Learning Temporal Point Processes with
Intermittent Observations
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Data Streams in Real World

Stream of events occurring in continuous timestamps.

- Frequently observed in:
— Social Networks (posts and comments).
— Healthcare (hospital visits, checkups).
— Finance (stock prices and market trends).

— Online Shopping (purchases, reviews) and many more ...
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17 @ Real World Data
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17 @ Real World Data

Existing sequential models assume a complete observation
scenario. i.e. the event sequence is completely observed
with no missing events. Rarely Encountered!
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17 @ Real World Data

Some reasons for missing data:
1. Different payment procedure.
2. User-awareness for privacy.

3. Privacy restrictions for data collection.
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Proposed Model: IMTPP

The proposed model, IMTPP (Intermittently-
observed Marked Temporal Point Processes) learns
the dynamics of both observed and missing events:
v" Coupled MTPPs for observed and missing events.
v' Missing events as latent variables.

v" Incrementally update on a new event.
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Sequence of observed events. S;. = {e; = (x;, ;)i € [k],t; < t;+1}

Generated missing events:
Observed TPP:
Missing TPP Prior:

Missing TPP Posterior:

M, = {E,j — (y.}'z TJ)‘.} € [k]* Tj < T.}'—l}
p(er+1|Sk, M)

p(&r|Sie, M)
q(€rs1|€rs1, Sk, My1)

Gupta et al. Learning Temporal Point Processes with Intermittent Observations.



Proposed Model: IMTPP

The proposed model, IMTPP (Intermittently-
observed Marked Temporal Point Processes) learns
the dynamics of both observed and missing events:

v" Coupled MTPPs for observed and missing events.

("
v" Missing events as latent variables. k| ?
v" Incrementally update on a new event. tr 1 £ >
Notations:

° Sequence of observed events. S;. = {e; = (z;,t;)|i € [k],t; < tir1}

* Generated missing events: M, = {¢; = (y;,7)|j € [k], 7j < Tj=1}
* Observed TPP: p(€r+1|Sk, M)

* Missing TPP Prior: p(€|Sk, My—1)

* Missing TPP Posterior: q(€rs1lers1, Sk, My_1)

Gupta et al. Learning Temporal Point Processes with Intermittent Observations.



Proposed Model: IMTPP

The proposed model, IMTPP (Intermittently-
observed Marked Temporal Point Processes) learns
the dynamics of both observed and missing events:

v" Coupled MTPPs for observed and missing events.

@)
v" Missing events as latent variables. ‘ L ‘ | ‘
: >

v" Incrementally update on a new event. tr 1 T t

Notations:

° Sequence of observed events. S;. = {e; = (z;,t;)|i € [k],t; < tir1}

* Generated missing events: M, = {¢; = (y;,7)|j € [k], 7j < Tj=1}
* Observed TPP: p(er+1|Sk, M)

* Missing TPP Prior: p(€|Sk, My—1)

* Missing TPP Posterior: q(€rs1lers1, Sk, My_1)

Gupta et al. Learning Temporal Point Processes with Intermittent Observations.



Proposed Model: IMTPP

The proposed model, IMTPP (Intermittently-
observed Marked Temporal Point Processes) learns
the dynamics of both observed and missing events:

v" Coupled MTPPs for observed and missing events.

v' Missing events as latent variables.

v" Incrementally update on a new event.

Notations:

Sequence of observed events.

Generated missing events:
Observed TPP:
Missing TPP Prior:

Missing TPP Posterior:

tr—1 Lk

Sﬂ: = {ei = (z;,ti)]i € [k], ti < tisa}

={e; = (y;, )7 € [kl 75 < Tjs1}
(€k+1|5mM;:~)

p(€r|Sk, My—1)
q(€rs1l€rs1, Siy, My_1)

Gupta et al. Learning Temporal Point Processes with Intermittent Observations.



17 @ TPP for Observed Events
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17 @ TPP for Observed Events

bk — tr—1
wt,'u:a"u
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- Embed input event via a vector.

Vi = Wi otk + Wy oTk + W Atk — te—1) + @y,

« Update the state of observed TPP.

sk = tanh(Wy s8p—1 + Wi ,vp + (tr — th—1)Ws i + as)
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17 @ TPP for Observed Events
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* Time using a LogNormal
distribution [Schhur et al 2020].

LOGNORMAL (¢ (8k, mz), 02 (sk, my)) |
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107 @ TPP for Missing Events
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* Mostly same as the observed TPP.
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@ TPP for Missing Events

— TT'—Q m’f‘—Q — m”f‘—]_

Gm,maGm,v
| . I G, bm
!
__________ A S
I Truncated I[ qql)’ &
I A LoGNorMAL| G ., G 5, b, l
! T,T ~ <—|—|

* Mostly same as the observed TPP.

* Major Distinction:

— Sampling the next missing event is
bounded by the time of the next
observed event.

— Simple LogNormal won’t work
here.

— Sample for a truncated LogNormal
distribution.

LOGNORMAL (t(m,—1,8;). 02 (m,_1, 8i))
:\E: IITr—l _+_ A‘TJ‘ < t}l+1]].

— We follow a similar procedure for
Missing TPP prior.
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@ IMTPP: Training Procedure

How is IMTPP trained?

 Likelihood of observed data demands marginalization with respect to the set
of latent missing events.

Gupta et al. Learning Temporal Point Processes with Intermittent Observations.



2@ IMTPP: Training Procedure

How is IMTPP trained?

 Likelihood of observed data demands marginalization with respect to the set
of latent missing events.

* Therefore, we resort to maximizing a variational lower bound of the log-
likelihood of the observed stream.

K-1
o(Sx) = |1 /M el S NI EERAL dholhdsd)
k=1 3

« Maximixe the ELBO:

r%%bx ELBO(6, ¢)
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1" [0 Results

Mean Absolute Error (MAE) Mean Prediction Accuracy (MPA)
Movies  Toys Taxi  Retweet SO Foursquare | Movies  Toys Taxi  Retweet SO Foursquare
HP (Hawkes, 1971) 0.060 0.062 0220  0.049  0.010 0.098 0.482 0.685 0.894  0.531  0.418 0.523
SMHP (Liniger, 2009) 0.062  0.061 0213  0.051  0.008 0.091 0.501  0.683 0.893  0.554  0.423 0.520
RMTPP (Du et al., 2016) 10.053| [0.048] |0.128| [0.040| 0.005 0.548  0.734  0.929 0.446 0.605
SAHP (Zhang et al., 2020) 0.072 0073 0.174  0.081  0.017 0.108 0458  0.602 0.863  0.461  0.343 0.459
THP (Zuo et al., 2020) 0.068  0.057  0.193  0.047 0.052 0.537  0.724 [0.931| 0.526  0.458 0.624
PFPP (Mei et al., 2019) 0.058  0.055 0.181  0.042  0.007 0.076 10.559| (0.738| 0.925 0569  0.437 0.582
HPMD (Shelton et al., 2018) | 0.060  0.061  0.208  0.048  0.008 0.087 0.513  0.688 0907  0.558  0.439 0.531
IMTPP (our proposal) 0.049 0.045 0.108 0.038  0.005 0.041 0.574 0.746 0.938 0.577 |0.451|  |0.612|
[ Performance in terms of time prediction error (MAE) and mark prediction accuracy (MPA).
. . )
° ([ ]
* Bestin terms of time prediction. Six Datasets: NYC Taxi
« Amazon Movies * Retweet

* Comparable for mark prediction.

\_

Amazon Toys

Stack Overflow
Foursquare

J
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® Qualitative Assessment
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M Generative Process and Scalability
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