) andMasked Entity Recovery (MER) as the learning objective.
TURL not only uses a huge amount of metadata for pre-training
but also requires an external Knowledge Base (KB) for capturing
the semantics of entities in the table. It is hard to find external KB
for the datasets with domain-specific vocabulary.

Bordawekar and Shmueli [5] and Bordawekar and Shmueli [6]
focused on answering cognitive queries over relational data . Their
approach involves interpreting rows of tables as natural language
(NL) sentences and then training a word2vec model to embed en-
tities in a latent space. [26] aimed to use learned embeddings to
identify nontrivial patterns from the database that helps in predict-
ing appropriate policing matters. This way of simply interpreting
table rows as NL sentences fail to capture the semantic relations
between tables, which are often expressed via foreign key and pri-
mary key (FK-PK) pairs. We leverage such implicit information
about data that is encoded in the database schema.

The state-of-the-art model Embdi [8] builds a tripartite graph
with each entity connected to the row_ids and column_ids of the
table in which it resides. Furthermore, it generates sentences using
a random walk over the tripartite graph and learns the embeddings
of the entities. Sentences generated by random walks on a tripartite
graph may contain entities that are not directly present in the
same row or column of the table. Embdi learns embeddings over
the generated sentence corpus by using the standard NLP-based
embedding method, word2vec.

Most of the approaches [9, 11] either work with Web tables and,
thus, do not deal with the intricacies of a relational database. Even
when they work with the relational data, they fail to fully leverage
the implicit knowledge a database schema captures about the stored
data. In this work, we do not treat entities just as simple words in
NL sentence; rather, we focus on their semantics. For instance, if a
syntactically same entity is present in two different columns, we
treat them as two separate entities mapped to two different column
aware latent spaces.

3 PRELIMINARY

This section presents background on self-attention models, the
training tasks in RelBert, and various notations used in this paper.

3.1 Attention based Encoders

Self-attention [32] based models have shown tremendous prowess
in sequence-to-sequence tasks with applications in natural language
[4, 12, 30], recommendation systems [19, 22, 31], and time series
[15, 16, 29, 36, 39]. Specifically, the transformer architecture in-
troduced in [32] involves an Encoder-Decoder architecture. An

encoder is used to map an input sequence to a 𝐷 dimensional hid-
den representation. This representation is later fed into the decoder
for sequence generation. The encoder and decoder consist of multi-
head attention for obtaining a weighted aggregation of all entities.
Specifically, it uses dot-product attention defined as:

𝑓Attn (𝑸,𝑲 , 𝑽 ) = softmax
(
𝑸𝑲⊤
√
𝐷

)
𝑽 , (1)

Where 𝑓Attn is the function to calculate attention weights, 𝑸,𝑲 , and
𝑽 represent queries, keys, and values respectively. In more detail,
these matrices are linear formulations of the input sequence.

3.2 Training Tasks

The goal of RelBert is to model the inter-relationships between
entities of a database system. To achieve this, RelBert must be
able to capture the interaction between entities in a tuple as well as
across tuples. Therefore, inspired by BERTmodel [12], we formulate
two tasks for RelBert to optimize – masked language model(MLM)
and next sentence prediction (NSP).
Masked LanguageModel (MLM). Buoyed by the efficacy of Cloze
task in training natural language models [14], here we mask entities
from a tuple in a relation and then predict the masked entities by
jointly conditioning on the left and right context. These contexts
are derived from a bidirectional self-attention mechanism [12]. The
final vector obtained from the bidirectional self-attention model is
fed into an output softmax over all entities with the same attribute.
Next Sentence Prediction (NSP). The task of NSP is designed to
model the relationship between different sentences, e.g., a question
and the respective answer. Specifically, we feed both sentences into
the self-attention model with a start and end vectors. Later, we
use the soft-max output at indices of these vectors to predict the
relationship between the sentences. NSP is necessary for RelBert
to learn the inter-tuple relationships between relations with PK-

FK joins. Note that although in this work we use the PK-FK join
relation between tuples from different tables, there can be other
mechanisms for the same. We will leave this for future exploration.

3.3 Notations

• Database: We consider an RDBMS as a collection of coherent
tables, denoted by D = {𝑻 1, 𝑻 2, · · · , 𝑻𝑁 }. Here, 𝑻• denotes the
individual tables in the system. Moreover, we assume that every
RDBMS includes a schema that specifies its structural characteris-
tics, including the column headers, column data types, data-related
constraints, properties of the columns of all tables, etc.

• Table: Each table 𝑻 𝑗 can be viewed as a grid with columns
𝑐
𝑗
𝑚, . . . 𝑐

𝑗
𝑛 , and each row 𝑡

𝑗

𝑘
= (𝑣𝑎𝑙𝑘𝑐𝑚 , . . . , 𝑣𝑎𝑙

𝑘
𝑐𝑛
) is an instance de-

fined by value 𝑣𝑎𝑙• corresponding to each column. When the table
under consideration is clear from the context, we denote columns
as 𝑐• and rows as 𝑡•.

• Token: A token is the value stored in a cell of a table, i.e.
the value 𝑣𝑎𝑙•𝑐• corresponding to column 𝑐• in row 𝑡• of a table is
referred as a token. Tokens are the basic unit of a database. In other
words, tokens constructs rows, rows construct tables and tables
lead to a database.
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Figure 2: Schematic diagram of the embedding procedure in

RelBert.

• Primary Key: A primary key is a column(s) that uniquely
identifies each row of a table, i.e. 𝑣𝑎𝑙𝑖𝑐𝑘𝑒𝑦 = 𝑣𝑎𝑙

𝑗
𝑐𝑘𝑒𝑦

iff 𝑡𝑖 = 𝑡 𝑗 , where
𝑐𝑘𝑒𝑦 is the primary key of the table.

• Foreign Key: Suppose tables 𝑻 𝑖 and 𝑻 𝑗 in database and 𝑐𝑖
𝑘𝑒𝑦

is the primary key of 𝑻 𝑖 , then column 𝑐 𝑗
𝑓
is called foreign key of

table 𝑻 𝑗 if tokens 𝑣𝑎𝑙•𝑐 𝑓 in table 𝑻 𝑗 are derived from tokens 𝑣𝑎𝑙•𝑐𝑘𝑒𝑦
in table 𝑻 𝑖 , i.e. 𝑣𝑎𝑙•

𝑐
𝑗

𝑓

∈ 𝑇𝑂𝐾 (𝑐𝑖
𝑘𝑒𝑦

), where 𝑇𝑂𝐾 (𝑐•) is a set of all

tokens corresponding to column 𝑐•. Note that using the PK-FK pair
(𝑐𝑖
𝑘𝑒𝑦

, 𝑐
𝑗

𝑓
), we can join tables 𝑻 𝑖 and 𝑇𝑗 . We denote the resultant

joined table as 𝑻 𝑖 𝑗 .

4 PROPOSED MODEL

In this section, we will describe in detail the architecture of our
model RelBert.

4.1 Table Encoder

For any table 𝑻•, our model incorporates a self-attention model
for encoding the entities in a table. Rows of the table are used
to generate sentences, which are then fed sequentially into the
transformer. However, unlike a natural language sentence, each
word in a table row belongs to a column in that table, and each
column inherently contains distinct entity information. In Figure-
1, for instance, an entity in the actor column captures entirely
different semantics as compared to the identical entity in the director
column. Thus, a homogeneous embedding initialization function
will fail to incorporate the column heterogeneity. Therefore, we
use distinct embedding spaces corresponding to each column in the
table denoted by Φ• (Figure-2). We calculate the embedding matrix
for the entities in the table as follows:

𝑷𝑘𝑖 = Φ𝑘 (𝑣𝑎𝑙𝑖
𝑘
), ∀𝑣𝑎𝑙𝑖

𝑘
∈ 𝑻 , (2)

where Φ𝑘 and 𝑖 denote embedding function for 𝑘-th column and
the row (or sentence) index in the relational table, respectively. Fol-
lowing [12], we utilize masked-language-based learning where we
randomly mask one of the entities in a sentence and then predict
those masked entities based on the transformer output. We compute
the output embeddings for each entity through an encoder network
consisting of multiple attention layers.We denote the output embed-
dings for each sentence indexed by 𝑖 as 𝑶𝑖 = TEncoder(𝑷𝑖 ), where
TEncoder(•) denotes the base-transformer module. However, since
each column 𝑘 has a different embedding space, computed by Φ𝑘 ,
we determine the candidate entities for the masked entity in the
sentence using an output-softmax over the entities in the column

of the masked entity. We learn the parameters for the horizontal
transformer by optimizing the cross-entropy loss function for each
sentence in the table 𝑻 as:

L𝑚𝑙𝑚 =

|𝑻 |∑︁
𝑖=1

CrossEntropy(𝒐𝑚𝑖 , 𝑷
𝑚𝑎𝑠𝑘
𝑖 ), 𝒐𝑚𝑖 ∈ 𝑶, (3)

where, 𝒐𝑚
𝑖
, 𝑷𝑚𝑎𝑠𝑘 denote the output embedding corresponding

to the masked index and the column entities, respectively. In addi-
tion, we exclude positional embeddings from the transformer model
as a table is inherently permutation-invariant. We initialize each
entity in a row of the table using standard word2vec [25] computed
over the table by simply treating each row as a sentence. For cells
with multi-word attributes, we concatenated all the words using ’_’

and converted them into a single word.

4.2 RelBert

RelBert learns column-aware semantic representations for each en-
tity in a relational table. However, a relational table is organized into
multiple tables, either to efficiently enforce integrity constraints or
to enhance the overall database efficiency using the data normal-

ization process. Therefore, in order for RelBert to learn semantic
information between two linked entities spread across the tables, it
requires information from multiple tables. For instance, actor-genre
in the actor table and director-genre in the director table contribute
to modelling the genre preference for both entities, which could
assist a director in finding a plausible actor for his/her movie.

However, learning entity representations across multiple tables
incurs a high computational cost due to the need to compute (explic-
itly or implicitly) all pairs of FK-PK joins between tables, commonly
known as denormalization of the database. Secondly, a denormal-
ized table degrades the data quality since it may merge unrelated
attributes and dramatically increase table size by repeating the rows
of the table multiple times.

To circumvent these bottlenecks, we model the table joins as a
next-sentence prediction problem. Specifically, consider two tables
𝑻𝛼 and 𝑻 𝛽 that can be joined via the primary-key column 𝒄𝛼

𝐴
in

table 𝑻𝛼 , and the corresponding foreign-key column 𝒄
𝛽

�̂�
in table 𝑻 𝛽 .

If a row containing entity 𝑣𝑎𝑙𝑖𝑐𝛼 ∈ 𝒄𝛼
𝐴
is linked to the row containing

entity 𝑣𝑎𝑙 𝑗𝑐𝛽 ∈ 𝒄
𝛽

�̂�
, then the latter is considered as the next sentence

for the current row. This will help the model learn the semantics
of the PF-FK join between two or more related tuples when these
tuples are present in different tables without necessitating their join
materialization. We generated sentence pairs from these rows by
separating them with [SEP] token and appending [CLS] and [SEP]
tokens at the beginning and end, respectively. This sentence pair is
later fed into RelBert to learn inter-table information for an entity.
We utilize the output embedding at the [CLS] token to estimate the
probability of a sentence being the next sentence, 𝑣

𝑡𝛼
𝑖
,𝑡
𝛽

𝑗

and use a

negatively sampled row 𝑡
′𝛽
𝑗

∈ 𝑻 𝛽 . The loss for NSP is calculated
via:

L𝑛𝑠𝑝 = −
|𝑻𝛼 |∑︁
𝑖=1

∑︁
𝑡𝛼
𝑖
∈𝑻𝛼

[
log

(
𝜎 (𝑣

𝑡𝛼
𝑖
,𝑡
𝛽

𝑗

)
)
+ log

(
1 − 𝜎 (𝑣

𝑡𝛼
𝑖
,𝑡
′𝛽
𝑗

)
)]
, (4)
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where 𝑡𝛼
𝑖
and 𝑡𝛽

𝑗
are 𝑖𝑡ℎ and 𝑗𝑡ℎ row in 𝑻𝛼 and 𝑻 𝛽 tables respectively

and 𝜎 denotes the sigmoid function. Finally, we combine this next
sentence prediction task with the masked language model learning
of the predefined table encoder.

4.3 Optimization

Training RelBert for table MLM enables us to learn relationships
between attributes, whereas the NSP task helps to aggregate inter-
table information i.e., join between the tables. By introducing the
next sentence prediction task, we develop the first table missing
value imputation approach that avoids the bottlenecks of a denor-
malized table. RelBert parameters are optimised by minimising
the net loss, which is the sum of the respective MLM and NSP cross
entropy losses.

L𝐴 = L𝑚𝑙𝑚 + L𝑛𝑠𝑝 , (5)
However, joining different tables at each training iteration would
lead to an information loss over multiple iterations. Therefore, our
training strategy consists of a two-step approach, with the first step
as a general pre-training step, which is followed by task-specific
fine-tuning.

Pre-training: To understand the relationships between tables
and attributes during pre-training, we perform task-independent
learning of all entities in the database. Specifically, we construct
pairwise sentences between tables using the PK-FK joins in the
relational schema and train the model parameters using standard
MLM-based optimization.

Fine-Tuning: The pre-training step is followed by task-specific
fine-tuning of the model. That is, for our task of table missing value
imputation, we jointly fine-tune the RelBert model to predict the
masked entity for each row and simultaneously the join-based next
sentence by optimizing the net loss L𝐴 .

5 EXPERIMENTS

5.1 Setup

Datasets. We evaluated the performance of our model using the
two fairly complex real databases, IMDb andMIMIC-III (Table-1).

• IMDb1: This database serves as an encyclopedia of different
movies, tv series, documentaries, etc. We focused particularly on
movies. The dataset has a total of 5 tables capturing different aspects
of a movie, like its director(s), actor(s), movie genres, and so on.

•MIMIC-III2: It is a domain-specific database holding informa-
tion about patients’ visits to Beth Israel Deaconess medical center
over a decade. Out of 40 total tables, we selected 3 tables that are
concerned with the patient’s demographics, diagnosis, and drugs
prescribed at each visit to the hospital. It has a record of total 58976
patient visits.

Baselines. Recall, in Section 1, we categorize existing solutions
in two classes based on how the tabular data is interpreted, either
language model (LM) style training with the table as a sequence of
tokens or GNN training with an entire database along with schema
as a graph. Our proposed solution RelBert belongs to the former
category, and thus, we select solutions from the same category
1https://relational.fit.cvut.cz/dataset/IMDb
2https://mimic.physionet.org/

as baselines. While the recent solutions in the LM category are
developed for Web tables and cannot handle relational tables due
to their size (discussed in Section 1.1). Effectively, we chose the
following solutions as baselines that perform LM-style training and
are robust enough to handle decent size relational tables,

• Table2Vec [5]: Bordawekar and Shmueli proposed a fairly
simple and effective approach of training a word2vec model over
a corpus of sentences constructed by treating each row of a table as
a sentence. The intent of the solution is to handle cognitive queries
over a relational database.

• Embdi [8]: It is a sophisticated framework that captures intra-
column dependency by constructing a sentence corpus by perform-
ing multiple random walks over a tripartite graph. The graph is
constructed such that the tokens in the same column or same row
can be present within a sentence. Using the sentence corpus, they
train a word2vec model to learn contextual embeddings of tokens
in a table.

Evaluation tasks. We test different tabular data representation
learning approaches for two relevant downstream tasks, missing

value imputation (MVI) and instance classification.
• Missing Value Imputation (MVI): We translate the problem

of imputing a missing cell value to a token prediction task, were
given a tuple with an empty cell, our aim is to predict the correct
token in the cell. For each input sequence, we randomly chose a
column (out of the columns shaded blue in Figure-3), and marked
the token corresponding to the column as missing. The marked
token is effectively the ground truth, and the task is to predict the
value of the missing token.

• Instance Classification: For classification, we interpret one
of the categorical columns as the class of the row. For IMDb, we
used movie_genre as the class of each movie. There is a total of 22
unique movie genres. Each movie can have multiple genres; thus it
is a multi-label classification problem. However, for MIMIC-III, we
categorize patients based on the 5 different type of insurance; thus
column insurance token served as the class. Unlike IMDb, this is
a multi-class classification problem as a patient can hold a single
health insurance.

Metrics. For MVI, all the baselines, along with RelBert, rank
the tokens based on their softmax scores; therefore, for evaluation,
we measure the performance using 3 metrics, mean rank (MR),
mean reciprocal rank (MRR) and Hits@k. Mathematically,

𝑀𝑅 =
1
𝑛

𝑛∑︁
𝑖=1

𝑟𝑎𝑛𝑘 (𝑡𝑜𝑘𝑒𝑛𝑖 )

𝑀𝑅𝑅 =
1
𝑛

𝑛∑︁
𝑖=1

1
𝑟𝑎𝑛𝑘 (𝑡𝑜𝑘𝑒𝑛𝑖 )

𝐻𝑖𝑡@𝑘 =
|{𝑡𝑜𝑘𝑒𝑛 : 𝑟𝑎𝑛𝑘 (𝑡𝑜𝑘𝑒𝑛) < 𝑘}|

𝑛
where, 𝑛 is size of the test set, and |{•}| computes the number of
items in the set.

For the classification task, we used standard classificationmetrics
– micro mean precision and recall. Mathematically,

Micro Avg Precision =

∑
𝑐∈C 𝑇𝑃∑

𝑐∈C 𝑇𝑃 +∑
𝑐∈C 𝐹𝑃
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Name Year Rank Genre Director_Name

(a) IMDb: Movies ⊲⊳ Movies_Genre ⊲⊳ Movies_Director ⊲⊳ Director.

Adm_Time Disch_Time Adm_Type Adm_Loc Disch_Loc Insurance Language Religion M_Status Ethnicity Diagnosis DRG_Code DRG_Type DRG_Severity DRG_Mortality ICD9_Code

(b)MIMIC-III: Admissions⊲⊳ DRGCodes ⊲⊳ Diagnoses_ICD.

Figure 3: Schema of the joined table with principle entity columns as underlined.

Table 1: Sentence corpus sizes for different models.

Approach Sentence Count
IMDb MIMIC-III

Table2Vec 66, 254 58, 976
Embdi 299, 004 297, 924
RelBert 87, 386 1, 536, 008

Table 2: MVI task performance comparison of RelBert

against other baselines over IMDb andMIMIC-III.

Approach IMDb MIMIC-III
MR MRR Hit@10 MR MRR Hit@10

Table2Vec 44.252 0.0631 0.176 657.022 0.206 0.663
Embdi 52.302 0.036 0.0792 1036.53 0.175 0.6197
RelBert 24.976 0.16 0.321 205.576 0.64 0.906

Micro Avg Recall =
∑
𝑐∈C 𝑇𝑃∑

𝑐∈C 𝑇𝑃 +∑
𝑐∈C 𝐹𝑁

where, C is the set of classes, and TP, FN and FP stands for true
positive, false negative and false positive.

Training Setup and Implementation. The (joined) tables that
we used to construct the input sequence corpus of RelBert, as well
as baseline systems has columns shown in Figure-3. The underlined
column headers are the ones belonging to the principal entity tables,
movies and patient_admission in IMDb and MIMIC-III, respectively.
For Embdi, we perform 4 random walks per node for sentence
generation for both IMDb andMIMIC-III datasets. Using the number
of columns in the joined table as a heuristic, we generate walks of
length 6 and 18 for IMDb andMIMIC-III, respectively. The sentence
corpus size of each baseline model and RelBert is reported in
Table-1.

For training RelBert, we split the sentence corpus into three
partitions, train set (70%), validation set (15%), and test set (15%).
Using the Adam optimizer with learning rate 0.001, we train the
model for 50 epochs with a block size of 8. 3

5.2 Performance Comparison

Missing Value Imputation (MVI). Recall that we address the
issue of missing value imputation via cell value prediction, i.e., the
model predicts the token corresponding to an empty cell. We report
the performance of baseline systems and our proposed framework
RelBert in Table-2. Note that forMIMIC-III dataset, while themean
rank (MR) of Embdi is poor as compared to that of Table2Vec, their
𝐻𝑖𝑡@10 percent is comparable. This points towards the disparity in
the prediction capability of Embdi. While it is performing better in

3https://github.com/data-iitd/relbert

certain cases, it is ranking the other ones badly. In contrast, RelBert
has a consistent performance as its MR is lowest in comparison to
all other systems, and for almost one-third of the predictions, the
answers are listed correctly in the top-10 predicted tokens. RelBert
showcased a reduction of about 52% and 79% in the mean rank from
that of Embdi over IMDb andMIMIC-III datasets, respectively.

Interestingly, the performance of RelBert over IMDb andMIMIC-
III datasets is not comparable, i.e., RelBert is not clearly performing
better on one dataset than the other. While themean rank for IMDb
is quite low as compared to that for MIMIC-III, the 𝐻𝑖𝑡𝑠@10 for
MIMIC-III is significantly high in comparison to IMDb. This pattern
indicates that RelBert favors some columns over other. The low
MR for IMDb indicates the column (tokens) in IMDb are equally
easy to predict, whereasMIMIC-III columns are either very easy or
too tough to predict correctly. This can explain the undesirable high
MR and desirable high 𝐻𝑖𝑡@10 on the MIMIC-III database. Later
in Section 5.3, we have closely investigated the impact of different
columns on the RelBert.

Instance Classification. For IMDb andMIMIC-III instance clas-
sification, we chose movie_genre and insurance columns, respec-
tively, as the class labels. The choice of movie_genre resulted in
a multi-label classification problem. In the case of MIMIC-III, the
decision of treating insurance tokens as labels is dictated by the
balanced distribution of unique values (tokens) of insurance column.
We report the micro averaged precision (𝑃@𝑘) and recall (𝑅@𝑘) at
different values of 𝑘 in Table-3 and -4. We reported precision and re-
call at k=5, 10, 15, 20 for IMDb as it contain 22 classes (movie_genre).
In contrast, we reported precision and recall at k=1, 3, 5 forMIMIC-
III as it contain total 5 classes (insurance). For IMDb dataset, while
the RelBert performs better than Embdi, interestingly, our simple
baseline Table2Vec outperforms both Embdi and RelBert. In the
case of Embdi, it can be attributed to the difference in sentence for-
mation technique, i.e., possibly the sentence generated by random
walks confused the model and led to a weak association between
movies and their genres. However, the performance of all the mod-
els for the multi-label classification task is subpar. However, for
MIMIC-III dataset, the performance is reasonable. RelBert has
better precision as well as recall than that of Embdi.

Notice the difference in precision-recall trend across the datasets
for all the 3 approaches. For IMDb, the precision and recall are in-
creasing as the number of predicted tokens (𝑘) under consideration
is increasing. In contrast, for MIMIC-III, the trend is inverse, viz
precision is decreasing, and the recall is increasing. The increase
in both precision and recall indicates the gradual increase of true
positive count. Intuitively, as more predicted tokens are considered,
the chances of the presence of true labels (genres) of a movie in
the predicted token list increase. On the other hand, the MIMIC-III
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Table 3: Classification task performance (micro precision

𝑃@𝑘 and recall 𝑅@𝑘) of RelBert against other baselines

over IMDb.

Approach k=5 k=10 k=15 k=20
𝑃 𝑅 𝑃 𝑅 𝑃 𝑅 𝑃 𝑅

Table2Vec 0.07 0.20 0.07 0.40 0.08 0.64 0.09 1
Embdi 0.03 0.07 0.04 0.24 0.06 0.47 0.09 1
RelBert 0.048 0.08 0.065 0.24 0.09 0.56 0.11 1
Table 4: Classification task performance (micro precision

𝑃@𝑘 and recall 𝑅@𝑘) of RelBert against other baselines

overMIMIC-III.

Approach k=1 k=3 k=5
𝑃 𝑅 𝑃 𝑅 𝑃 𝑅

Table2Vec 0.22 0.22 0.21 0.64 0.20 1
Embdi 0.44 0.44 0.28 0.84 0.20 1
RelBert 0.58 0.58 0.32 0.97 0.2 1

classification is a multi-class problem, and the decreasing precision
can be viewed as the side-effect of the increasing value of 𝑘 . The
number of predicted tokens (𝑘) is effectively the sum of the number
of true positives and false positives. Therefore, with the increasing
count of (true and false) positives, the precision decreases. The
recall follows the expected pattern and is increasing with the value
of 𝑘 .

5.3 Ablation Study

We performed the following three exploratory studies to get insight
into RelBert,

E1 Can language models handle relational tabular data? : Fine-
tuning language model (BERT) Vs relational data tailored
pre-training (RelBert)

E2 Can different latent space capture semantic type information? :
Single Latent Space Vs Separate embedding space

E3 Do columns impact the performance of RelBert? : Drilling
down for column-specific performance

E1: Fine-tuning Vs Pre-training. We finetuned BERT (base-
uncased) model available at Huggingface4. For sentence corpus
construction, we used a sentence template with placeholders for
different column values (tokens). For each tuple in our joined table,
we replaced the placeholders with the respective tokens and con-
verted the tuple into a natural sentence. We report the performance
of this finetuned model and RelBert in Table-5 for both datasets
IMDb andMIMIC-III. Our model outperformed the finetuned BERT
by a significant margin. Interestingly, for IMDb dataset finetuned
BERT lists the correct token in 𝑡𝑜𝑝10 predicted tokens for around
20% of test instances, whereas, onMIMIC-III dataset, it never lists
the correct token in 𝑡𝑜𝑝−10 tokens. This observation highlights the
inability of pre-trained LM to handle domain-specific vocabulary.

E2: Single Latent space Vs Column-type driven embedding.
With the strategy ofmapping each column to a different latent space,
we expect RelBert to capture the semantics of different columns
in the database. To understand the impact of this innovative way

4https://huggingface.co/bert-base-uncased

Table 5: Performance comparison of (a) A model that fine-

tunes the pretrained BERT with natural language sentences

constructed using the tabular data; (b) RelBert-SS that em-

beds all the tokens to a same latent space; and (c) RelBert.

Approach IMDb MIMIC-III
MR MRR Hit@10 MR MRR Hit@10

Finetuned BERT 1182.308 0.086 0.207 1105.55 0.07 −
RelBert-SS 56.46 0.069 0.154 500.802 0.229 0.544
RelBert 24.976 0.16 0.321 205.576 0.64 0.906

of learning, we compare RelBert to the conventional approach of
mapping all tokens to a single space.

While keeping all the hyperparameters the same as that of Rel-
Bert, we trained an attention encoder such that all the tokens are
mapped to the same embedding space. We refer to this model as
RelBert-SS. We report the performance of RelBert-SS and Rel-
Bert over IMDb andMIMIC-III datasets in Table-5. We observed
a significant performance improvement of RelBert over the Rel-
Bert-SS. For both datasets, the MR is reduced by 50%, and 𝐻𝑖𝑡@10
is increased by 100%. This huge gap in the performance implies
that the idea of different latent space for each column is critical to
the success of our proposed model.

E3: Column specific performance assessment. The column-
wise performance of RelBert, along with column statistics, are
reported in Table-6 and Table-7 for IMDb andMIMIC-III datasets,
respectively. Here, cardinality of a column gives the total number
of unique values (tokens) in the column. We observed a clear trend
across datasets that the lower cardinality columns are easier to
predict, viz, column cardinality and its MR are directly proportional.
In the case of IMDb, this relation is almost linear; for e.g., the ratio
of cardinality (5.26) of column year to genre is the same as that of
their respective mean ranks. ForMIMIC-III, we did not observe any
such strong pattern.

Notice that for columns Language, Religion, and Ethnicity, the
respective MR is quite low despite their comparatively large cardi-
nalities. A plausible explanation of this trend is the inter-column
dependency, i.e., the value of one column is dependent on the other
column. For instance, given the ethnicity of a person, it is possible
to predict her language. The low MR in such cases implies that
RelBert is capable of capturing inter-column dependencies.

5.4 Discussion

In summary, our empirical results led to the following observations:
• Despite the small training set size (70% of corpus), attention

encoder based RelBert outperformed the word2vec based Em-
bdi and Table2Vec. While this shows that attention is useful, it
alone can not explain the superior performance of RelBert since
RelBert outperforms fine-tuned BERT by quite a margin.

• Pre-trained languagemodels are incapable of learningmeaning-
ful representation for domain-specific databases. Particularly, the
results for MIMIC-III dataset highlighted the failure of pre-trained
language models.

• As expected, RelBert performed better for lower cardinality
columns.

• Finally, the key idea of embedding each column to a different
latent space has led to the success of RelBert as we observed
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Table 6: Column-wise performance of RelBert on IMDb.

Column Cardinality MR Hit@5 Hit@10 Hit@20

Year 120 32.233 0.197 0.267 0.41
Rank 91 21.959 0.138 0.283 0.553
Genre 22 5.882 0.602 0.805 1

Table 7: Column-wise performance of RelBert on MIMIC-

III.

Column Cardinality MR Hit@1 Hit@3 Hit@5 Hit@10

Adm_Type 4 1.25 0.823 0.986 1 1
Adm_Loc 9 2.117 0.38 0.843 1 1
Disch_Loc 17 3.274 0.232 0.619 0.858 0.988
Insurance 5 1.591 0.578 0.967 1 1
Language 76 1.767 0.73 0.932 0.964 0.984
Religion 21 2.791 0.372 0.721 0.912 0.983
M_Status 8 2.127 0.442 0.84 0.984 1
Ethnicity 41 2.22 0.724 0.865 0.914 0.969
Diagnosis 15692 1826.313 0.085 0.116 0.157 0.229

a straight jump of 100% in 𝐻𝑖𝑡@10 of RelBert as compared to
RelBert-SS.

6 CONCLUSION

In this work, we have presented a relational database tailored
representation learning technique. Our model RelBert leverages
database-specific features (referential integrity constraints) to intel-
ligently construct input sequences from the tabular data. RelBert
employs an innovative learning approach of embedding different
columns to different latent space so as to capture column semantics.
We extensively evaluated the performance of RelBert over two
real datasets and observed a significant improvement as compared
to that of state-of-the-art model Embdi. Further, the experimen-
tal results have reaffirmed the superiority of attention models for
the embedding learning task and further validated our key idea of
embedding different columns to different latent spaces.

Despite its promising results, RelBert still has limited scalability
for handling practical databases with large number of rows and
tables. Apart from scalability, RelBert still lacks the ability to work
with non-categorical cell values. Our immediate future direction of
research includes the incorporation of continuous numerical values
in the table and the evaluation of these column-aware multi-tabular
embeddings for other tasks, such as table question answering.
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