
Learning Temporal Point Processes with 
Intermittent Observations

Presenter: Vinayak Gupta

Vinayak Gupta1, Srikanta Bedathur1, Sourangshu Bhattacharya2, and Abir De3

IIT Delhi1, IIT Kharagpur2, IIT Bombay3



Data Streams in Real World   

Stream of events occurring in continuous timestamps.

• Frequently observed in:

– Social Networks (posts and comments).

– Healthcare (hospital visits, checkups).

– Finance (stock prices and market trends).

– Online Shopping (purchases, reviews) and many more ...
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Existing sequential models assume a complete observation 
scenario. i.e. the event sequence is completely observed

with no missing events. Rarely Encountered!
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Some reasons for missing data:
1. Different payment procedure.
2. User-awareness for privacy.
3. Privacy restrictions for data collection.



Proposed Model: IMTPP

The proposed model, IMTPP (Intermittently-
observed Marked Temporal Point Processes) learns 
the dynamics of both observed and missing events:

 Coupled MTPPs for observed and missing events.

 Missing events as latent variables.

 Incrementally update on a new event.
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TPP for Observed Events

• Embed input event via a vector.
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TPP for Observed Events

• Embed input event via a vector.

• Update the state of observed TPP.

• Sample the mark of next event.

• Time using a LogNormal
distribution [Schhur et al 2020].
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TPP for Missing Events

• Mostly same as the observed TPP.
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TPP for Missing Events

• Mostly same as the observed TPP.

• Major Distinction: 

– Sampling the next missing event is 
bounded by the time of the next 
observed event. 

– Simple LogNormal won’t work 
here.

– Sample for a truncated LogNormal
distribution.

– We follow a similar procedure for 
Missing TPP prior.
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IMTPP: Training Procedure

How is IMTPP trained?

• Likelihood of observed data demands marginalization with respect to the set 
of latent missing events.
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IMTPP: Training Procedure

How is IMTPP trained?

• Likelihood of observed data demands marginalization with respect to the set 
of latent missing events.

• Therefore, we resort to maximizing a variational lower bound of the log-
likelihood of the observed stream.

• Maximixe the ELBO:
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Results

Performance in terms of time prediction error (MAE) and mark prediction accuracy (MPA).

• Best in terms of time prediction.

• Comparable for mark prediction.

Six Datasets:
• Amazon Movies
• Amazon Toys

• NYC Taxi
• Retweet
• Stack Overflow
• Foursquare

Gupta et al. Learning Temporal Point Processes with Intermittent Observations.



Qualitative Assessment

Difference between the actual 
time and the time predicted by 

IMTPP for Movies and Toys 
dataset.
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Qualitative Assessment

Actual and predicted events by 
IMTPP for an observed sequence.

Difference between the actual 
time and the time predicted by 

IMTPP for Movies and Toys 
dataset.
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Generative Process and Scalability

Evaluating the generative 
process by next N event 

prediction given an input.
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Generative Process and Scalability

Evaluating the generative 
process by next N event 

prediction given an input.

Scalability of IMTPP and 
PFPP in terms of sequence 

length and training epochs.
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