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ABSTRACT
Due to its increasing importance, cross-modal retrieval (CMR), where
the query from one modality is used to retrieve objects from a differ-
ent modality, has gained a lot of attention. A plethora of techniques
have been proposed for this task, with deep learnt multi-modal
models being the dominant paradigm. While these techniques have
become increasingly sophisticated in terms of learning represen-
tations of multi-modal objects in a common space, relatively less
attention is paid to the overall computational costs involved while
training the model and during retrieval.

In this work, we present LCM (Lightweight framework for Cross-
Modal retrieval), a surprisingly effective approach with very low
computational costs. It can work with any uni- and multi-modal
representations that is available ranging from BoW/GIST to CLIP
for text/image modality. In its training phase, LCM exploits the
semantic labels with a combination of shallow modality-specific
feed-forward network and a label auto-encoder such that embed-
dings in the common representation space that share labels are
close to each other. During retrieval, LCM employs a novel 2-stage
nearest neighbor (2Sknn) search to first rank candidate labels that
are relevant to a query (stage-1), and then use this ranking to re-
trieve results from the indexed collection (stage-2). Experiments
over 6 popular uni- and multi-label supervised CMR benchmarks
show that LCM outperforms some of the very recent strong base-
lines by upto 20% gains in mAP values. Furthermore, we show that
2Sknn can benefit other baseline methods as well offering upto 50%
mAP gains in some cases.

CCS CONCEPTS
• Information systems → Multimedia and multimodal re-
trieval.
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1 INTRODUCTION
The content produced today is increasingly multi-modal, with re-
lated images and text data produced in significant volumes. Con-
sequently, it has become essential for retrieval systems to support
cross-modal search. In cross-modal retrieval (CMR), a user can
query the system in one modality –e.g., text query– and expect
relevant results from another modality, such as image. In order to
bridge the heterogeneity gap in cross-modal retrieval, a commonly
used approach is to learn a common representation of objects from
different modalities. In this common representation space, similar
objects have similar representations, such that applying the nearest
neighbor search will retrieve relevant cross-modal objects [11, 39].

Numerous techniques for cross-modal retrieval have been pro-
posed ranging from deep learning-based models to those which
learn hash representations for efficient indexing of cross-modal
data [3, 10, 11, 16, 19, 36, 46–48, 52, 53]. Other approaches include
the use of adversarial networks for learning modality invariant
transformation of multi-modal data [16, 36, 44], learning of visual-
semantic fine-grained features (e.g., word-level feature learning)
using attention/transformers/RNN networks [2, 4, 15, 28], and more.
Invariably most of these methods employ a large number of train-
able parameters, with correspondingly high demand on computa-
tional resources, memory, training time, and, in some cases, infer-
ence time. Typically, the supervised cross-modal retrieval methods
use label information to classify the learnt common representation
into respective classes [11, 36, 44, 45, 52]. Only a few methods ex-
ploit the class information in a sophisticated way [10, 16]. They
use an explicit label network to learn more discriminative label
representations in the common space that guides the modality-
specific common representations to preserve inter- and intra-modal
similarity. Nearest neighbors are retrieved using cosine, euclidean,
Hamming distances, or, in some cases, a custom nearest neighbor
measure in the common space [49–51].

In this paper, we address the problem of supervised cross-modal
retrieval and explore whether it is possible to achieve high quality
retrieval without resorting to very costly models. We introduce a
Lightweight framework for Cross-Modal retrieval (LCM) method that
learns a lightweight non-linear transformation of embeddings into a
shared space by optimizing the distance between embeddings with
similar semantic relations. LCM utilizes an autoencoder to project
semantic class labels into the common space and shallow feed
forward networks for each modality to transform input embeddings
to a common representation space. It uses a two-stage retrieval

37

https://doi.org/10.1145/3570991.3571048
https://doi.org/10.1145/3570991.3571048
https://doi.org/10.1145/3570991.3571048
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3570991.3571048&domain=pdf&date_stamp=2023-01-04


CODS-COMAD 2023, January 4–7, 2023, Mumbai, India

method, inspired by the pseudo-relevance feedback techniques,
called 2-Stage nearest neighbor (2Sknn) search. In the first retrieval
stage, 2Sknn efficiently retrieves an initial set of candidate results
from this common space using scalable nearest neighbor indexes.
The second stage uses the class label statistics on the candidates
retrieved in the first stage to refine the retrieval and prioritize
semantically relevant objects.

We conduct experiments using both uni-label (where objects are
labeled as belonging to a single class) and multi-label benchmarks.
An empirical comparison with recent state-of-the-art baselines such
as DSCMR [52], CLIP4CMR [47] and PAN [48] shows that LCM is
9-23% better in mAP values than the closest baselines across the
benchmark datasets. Finally, we also note that the idea of 2-stage
retrieval can be used with other retrieval techniques to improve
their retrieval performance by upto 50% in mAP scores.

LCM adopts the common representation learning objective of
SRLCH [33] and improves over it significantly as follows: (a) we
use lightweight modality-specific neural networks to transform the
input features into the common space, (b) instead of using kernels
to enforce non-linearity in transforming the class labels, we employ
an auto-encoder network that can easily be used in both uni- and
multi-label settings, and (c) we abandon the hashing based retrieval
and instead use highly scalable nearest neighbor indexing technique
(e.g., ScaNN [8] or FAISS1) without any loss in speed and better
performance. Overall, the key contributions of the paper can be
summarized as follows:

• We propose a novel lightweight LCM framework where we
employ an autoencoder network for label projection in a com-
mon representation space to address the rarely touched issue
of learning discriminative features for multi-label datasets.

• We propose a simple 2-Stage nearest neighbor (2Sknn) search
technique that can be applied to any supervised cross-modal
retrieval method that does representation learning in the
common space.

• Experiments on 6 widely used cross-modal datasets demon-
strate that our lightweight LCM framework achieves state-
of-the-art results and is suitable for uni- and multi-label
settings. Additionally, we exemplify the adaptability of the
2Sknn algorithm by applying it to recent baseline methods.

The rest of this paper is organized as follows. In Section 2, we review
related work on cross-modal retrieval. We then introduce our LCM
framework in Section 3. Section 4 presents the experimental setup
and implementation details. Experiments are shown in Section 5.
Finally, we conclude this paper in Section 6.

2 RELATEDWORK
The cross-modal retrieval methods are designed to learn a common
representation space in which the similarity of data from different
modalities can be directly measured. Numerous ways to learn such
a common representation space have been proposed in recent years.
These methods can be broadly classified into two categories: 1)
binary-valued representation learning, also known as cross-modal
hashing, and 2) real-valued representation learning. Binary-valued
representation learning methods aim to learn low-dimensional
binary codes for high-dimensional input features such that the
1https://faiss.ai

binary codes preserve inter- and intra-modal similarity. Traditional
methods: [18, 33, 37, 45], in general, use the kernel trick and linear
projection matrix to project the features into the common space.
One commonly pointed out drawback of traditional methods is
that they cannot exploit the non-linear correlations in the data.
Owing to this, many deep hashingmethods have also been proposed
[3, 10, 16, 19, 46, 53].

The proposed method in this paper falls under real-valued rep-
resentation learning methods. Real-valued methods aim to learn
real-valued common representations for various modality items.
Some representativemethods are: [11, 36, 47, 48, 52]. Methods under
this category can be further classified based on the information they
utilize to learn the common representation space as 1) unsupervised
methods and 2) supervised methods. The unsupervised methods
[7, 13, 41], only utilize co-occurrence information to learn common
representations across multi-modal data. Canonical Correlation
Analysis (CCA) is one of the most popular and traditional unsu-
pervised subspace learning methods. It learns a subspace in which
the pairwise correlations between two sets of heterogeneous data
are maximized [41]. KCCA [13] extends CCA by incorporating the
kernel mappings. Despite the success of the unsupervised methods,
labels provide more direct discriminative information. Hence, using
labels can lead to a more discriminative common space. Supervised
cross-modal retrieval approaches [24, 36, 47, 48, 52] use supervised
semantic category information and enforce same/different category
samples to have similar/dissimilar representations in the common
space. Generalized multiview analysis (GMA)[32] and Multi-label
CCA (ml-CCA) propose a supervised extension of the CCA method.

Beyond that, with advances in deep learning for representa-
tion learning, deep architectures have shown promising results in
capturing non-linear relationships [14]. For example, Deep canon-
ical correlation analysis (DCCA) [1] is proposed as a non-linear
extension of CCA that incorporates DNN to learn the complex non-
linear transformations for each modality. Similarly, SRLCH[33] is
a traditional hashing method that uses the kernel trick and linear
projection to learn a common space for images, text, and labels.
To account for non-linearity, we propose a lightweight real-valued
non-linear extension to the SRLCH method and show significant
improvements over the current state-of-the-art baseline methods.
Cross-media multiple deep network (CMDN) [21] also uses DNN to
hierarchically combine the inter- and intra-modal representations
to learn the rich cross-media correlation using a deeper two-level
network strategy and finally get the shared representation using
a stacked network style. Cross-modal correlation learning (CCL)
[24] extends CMDN by using multi-grained fusion to learn more
precise cross-modal correlation and multi-task learning strategies
to adaptively balance intra-modality semantic category constraints
and inter-modality pairwise similarity constraints. To learn the
common space with semantic information, joint representation
learning (JRL) [50] uses semi-supervised regularisation as well as
sparse regularisation. Motivated by the success of autoencoder[9]
networks in learning discriminative latent space, we utilize a light-
weight autoencoder to project the labels into the common space.
Correspondence Autoencoder (Corr-AE) [7] jointly incorporates
representation learning and correlation learning errors into a single
process and uses an autoencoder network per modality. In [36],
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Adversarial Cross-Modal Retrieval (ACMR) method seeks an ef-
fective common subspace based on adversarial learning. In the
adversarial learning-based CMR methods [36], the common space
representations for image and text modality are given as input to
the adversarial network. The idea is to fool the network in pre-
dicting the correct modality of the input representations. Such an
approach helps learn the modality invariant features in the com-
mon space. Furthermore, Deep Supervised Cross-Modal Retrieval
(DSCMR) [52] supervises the model in learning discriminative fea-
tures by minimizing discrimination loss in both the label space
and the common representation space. Prototype-based Adaptive
Network (PAN) [48] learns a unified prototype for each semantic
category and uses them as anchors to learn cross-modal representa-
tions. Additionally, CLIP4CMR [47] sheds light on the use of CLIP
[29] as a representative of a vision-language pre-trained model for
cross-modal retrieval under supervision. Using CLIP features en-
hances the common representation space’s robustness to modality
imbalance and sensitivity to dimension changes of the common
representation space.

Some advanced DNN-based approaches use attention networks
and transformers to learn fine-grained features for images and text
[2, 4, 15, 28]. These methods assess image-sentence alignment for
the MS-COCO-2014 and FLICKR30K datasets. Due to the lack of
labels in these datasets, our approach cannot be trained on such
datasets and no direct comparison is possible.

Most of the prior work uses the Cosine, Euclidean, or Hamming
distance to find the nearest neighbors in the common space. How-
ever, a fewmethods come up with their ownways of finding nearest
neighbors [49–51]. JGRHML [49] learns a metric to find the distance
between two heterogeneous items, JRL [50] predicts whether the
query and retrieved results belong to the same semantic category,
and CDPAE [51] proposes a novel unsupervised similarity measure
to calculate the distance between two representations using mar-
ginal probability. We propose a 2-Stage nearest neighbor search
(2Sknn) method similar to these methods.

Only a few approaches use high-level label semantics in the
common space to capture uni- and multi-label feature semantics.
Furthermore, most methods use the naive method of finding the
nearest neighbors in the common space. Also, the recent methods
use complex non-linear models (attention, transformers, GANs, etc.)
to learn a discriminative common space. In this work, we propose
a novel lightweight framework that uses an autoencoder network
for label projection to capture more meaningful representation
for multi-label datasets and a simple yet effective 2-Stage nearest
neighbor(2Sknn) search algorithm.

3 PROPOSED METHOD
Supposewe have𝑛 instances in our training dataset. Each instance is
comprised of an image, a text, and corresponding label vector. Let’s
denote the image feature matrix as 𝑋𝑣 ∈ 𝑅𝑛×𝑓𝑣 , text feature ma-
trix as 𝑋𝑡 ∈ 𝑅𝑛×𝑓𝑡 , and a label matrix as 𝑌 ∈ {0, 1}𝑛×𝐶 . Here 𝑓𝑣, 𝑓𝑡
represents the feature dimension of image and text modality respec-
tively and 𝐶 represents the number of labels. Hence (𝑋 (𝑖)

𝑣 , 𝑋
(𝑖)
𝑡 , 𝑌 (𝑖))

represents one training instance. In this paper, we will consider a
query set and a retrieval set. We assume that for the query set, we
do not have any label information available but for the retrieval set

we know the ground truth labels. Similar to training dataset, we
will represent the image and text feature matrices for the query set
as𝑄𝑣 and𝑄𝑡 respectively. For the retrieval set, the image, text, and
label matrices are represented as 𝑅𝑣 , 𝑅𝑡 , and 𝑌𝑅 .

Figure 1 shows the overall LCM framework. It comprises of two
parts: Model training and retrieval. The model training first extracts
features from the raw data. Thenmodality specific light-weight neu-
ral networks (3 layers each) learn the compressed representation for
the corresponding input items. Finally, we utilize pivots, represented
as 𝐵, which guide the dense representations to preserve inter- and
intra-modal similarity in the common representation space. Once
the model is trained, the retrieval happens in two stages. Given a
query in one modality, the first stage retrieves items from the same
modality and the second stage retrieves from other modality. The
following sections elaborate more on the model training, the use of
pivots and retrieval stages.

3.1 Common Representation Space Learning
In this framework, we will consider three types of neural networks.
One for each modality and one for labels. We will call them 𝐹 (image
encoder),𝐺 (text encoder), and 𝑍 (label encoder). 𝐹 and𝐺 are three
layer feed forward neural networks. 𝑍 is an auto-encoder network.
Let us refer to the encoder of 𝑍 as 𝐸 and the decoder as 𝐷 . The auto-
encoder network aids in generating label projection vectors with
greater discrimination. If the encoder 𝐸 generates very different
compressed representations for similar input vectors, it becomes
difficult for the decoder to reconstruct the original input vectors.
Hence, given a similar/dissimilar input to the encoder network, it
will produce a similar/dissimilar compressed representation. In this
framework, we focus on preserving inter- and intra-modal similar-
ity using light-weight neural networks. The learning objective of
the framework consists of three terms as follows:

L = L𝑖𝑛𝑡𝑒𝑟 + L𝑖𝑛𝑡𝑟𝑎 + L𝑝𝑖𝑣𝑜𝑡 (1)

3.1.1 Inter-modal loss (L𝑖𝑛𝑡𝑒𝑟 ). Inter-modal loss aims at minimiz-
ing the distance between the common space representation of se-
mantically similar items that belong to different modality. We fur-
ther break the inter-modal loss into two terms as follows:

L𝑖𝑛𝑡𝑒𝑟 = L𝐹 + L𝐺 (2)

L𝐹 =
1
𝑛

𝑛∑︁
𝑖=1

| |𝐵(𝑖) − 𝐹 (𝑋𝑣 )(𝑖) | |2 (3)

L𝐺 =
1
𝑛

𝑛∑︁
𝑖=1

| |𝐵(𝑖) −𝐺(𝑋𝑡 )(𝑖) | |2 (4)

Here, L𝐹 and L𝐺 corresponds to the loss function for neural net-
work 𝐹 and 𝐺 respectively. We call L𝐹 and L𝐺 together the inter-
modal loss term because it brings 𝑖𝑡ℎ common space representation
of both image and text items closer via 𝑖𝑡ℎ pivot vector 𝐵(𝑖) as can
be seen in equations 3 and 4.

3.1.2 Intra-modal loss (L𝑖𝑛𝑡𝑟𝑎). Intra-modal loss aims at minimiz-
ing the distance between the common space representation of se-
mantically similar items that belong to same modality. The 𝐿𝑖𝑛𝑡𝑟𝑎 is
related to the loss terms corresponding to the auto-encoder network.
The auto-encoder loss consists of two terms:

L𝑖𝑛𝑡𝑟𝑎 = L𝑟𝑒𝑐 + 𝜎L𝑙𝑎𝑡𝑒𝑛𝑡 (5)
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Figure 1: Framework for LCM. Using feed-forward neural networks F and G, we project images and text onto a shared space.
Additionally, we project labels into shared space and attempt to minimise the distance between similar items within and across
modalities. At inference time, we project the query into a common space, locate nearest neighbors in the same modality, rank
labels according to their frequency, and lastly sort cross-modal items for recommendation.

Here 𝜎 is a hyper-parameter, L𝑟𝑒𝑐 is the reconstruction loss and
L𝑙𝑎𝑡𝑒𝑛𝑡 is responsible to preserve the intra-modal similarity. The
equations are defined as follows:

L𝑟𝑒𝑐 =
1
𝑛

𝑛∑︁
𝑖=1

| |D(E(Y))(𝑖) − 𝑌 (𝑖) | |2

L𝑙𝑎𝑡𝑒𝑛𝑡 =
1
𝑛

𝑛∑︁
𝑖=1

| |𝐵(𝑖) − 𝐸(𝑌 )(𝑖) | |2

L𝑙𝑎𝑡𝑒𝑛𝑡 preserves the intra-modal similarity as follows. The encoder
output of the auto-encoder networkwill be equal for items that have
same label vectors. For such items, the corresponding pivot vectors
will be forced to have the same value. As shown in equation-3 and 4,
the similar pivot vectors will bring the corresponding intra-modal
items together.

3.1.3 Pivot loss (L𝑝𝑖𝑣𝑜𝑡 ). The pivot matrix consists of 𝑛 pivot vec-
tors. One pivot vector (𝐵(𝑖)) is associated with one training instance
({𝑋 (𝑖)

𝑣 , 𝑋
(𝑖)
𝑡 , 𝑌 (𝑖)}). The 𝑖𝑡ℎ pivot vector is a representative of the 𝑖𝑡ℎ

training instance and they are expected to have similar representa-
tion in the common space. Pivot vectors guide training instances
to preserve the inter- and intra-modal similarity. The pivot loss
attempts to place the 𝑖𝑡ℎ pivot vector closer to 𝑖𝑡ℎ training instance
as shown below:

L𝑝𝑖𝑣𝑜𝑡 =
(
𝑎 | | 𝐵 − 𝐹 (𝑋𝑣 ) | |2𝐹+𝑏 | | 𝐵 −𝐺(𝑋𝑡 ) | |2𝐹+𝑐 | | 𝐵 − 𝐸(𝑌 ) | |2𝐹

)

Here 𝑎, 𝑏, and 𝑐 are hyper-parameters. The optimization problem
for the same is taken from SRLCH [33] paper and the direct solution
for 𝐵 is described below:

= min
𝐵

(
𝑎 | | 𝐵 − 𝐹 (𝑋𝑣 ) | |2𝐹+𝑏 | | 𝐵 −𝐺(𝑋𝑡 ) | |2𝐹+𝑐 | | 𝐵 − 𝐸(𝑌 ) | |2𝐹

)
Now if we apply a constraint on B such that 𝐵𝑖 𝑗 ∈ {−1, 1} then the
𝑇𝑟 (𝐵𝑇𝐵) can be treated as constant. Also 𝐹 (𝑋𝑣 )𝑇 𝐹 (𝑋𝑣 ),𝐺(𝑋𝑡 )𝑇𝐺(𝑋𝑡 ),
and 𝐸(𝑌 )𝑇 𝐸(𝑌 ) are constants. This leads to,

= min
𝐵

(
−𝑇𝑟

(
𝐵𝑇 (𝑎𝐹 (𝑋𝑣) + 𝑏𝐺 (𝑋𝑡 ) + 𝑐𝐸 (𝑌 ))

)
−𝑇𝑟

((
𝑎𝐹 (𝑋𝑣)𝑇 + 𝑏𝐺 (𝑋𝑡 )𝑇 + 𝑐𝐸 (𝑌 )𝑇

)
𝐵

) )
Using the property that 𝑇𝑟 (𝐴𝑇𝐵) = 𝑇𝑟 (𝐵𝑇𝐴) for two (𝑚 × 𝑛) real
matrices A and B

= min
𝐵

(
− 2𝑇𝑟

(
𝐵𝑇 (𝑎𝐹 (𝑋𝑣) + 𝑏𝐺 (𝑋𝑡 ) + 𝑐𝐸 (𝑌 ))

) )
Let𝑀 = (𝑎𝐹 (𝑋𝑣 ) + 𝑏𝐺(𝑋𝑡 ) + 𝑐𝐸(𝑌 )), where𝑀 is a 𝑛 × 𝐿 dimensional
matrix:

= min
𝐵

(
− (

𝐿∑︁
𝑗=1

(
𝑛∑︁
𝑖=1

𝑀𝑖 𝑗𝐵𝑖 𝑗 ))
)
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Given that 𝐵𝑖 𝑗 ∈ {−1, 1}, the above expression is minimized when
the product𝑀𝑖 𝑗𝐵𝑖 𝑗 is maximized and hence

𝐵𝑖 𝑗 = sign(𝑀𝑖 𝑗 ) = sign(𝑎𝐹 (𝑋𝑣 )𝑖 𝑗 + 𝑏𝐺(𝑋𝑡 )𝑖 𝑗 + 𝑐𝐸(𝑌 )𝑖 𝑗 )

More generally,

𝐵 = sign( 𝑎 𝐹 (𝑋𝑣 ) + 𝑏 𝐺(𝑋𝑡 ) + 𝑐 𝐸(𝑌 ) ) (6)

In this framework, instead of an end-to-end training, we use
alternate training where we update only one set of parameters and
keep other parameters constant. We first train neural model 𝐹 , then
𝐺 and then 𝑍 using the back-propagation algorithm on loss terms
L𝐹 , L𝐺 , and L𝑖𝑛𝑡𝑟𝑎 respectively. Then we update the pivots using
the direct solution. We repeat the process until the total loss L in
Equation 1 converges. For the sake of simplicity, we weigh each
loss term equally.

3.2 2-Stage KNN search Algorithm (2Sknn)
We propose a simple yet effective search technique for cross-modal
retrieval called 2-Stage nearest neighbor(2Sknn) search. It is a two
stage retrieval process. In the initial stage, items from the same
modality as the query are retrieved. Using the label statistics of the
items retrieved in the first stage, the second stage retrieves items
from a different modality. The detailed 2Sknn pipeline is depicted
in the portion marked “Retrieval” of Figure 1

For a given query, the stage-1 retrieves training items from the
same modality as the query. The retrieval process uses KNN search
between the query and the training items. The KNN search can use
any distance metric(Euclidean, Cosine, etc.). For example, consider
image-to-text retrieval task. Let 𝑞𝑣 be an image query. Now distance
between the 𝐹 (𝑞𝑣 ) and {𝐹 (𝑋 (𝑖)

𝑣 ) 𝑓 𝑜𝑟 𝑎𝑙𝑙 𝑖} is calculated and top-K
training images with smallest distance value will be retrieved as
1𝑠𝑡 stage retrieval items.

Since the first stage retrieval items belong to the train set, we
know the corresponding ground truth labels. We will then calculate
howmany times a label occurred in the first stage retrieval items. All
the labels are then sorted in descending order of label frequencies.
For example, if there were two items in the retrieval set with label-2
and four items with label-5 then the ranking will be label-5 followed
by label-2. As our task is multi-modal retrieval, we will collect all
retrieval set items label-wise. In the above example, we will first
collect all retrieval set items that belong to label-5, then collect all
retrieval set items that belong to label-2. It is important to note
that the collected items belong to the retrieval set whose labels are
known and they are from the modality different than the query.
So there will be as many collections as there are labels. These
collections ordered in descending order of the corresponding label
frequencies will be the recommendation of our framework. The
pseudocode of the entire retrieval process is given in Algorithm 1.

4 EXPERIMENTAL SETUP
Datasets and Features:

To verify the efficacy of our proposed approach, we conducted
experiments on six benchmark datasets, namely Wikipedia [31],
Pascal-Sentence [30], NUS-WIDE-10K [5], XmediaNet [22, 26], MS-
COCO [20] (2017 version), and MIRFlickr [12]. The dataset is di-
vided into training, validation, retrieval, and query set. The retrieval
set contains data from a different modality than the query set. We

Algorithm 1 LCM Retrieval (w.l.o.g., Image-to-Text Retrieval)
1: Input: 𝑞𝑣 (=Image query), 𝐹 , 𝑋𝑣 , 𝐾
2: Output: 𝑡𝑒𝑥𝑡 𝑟𝑒𝑐𝑜𝑚𝑚𝑒𝑛𝑑𝑎𝑡𝑖𝑜𝑛𝑠
3: 𝑁𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒 𝑞𝑣
4: # Stage 1: KNN search
5: 𝑡𝑜𝑝_𝑘_𝑖𝑚𝑎𝑔𝑒_𝑖𝑛𝑑𝑖𝑐𝑒𝑠 = arg sort([𝑑𝑖𝑠𝑡 (𝐹 (𝑞𝑣 ), 𝐹 (𝑋

(𝑖)
𝑣 ) 𝑓 𝑜𝑟 𝑎𝑙𝑙 𝑖])[:K]

6: 𝑐𝑙𝑎𝑠𝑠_𝑓 𝑟𝑒𝑞 = [ 0 𝑓 𝑜𝑟 𝑖 𝑖𝑛 𝑟𝑎𝑛𝑔𝑒(#𝑐𝑙𝑎𝑠𝑠𝑒𝑠)]
7: for (i=0; i<K; ++i) do
8: 𝑖𝑛𝑑𝑒𝑥 = 𝑡𝑜𝑝_𝑘_𝑖𝑚𝑎𝑔𝑒_𝑖𝑛𝑑𝑖𝑐𝑒𝑠[𝑖]
9: for (j=0; j<#classes; ++j) do
10: if 𝑌 [𝑖𝑛𝑑𝑒𝑥][ 𝑗] == 1 then
11: 𝑐𝑙𝑎𝑠𝑠_𝑓 𝑟𝑒𝑞[ 𝑗]+ = 1
12: end if
13: end for
14: end for
15: 𝑟𝑎𝑛𝑘𝑒𝑑_𝑐𝑙𝑎𝑠𝑠𝑒𝑠 = arg sort(−𝑐𝑙𝑎𝑠𝑠_𝑓 𝑟𝑒𝑞)
16: # Stage 2: Ranking retrieval set
17: 𝑟𝑒𝑐𝑜𝑚𝑚𝑒𝑛𝑑𝑎𝑡𝑖𝑜𝑛𝑠 = [ ]
18: for (i=0; i<len(#classes); ++i) do
19: 𝑟𝑒𝑐𝑜𝑚𝑚𝑒𝑛𝑑𝑎𝑡𝑖𝑜𝑛𝑠.𝑎𝑑𝑑(𝑡𝑒𝑥𝑡𝑠 ∈ 𝑟𝑎𝑛𝑘𝑒𝑑_𝑐𝑙𝑎𝑠𝑠𝑒𝑠[𝑖] 𝑎𝑛𝑑 /∈

𝑟𝑒𝑐𝑜𝑚𝑚𝑒𝑛𝑑𝑎𝑡𝑖𝑜𝑛𝑠)
20: end for
21: return 𝑟𝑒𝑐𝑜𝑚𝑚𝑒𝑛𝑑𝑎𝑡𝑖𝑜𝑛𝑠

Table 1: Statistics of datasets

Dataset Classes Train / Validation / Retrieval / Query

MS-COCO 90 117218 / 1500 / 2000 / 2000
MIRFlickr 24 17000 / 1359 / 2000 / 2000

Wikipedia 10 1942 / 215 / 462 / 462
Pascal Sentence 20 720 / 80 / 200 / 200
NUS-WIDE-10K 10 7200 / 800 / 2000 / 2000
XmediaNet 200 28800 / 3200 / 4000 / 4000

presume that the retrieval set contains labels, and the items do not
need to be aligned to the query set. The statistical summary of the
six datasets are summarised in Table 1.

For the comparisonwith state-of-the-art baselinemethods (Table-
2 and 3), we represent our images and texts using CLIP2 features.
We follow the dataset partition and feature exaction strategies from
CLIP4CMR [47] and take the mAP values for baseline methods on
uni-label datasets from the CLIP4CMR [47] paper. Similarly, we
follow the ALGCN [27] dataset partitioning scheme and take the
mAP values for baseline methods on the multi-label dataset from
the ALGCN [27] paper. For small datasets like Pascal Sentence and
Wikipedia, end-to-end training cannot produce adequate unimodal
representations. Thus for consistency in the paper, we are using
pre-trained image and text features from CLIP for initializing all the
datasets, and we see end-to-end training as the future for training
large datasets.
Evaluation Metrics: In this paper, we consider image-to-text and
text-to-image retrieval tasks. We use mAP to evaluate our method
on various datasets. mAP value is the mean of all queries’ average
precision (AP). mAP is calculated over all retrieved results similar

2https://github.com/openai/CLIP
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Table 2: Performance comparison in terms of mAP scores on four widely used uni-label datasets for cross-modal retrieval.
△ denotes unsupervised methods. The bottom half of the table contains supervised methods.

Method Wikipedia Pascal Sentence NUS-WIDE-10K XmediaNet
I2T T2I Avg I2T T2I Avg I2T T2I Avg I2T T2I Avg

CCA△ [41] 0.30 0.27 0.29 0.20 0.20 0.20 0.17 0.18 0.18 0.21 0.21 0.21
KCCA△ [13] 0.43 0.39 0.41 0.49 0.45 0.47 0.35 0.36 0.36 0.25 0.27 0.26
Corr-AE△ [7] 0.44 0.42 0.43 0.53 0.52 0.53 0.44 0.49 0.47 0.47 0.50 0.49

LCM△ 0.62 0.70 0.66 0.64 0.66 0.65 0.73 0.66 0.70 0.68 0.58 0.63
CMDN [21] 0.49 0.43 0.46 0.54 0.53 0.54 0.49 0.54 0.52 0.49 0.52 0.51
JFSSL [38] 0.46 0.43 0.45 0.55 0.54 0.55 0.51 0.52 0.52 0.53 0.52 0.53
ACMR [36] 0.47 0.41 0.44 0.54 0.54 0.54 0.52 0.54 0.53 0.54 0.52 0.53
JLSLR [42] 0.47 0.44 0.46 0.57 0.55 0.56 0.54 0.53 0.54 0.54 0.55 0.55
MCMS [25] 0.52 0.46 0.49 0.60 0.60 0.60 0.52 0.55 0.54 0.54 0.55 0.55
CCL [24] 0.51 0.46 0.49 0.58 0.56 0.57 0.51 0.54 0.53 0.52 0.54 0.53

CM-GANS [23] 0.52 0.47 0.50 0.60 0.60 0.60 0.54 0.55 0.55 0.57 0.55 0.56
DSCMR [52] 0.52 0.49 0.51 0.67 0.67 0.67 0.56 0.59 0.58 0.64 0.65 0.65
PAN [48] 0.52 0.46 0.49 0.69 0.69 0.69 0.59 0.57 0.58 0.67 0.66 0.67

CLIP4CMR [47] 0.60 0.59 0.60 0.67 0.66 0.67 0.60 0.63 0.62 0.68 0.71 0.70
LCM 0.65 0.84 0.75 0.74 0.78 0.76 0.81 0.71 0.76 0.84 0.75 0.80

Table 3: Performance comparison in terms of mAP on multi-
label MS-COCO dataset. △ denotes unsupervised methods.
The bottom half of the table contains supervised methods.

Method MS-COCO MIRFlickr
I2T T2I Avg I2T T2I Avg

CFA△ [17] 0.34 0.38 0.37 0.58 0.55 0.57
CCA△ [41] 0.65 0.66 0.66 0.71 0.72 0.72

Multimodal DBN△ [34] 0.36 0.33 0.35 0.58 0.56 0.57
Corr-AE△ [7] 0.65 0.67 0.66 0.71 0.73 0.72
DCCA△ [1] 0.64 0.63 0.64 0.74 0.75 0.75
LCM△ 0.87 0.86 0.87 0.74 0.74 0.74

ml-CCA [6] 0.64 0.63 0.64 0.73 0.74 0.74
ACMR [36] 0.71 0.71 0.71 0.74 0.75 0.75
DCDH [40] 0.61 0.60 0.61 0.74 0.76 0.75
GCH [43] 0.56 0.56 0.56 0.76 0.79 0.78

DSCMR [52] 0.81 0.81 0.81 0.75 0.80 0.78
ALGCN [27] 0.84 0.83 0.84 0.80 0.82 0.81

CLIP4CMR [47] 0.77 0.78 0.78 0.72 0.74 0.73
LCM 0.92 0.93 0.93 0.94 0.82 0.88

to [47, 48, 52]. AP of a query is defined as follows:

𝐴𝑃 =
1
𝑇

𝑅∑︁
𝑟=1

𝑃𝑟𝛿(𝑟 ),

where R is the total number of items in the retrieval set and T is
the number of relevant items in the retrieval set. 𝑃𝑟 is precision of
top-r retrieved items and 𝛿(𝑟 ) is an indicator function which takes
value 1 if 𝑟𝑡ℎ retrieved item is relevant, otherwise it takes value 0.
All presented mAP values for our method are averaged over three
runs. For all the datasets, two items are considered as relevant if
they share at least one label.
Implementation Details: In this method, for hyperparameters 𝑎,
𝑏, and 𝑐 , we apply a grid search over the set {1, 10−1, 10−2, 10−3}
and fix 𝑎 = 10−2, 𝑏 = 10−2, and 𝑐 = 10−1 for all datasets. For

hyperparameter 𝜎 , we try values from set {10, 1, 10−1, 10−2, 10−3}
and fix 𝜎 = 10−2 for all dataset. Similarly, for 𝐾 , we try values from
the set {10, 25, 50, 75, 100, 200} and fix 𝐾 = 50 for all the datasets.
We set 𝐿 = 32 for all experiments.

The neural networks F and G are three-layer networks, with the
first hidden layer having 256 neurons and a sigmoid activation unit.
The second hidden layer consists of 𝐿 neurons and a tanh activation
unit. The first hidden layer uses batch normalization and dropout
with a probability of 0.2. The encoder network of the autoencoder
contains one layer with 𝐿 neurons and a tanh activation unit, and
the decoder network contains one layer with 𝐶 neurons and a
sigmoid activation unit. We use a learning rate of 10−3, batch size
of 64, 1000 maximum epochs, and a validation set for early stopping.
We use the PyTorch framework and train our model on the CPU
with an ADAM optimizer.

To initialize the pivot matrix, we tried both random and orthog-
onal initialization and found no significant performance difference.
Hence, the pivot matrix is initialized using random samples from a
uniform distribution over [0, 1) and we replace all values less than
0.5 with -1 and others with 1. Since our model learns real-valued
common space, we use Euclidean distance to measure similarity.
5 EXPERIMENTAL RESULTS
To evaluate the performance of our proposed method, we first
compare it to recent state-of-the-art methods in the experiments.
Then, we provide additional analysis on the impact of various in-
put features on the cross-modal retrieval task. Following that, we
demonstrate the adaptability of the 2Sknn search. Finally, we pro-
vide a visualisation of naive similarity search and 2Sknn search in
the learnt common representation space.

5.1 Comparison with Baselines
To demonstrate the efficacy of our proposed method, we com-
pare our LCM with the results reported by several state-of-the-
art methods. Overall, we consider the following baseline methods:
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DSCMR[52], PAN[48], CLIP4CMR[47], ALGCN[27], GCH[43], CM-
GANS[23], CCL[24], DCDH[40],MCMS [25], ACMR [36], JFSSL[38],
CMDN[21], DCCA[1], Corr-AE[7],Multimodal DBN[34], ml-CCA[6],
KCCA[13], and CCA[41]. A few of the baseline methods are unsu-
pervised while the majority of the baseline methods are supervised.
For fair comparison with the unsupervised methods, we consider a
unsupervised variant of our method called LCM△ . Further, we also
present our comparison for uni-label datasets and for multi-label
datasets separately as not all baselines were evaluated on both uni-
and multi-label datasets.

Table 2 and Table 3 show the comparison of mAP values on
image-to-text and text-to-image retrieval tasks on four uni-label
datasets and two multi-label datasets for cross-modal retrieval re-
spectively. In both, first half of the table contains unsupervised
models, and the bottom half contains the supervised retrieval mod-
els. We can observe that LCM significantly outperforms all the
baseline methods and is effective for both uni-label and multi-label
datasets. Specifically, LCM outperforms the second-best baseline
method with an improvement of 0.15, 0.07, 0.14, 0.1, 0.09, and 0.07
in terms of average mAP score on Wikipedia, Pascal Sentence,
NUS-WIDE-10K, XMediaNet, MS-COCO, and MIRFlickr datasets,
respectively.

We observe that there is a significant difference between the
mAP values of I2T and T2I in Table-2 and 3 for our method. The
reason is that the mAP values of LCM depend upon the first stage of
our 2Sknn algorithm. The mean reciprocal rank (MRR) of the true
class label in the ranked labels in stage-1 of the 2Sknn algorithm
is 0.71/0.87, 0.77/0.78, 0.85/0.75, 0.86/0.77 for query images/texts
from Wikipedia, Pascal Sentence, NUS-WIDE-10K, and XmediaNet
respectively. Consequently, the difference in MRR between image
and text queries results in a difference in the mAP values for the
I2T and T2I tasks.

5.2 Comparison with Different Input Features
To provide insight into using the different input features for com-
mon representation space learning, we experimented with various
combinations of feature types for images and texts. We experi-
mented with GIST (1600D), Alexnet (512D), VGG19 (4096D), and
CLIP (1024D) features for images and LDA, BoW, SBERT3 (384D)
and CLIP (1024D) features for text. For Wikipedia, Pascal Sentence,
XmediaNet, MS-COCO and MIRFlickr datasets, we use 100D-1000D,
50D-512D, 256D-1000D, 256D-1000D, and 256D-1000D dimensional
LDA-BoW features. For these experiments, we used the training
set as the retrieval set. We tabulated our results in Table-4, where
we highlighted bottom two mAP values with red and top two mAP
values with green. Dark red represents the lowest and dark green
represents the highest mAP.

We can observe that for all the datasets, image-to-text retrieval
quality strongly correlates with the choice image feature type, viz.,
CLIP, because the 2Sknn search first finds the nearest neighbors
from the same modality. Hence, the model can learn superior intra-
modal space using high-quality image representation, resulting in
an accurate neighbor set and retrieval. Surprisingly, the choice of
text feature has very little impact on the retrieval quality. Although a
similar observation and reasoning holds for text-to-image retrieval,

3https://www.sbert.net/

Table 4:mAP values for different input feature combinations.

Img-to-Txt Txt-to-Img
lda bow sbert clip lda bow sbert clip

MS-COCO

gist 0.64 0.64 0.65 0.64 0.92 0.93 0.94 0.93
alexnet 0.79 0.79 0.80 0.80 0.92 0.93 0.93 0.93
vgg19 0.84 0.85 0.85 0.85 0.92 0.93 0.93 0.93
clip 0.91 0.91 0.91 0.92 0.92 0.93 0.93 0.93

MIRFlickr

gist 0.76 0.77 0.77 0.77 0.75 0.82 0.83 0.81
alexnet 0.86 0.87 0.86 0.87 0.75 0.82 0.83 0.82
vgg19 0.90 0.90 0.90 0.90 0.75 0.82 0.83 0.82
clip 0.94 0.94 0.94 0.94 0.75 0.82 0.82 0.82

Pascal Sentence

gist 0.19 0.20 0.22 0.20 0.30 0.72 0.82 0.77
alexnet 0.25 0.28 0.27 0.27 0.30 0.70 0.81 0.78
vgg19 0.67 0.67 0.68 0.68 0.30 0.70 0.81 0.76
clip 0.74 0.75 0.74 0.75 0.31 0.70 0.82 0.77

Wikipedia

gist 0.33 0.33 0.34 0.34 0.67 0.84 0.85 0.85
alexnet 0.46 0.46 0.45 0.46 0.67 0.83 0.85 0.84
vgg19 0.5 0.51 0.5 0.52 0.67 0.83 0.85 0.84
clip 0.65 0.65 0.64 0.65 0.67 0.82 0.85 0.84

XmediaNet

gist 0.16 0.17 0.16 0.17 0.30 0.65 0.67 0.72
alexnet 0.48 0.49 0.48 0.49 0.29 0.66 0.68 0.72
vgg19 0.74 0.73 0.73 0.74 0.30 0.66 0.68 0.73
clip 0.83 0.83 0.82 0.82 0.30 0.65 0.67 0.72

it is interesting to observe that for larger datasets like MIRFlickr and
MS-COCO, the impact of text features is relatively low, except that
LDA features are clearly a bad choice. On smaller Pascal Sentence
the SBERT text features is better, while on XmediaNet, CLIP text
features outperform SBERT features.

5.3 Applications of 2-Stage KNN Search
Our 2-Stage KNN Search method can be combined with any super-
vised common space learning. This section discusses the adaptive-
ness of the 2Sknn search on DSCMR, CLIP4CMR, and CLIP methods.
For a fair comparison, we ran DSCMR4, CLIP4CMR5, CLIP, and
our LCM using CLIP features and measured the mAP values be-
fore and after applying the 2Sknn search. Table-5 provides the
MAP@all scores on MSCOCO, Pascal Sentence, NUS-WIDE-10K,
Wikipedia, XmediaNet, and MIRFlickr datasets. Here, 2S-DSCMR,
2S-CLIP4CMR, 2S-CLIP and 2S-LCM represent corresponding meth-
ods with the 2Sknn search. The naive similarity search sorts the
distance between the projected query and projected retrieval set
items of other modality in increasing order to rank the retrieval set.
At the same time, our 2Sknn search algorithm finds nearest neigh-
bors from the same modality as that of the query in stage-1 and
orders the relevant items according to the predicted class. We can
observe an increase of 10%-20% when moving from naive similarity
search to our proposed 2Sknn search on all retrieval benchmarks. It
is probably because our proposed search method can sample correct
labels for a query in stage-1 and order the relevant items at initial
ranks. These enhancements demonstrate that the proposed 2Sknn
can be used to improve the retrieval performance of a wide range
of supervised CMR methods.

We compared the inference times of both the search algorithms
and observed no significant difference. A query’s average time to
rank retrieval set items on Pascal Sentence, Wikipedia, NUS-WIDE-
10K, and XmediaNet for naive similarity search is 0.00058, 0.0013,
0.0074, and 0.031, while 2Sknn search took 0.00046, 0.00047, 0.00094,

4https://github.com/penghu-cs/DSCMR
5https://github.com/zhixiongz/clip4cmr
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Table 5: Performance comparison of methods with and without the 2-Stage knn search(2S-).

Method MS-COCO Pascal Sentence NUS-WIDE-10K Wikipedia XmediaNet MIRFlickr
I2T T2I Avg I2T T2I Avg I2T T2I Avg I2T T2I Avg I2T T2I Avg I2T T2I Avg

DSCMR 0.81 0.82 0.82 0.70 0.70 0.70 0.60 0.59 0.60 0.62 0.60 0.61 0.73 0.73 0.73 0.75 0.80 0.78
2S-DSCMR 0.92 0.92 0.92 0.82 0.82 0.82 0.84 0.73 0.79 0.72 0.88 0.80 0.90 0.79 0.85 0.93 0.82 0.88

CLIP4CMR 0.77 0.78 0.78 0.67 0.66 0.67 0.60 0.63 0.62 0.60 0.59 0.60 0.68 0.71 0.70 0.72 0.74 0.73
2S-CLIP4CMR 0.93 0.94 0.94 0.80 0.80 0.80 0.83 0.71 0.77 0.68 0.87 0.78 0.88 0.83 0.86 0.95 0.83 0.89

CLIP 0.60 0.59 0.60 0.57 0.57 0.57 0.27 0.28 0.28 0.30 0.29 0.30 0.37 0.37 0.37 0.60 0.61 0.61
2S-CLIP 0.91 0.93 0.92 0.69 0.76 0.73 0.74 0.68 0.71 0.63 0.81 0.72 0.84 0.83 0.84 0.93 0.83 0.88

Naive-Our 0.67 0.67 0.67 0.60 0.61 0.61 0.58 0.59 0.59 0.55 0.52 0.54 0.54 0.50 0.52 0.66 0.65 0.66
2S-Our 0.92 0.93 0.93 0.74 0.78 0.76 0.82 0.71 0.77 0.64 0.85 0.75 0.84 0.75 0.80 0.94 0.82 0.88

(a) First stage of 2Sknn search between query image and
train images in common representation space

(b) First stage of 2Sknn search between query text and
train texts in common representation space

(c) Naive similarity search between query image and
query text in common representation space

Figure 2: The visualisation of the similarity search algorithm on the NUS-WIDE-10K dataset using the t-SNE method [35]. The
samples from the same semantic category are marked with the same colour.

and 0.028 seconds respectively. 2Sknn search uses ScaNN [8]6 for
fast retrieval, and code for naive similarity search is used from
DSCMR code.

5.4 Visualization using t-SNE plots
To visually understand the reason behind the surprising effective-
ness of LCM, and 2Sknn search specifically, over naïve similarity
search, we used t-SNE [35] plots. Figure 2 shows three different
t-SNE plots with image and text embeddings in the common rep-
resentation space for NUS-WIDE-10K data. In all these plots each
class label is represented using a separate color. In Figure 2(a) (2(b))
we show the embeddings of all training images (text) —marked
using circles— and the embeddings of query images (query text)
obtained after passing them through the feed-forward network 𝐹
(𝐺) respectively. Figure 2(c) shows the embeddings of query images
and text together 7.

Initial stage of 2Sknn search computes the nearest neighbors to
the query from training items from within the same modality; their
respective search spaces are depicted in Figures 2(a) and 2(b). As one
can observe, there is a clear evidence for more queries to be located
close to the clusters of training items from correct class. On the
other hand, when we inspect Figure 2(c) which depicts the search
space of naïve similarity search test-to-test cross-modal retrieval,
6https://github.com/google-research/google-research/tree/master/scann
7Note that query items are nothing but elements of the test set from the benchmark.

fails to capture the correct class item from the other modality. In
other words, the query image/text is frequently projected near the
train image/text, whereas in Figure 2(c), many image and text sam-
ples are not falling in correct clusters. Consequently, 2Sknn search
has a greater mAP than naive similarity search due to its effective
nearest neighbor search.

6 CONCLUSION
In this paper, we proposed a lightweight framework called LCM to
first learn a discriminative common representation space for uni-
label and multi-label datasets using an autoencoder network for
label projections. Subsequently, a 2-Stage nearest neighbor(2Sknn)
search is used to get more than 9-23% improvements in retrieval
performance over state of the art baselines across diverse multi-
modal benchmark datasets. We note that 2Sknn method can be used
independently with any supervised common space learning method
to achieve more than 10-20% improvements in their mAP scores.
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