How and Why is An Answer (Still) Correct? Maintaining Provenance in Dynamic Knowledge Graphs

Garima Gaur^{¶,a}, Arnab Bhattacharya[¶], Srikanta Bedathur[†] garimag@cse.iitk.ac.in, arnabb@cse.iitk.ac.in, srikanta@cse.iitd.ac.in

[¶]Indian Institute of Technology, Kanpur, India †Indian Institute of Technology, Delhi, India

^a Thanks SIGIR for covering conference registration cost

Motivation

• Knowledge Graph (KG): collection of facts

· Fact extractors extracting information from various sources

¹https://en.wikipedia.org/wiki/Wikipedia:Statistics

Motivation

· Knowledge Graph (KG): collection of facts

- · Fact extractors extracting information from various sources
- · Dynamic KGs
 - NELL is continuously at work since 2010
 - 1.9 Wikipedia edits/second ¹

¹https://en.wikipedia.org/wiki/Wikipedia:Statistics

Dynamic data \implies Evolving answer

List democrats who are running for US president 2020

On 30th Jan 2019	On 28th Feb 2019	
Andrew Yang	Andrew Yang	On 30th March 2020
Tulsi Gabbard	<u>:</u>	Dannia Candana
John Delaney	Elizabeth Warren	Bernie Sanders
Julián Castr	Amy Klobuchar	Joe Biden
Kamala Harris	Bernie Sanders	

²"Provenance Semirings", PODS, 2007

Dynamic data \implies Evolving answer

List democrats who are running for US president 2020

On 30th Jan 2019	On 28th Feb 2019	
Andrew Yang	Andrew Yang	On 30th March 2020
Tulsi Gabbard	<u> </u>	Bernie Sanders
John Delaney	Elizabeth Warren	loe Biden
Julián Castr	Amy Klobuchar	
Kamala Harris	Bernie Sanders	

 Important to propagate changes in facts down to the precomputed ("standing") queries

²"Provenance Semirings", PODS, 2007

Dynamic data \implies Evolving answer

List democrats who are running for US president 2020

On 30th Jan 2019	On 28th Feb 2019	
Andrew Yang	Andrew Yang	On 30th March 2020
Tulsi Gabbard John Delaney Julián Castr	: Elizabeth Warren Amy Klobuchar	Bernie Sanders Joe Biden
Kamala Harris	Bernie Sanders	

- Important to propagate changes in facts down to the precomputed ("standing") queries
- Need a mechanism to keep track of extraction process and the source of information
- · How provenance² captures how a query answer is generated
- Encode provenance as a polynomial monomial corresponds to derivation

²"Provenance Semirings", PODS, 2007

Figure 1: KG encoding information about phd students, their advisors and collaborators

Provenance Polynomial

• Find pairs of advisors and collaborators of their students such that the collaborator has a PhD and works in an institute

Provenance Polynomial

• Find pairs of advisors and collaborators of their students such that the collaborator has a PhD and works in an institute

- Two derivations of answer (Stonebraker, Ramakrishnan) :
 - Red-colored subgraph : $\{e_2, e_3, e_6, e_8, e_{17}\}$
 - Blue-colored subgraph : $\{e_2, e_3, e_5, e_{14}, e_{17}\}$
- Resultant polynomial is $e_2.e_3.e_6.e_8.e_{17} + e_2.e_3.e_5.e_{14}.e_{17}$

Problem Statement

Query result maintenance under edge update

Given a knowledge graph G(V, E) and a set of standing queries $Q = \{Q_1, Q_2, \dots, Q_n\}$, maintain result along with their provenance of a subset $Q' \subseteq Q$ such that $Q_i, \forall Q_i \in Q'$, gets affected on the deletion or insertion of an edge $e_d, e_d \in E$

Query re-computation is impractical due to KG size!

• Framework **HUKA** which incrementally maintains the query result and its provenance under edge insertion or deletion.

HUKA – maintaining How provenance under Updates to

Knowledge grAph

Shifting focus from exact matches of a query pattern to its partial matches

Shifting focus from exact matches of a query pattern to its partial matches

Potential Match (PM)

Any subgraph *S* of the knowledge graph *G* which can become an exact match of a query *Q* after a *single* edge insertion is called a **potential match**.

Shifting focus from exact matches of a query pattern to its partial matches

Potential Match (PM)

Any subgraph *S* of the knowledge graph *G* which can become an exact match of a query *Q* after a *single* edge insertion is called a **potential match**.

Shifting focus from exact matches of a query pattern to its partial matches

Potential Match (PM)

Any subgraph *S* of the knowledge graph *G* which can become an exact match of a query *Q* after a *single* edge insertion is called a **potential match**.

HUKA Framework

- · Incremental insertion handling approach one edge at a time
- · Addressing three sub-problems:
 - 1. Pre-compute potential matches (PM) of each query
 - 2. After insertion, efficiently identify transformed PM
 - 3. Maintain PM to ensure correctness while handling subsequent updates

HUKA Framework

- · Incremental insertion handling approach one edge at a time
- Addressing three sub-problems:
 - 1. Pre-compute potential matches (PM) of each query
 - 2. After insertion, efficiently identify transformed PM
 - 3. Maintain PM to ensure correctness while handling subsequent updates
- · HUKA operates in two phases
 - · Query Registration
 - · Update Processing

Query Registration

Task 1: PM computation

• Insert \langle Sarawagi, worksIn, IITB \rangle : G_1 and G_2 becomes exact match

Task 1: PM computation

- Insert \langle Sarawagi, worksIn, IITB \rangle : G_1 and G_2 becomes exact match
- · Unmatched triple patterns:
 - G₁: ⟨?collab, worksIn, ?org1⟩
 - G₂: (?collab, worksIn, ?org1) and (?prof, worksIn, ?org2)
- · Types of potential matches:
 - 1:1 PM: New edge matches to single triple pattern
 - 1: M PM: New edge satisfies multiple triple constraints

Task1: PM Computation

• 1 : 1 PM (pre-computed): Satisfies subqueries with one less triple pattern

Task1: PM Computation

• 1 : 1 PM (pre-computed): Satisfies subqueries with one less triple pattern

- 1 : M PM (lazily computed): On appropriate (expected) edge insertion,
 - If new edge satisfies all the unmatched triple patterns
 - · PM directly becomes an exact match
 - · An exact match also a partial match satisifes all subqueries

Task 2: KG annotation

- Efficiently check if the new edge has converted a PM to an exact match
- · Connection points: PM node expecting an edge

Task 2: KG annotation

- Efficiently check if the new edge has converted a PM to an exact match
- · Connection points: PM node expecting an edge

- Annotate all the connection points avoids materializing subquery results
- Annotation expected edge and provenance polynomial of corresponding PM

Task 3: PM maintenance

- Local Plan: For each subquery
 - AND-OR tree³ all possible execution plans
 - Best plan selection based on graph data specific cardinality estimator⁴
 - Collects node signatures characteristic set (CS)

$$CS(u) = \{P \mid \langle u, P, v \rangle \}$$

· Cardinality estimation based on the frequency of a CS

³"Materialized View Selection and Maintenance Using Multi-query Optimization", SIGMOD, 2001

⁴"Characteristic sets: Accurate cardinality estimation for RDF queries with multiple joins", ICDE, 2011

Task 3: PM maintenance

- Local Plan: For each subquery
 - AND-OR tree³ all possible execution plans
 - Best plan selection based on graph data specific cardinality estimator⁴
 - Collects node signatures characteristic set (CS)

$$CS(u) = \{P \mid \langle u, P, v \rangle\}$$

- · Cardinality estimation based on the frequency of a CS
- · Global Plan: For all subqueries
 - · Merging best local plans of all subqueries of standing queries
 - Promotes re-usability share intermediate expression computation

 $^{^{3}\}mbox{"Materialized}$ View Selection and Maintenance Using Multi-query Optimization", SIGMOD, 2001

⁴"Characteristic sets: Accurate cardinality estimation for RDF queries with multiple joins", ICDE, 2011

Local Plan Construction

Figure 2: Subquery and its AND-OR tree (Boxes \equiv OR; Ellipses \equiv AND)

· Greedily choose the best plan – traversing bottom-up

$$\sum_{\{P_1,P_2\}\subset CS_i} \textit{Freq}(CS_i) > \sum_{\{P_2,P_3\}\subset CS_i} \textit{Freq}(CS_i)$$

· Global plan is a combination of best local plans

Update Processing

• **Insert**: ⟨*N*6, *P*₁, *N*7⟩

- · HUKA also supports result maintenance under fact deletion
- · Inverted indexes to support deletion and insertion together

Experimental Results

Setup

· Statistics of datasets

Dataset	Vertices	Edges	Predicates	Queries	Avg. Query Size	Subqueries
YAGO2	8.8M	23M	78	4	6.25	26
DBpedia	32M	117M	53K	215	3.90	879

- · Query Set:
 - YAGO2: Benckmark queries used to evaluate RDF-3X⁵;
 - DBpedia: real world queries over DBpedia available from the USEWOD 2014.
- **Workload Configuration**: Randomly generated with controlled ratio of deletion to insertion operations.

⁵"The RDF-3X engine forscalable management of RDF data", VLDB, 2010

Efficiency Comparison

· Baselines against HUKA

Dataset	HUKA ⁶	GProM ⁷	ProvSQL ⁸	Neo4j
YAGO2	0.119 s	25.121s	75.657 s	5.709 s
DBpedia	1.252 s	5.217 s	6.870 s	99.318s

Varying workload impact

Dataset	Deletion -Heavy	Deletion -Moderate	Balanced	Insertion -Moderate	Insertion -Heavy
YAGO2	0.062 s	0.091 s	0.126 s	0.146 s	0.169 s
DBpedia	0.943 s	1.056 s	1.315 s	1.403 s	1.475 s

⁶Code available at https://github.com/gaurgarima/HUKA

⁷"GProM-a swiss army knife for your provenance needs", IEEE Data Engineering Bulletin, 2018

⁸ 'ProvSQL: provenance and probability management in postgreSQL", VLDB, 2018

Conclusions

- · First provenance-aware query result maintenance solution
- HUKA an end-to-end framework to support maintenance of query result and its how provenance
- Seamlessly handles both insertion and deletion update operations

Thank you! Questions?