Learning Temporal Point Processes with Intermittent Observations

Presenter: Vinayak Gupta

Vinayak Gupta¹, Srikanta Bedathur¹, Sourangshu Bhattacharya², and Abir De³ IIT Delhi¹, IIT Kharagpur², IIT Bombay³

Stream of events occurring in continuous timestamps.

• Frequently observed in:

- Social Networks (posts and comments).
- Healthcare (hospital visits, checkups).
- Finance (stock prices and market trends).
- Online Shopping (purchases, reviews) and many more ...

Stream of events occurring in continuous timestamps.

• Frequently observed in:

- Social Networks (posts and comments).
- Healthcare (hospital visits, checkups).
- Finance (stock prices and market trends).
- Online Shopping (purchases, reviews) and many more ...
- How to model them?
 - **Temporal Point Processes:** $S_k = \{e_i = (x_i, t_i) | t_i < t_{i+1}\}$

Stream of events occurring in continuous timestamps.

• Frequently observed in:

- Social Networks (posts and comments).
- Healthcare (hospital visits, checkups).
- Finance (stock prices and market trends).
- Online Shopping (purchases, reviews) and many more ...

Stream of events occurring in continuous timestamps.

• Frequently observed in:

- Social Networks (posts and comments).
- Healthcare (hospital visits, checkups).
- Finance (stock prices and market trends).
- Online Shopping (purchases, reviews) and many more ...
- How to model them?

Real World Data

Existing sequential models assume a complete observation scenario. i.e. the event sequence is completely *observed* with no *missing* events. Rarely Encountered!

Real World Data

The proposed model, **IMTPP** (Intermittentlyobserved Marked Temporal Point Processes) learns the dynamics of both observed and missing events:

- ✓ *Coupled* MTPPs for observed and missing events.
- ✓ Missing events as latent variables.
- ✓ Incrementally update on a new event.

The proposed model, **IMTPP** (Intermittentlyobserved Marked Temporal Point Processes) learns the dynamics of both observed and missing events:

- ✓ *Coupled* MTPPs for observed and missing events.
- ✓ Missing events as latent variables.
- ✓ Incrementally update on a new event.

Notations:

- Sequence of *observed* events. $S_k = \{e_i = (x_i, t_i) | i \in [k], t_i < t_{i+1}\}$
- Generated missing events: $\mathcal{M}_r = \{\epsilon_j = (y_j, \tau_j) | j \in [k], \tau_j < \tau_{j+1}\}$

The proposed model, **IMTPP** (Intermittentlyobserved Marked Temporal Point Processes) learns the dynamics of both observed and missing events:

- ✓ *Coupled* MTPPs for observed and missing events.
- Missing events as latent variables.
- ✓ Incrementally update on a new event.

Notations:

• Sequence of observed events. $S_k = \{e_i = (x_i, t_i) | i \in [k], t_i < t_{i+1}\}$

- Generated *missing* events:
- Observed TPP:
- Missing TPP Prior:
- Missing TPP Posterior:

$$\mathcal{M}_r = \{\epsilon_j = (y_j, \tau_j) | j \in [k], \tau_j < \tau_{j+1} \}$$
$$p(e_{k+1} | \mathcal{S}_k, \mathcal{M}_{\bar{k}})$$

$$p(\epsilon_r | \mathcal{S}_k, \mathcal{M}_{r-1})$$
$$q(\epsilon_{r+1} | e_{k+1}, \mathcal{S}_k, \mathcal{M}_{r-1})$$

. .

The proposed model, **IMTPP** (Intermittentlyobserved Marked Temporal Point Processes) learns the dynamics of both observed and missing events:

- Coupled MTPPs for observed and missing events.
- Missing events as latent variables.
- Incrementally update on a new event.

Notations:

- Sequence of observed events. $S_k = \{e_i = (x_i, t_i) | i \in [k], t_i < t_{i+1}\}$
- Generated *missing* events:
- Observed TPP:
- Missing TPP Prior:
- Missing TPP Posterior:

$$\begin{array}{c|c} & & \\ \hline \\ t_{k-1} & & t_k \end{array}$$

$$\mathcal{M}_r = \{ \epsilon_j = (y_j, \tau_j) | j \in [k], \tau_j < \tau_{j+1} \}$$
$$p(e_{k+1} | \mathcal{S}_k, \mathcal{M}_{\bar{k}})$$

$$p(\epsilon_r | \mathcal{S}_k, \mathcal{M}_{r-1})$$
$$q(\epsilon_{r+1} | e_{k+1}, \mathcal{S}_k, \mathcal{M}_{r-1})$$

The proposed model, **IMTPP** (Intermittentlyobserved Marked Temporal Point Processes) learns the dynamics of both observed and missing events:

- Coupled MTPPs for observed and missing events.
- Missing events as latent variables.
- Incrementally update on a new event.

Notations:

- Sequence of observed events. $S_k = \{e_i = (x_i, t_i) | i \in [k], t_i < t_{i+1}\}$
- Generated *missing* events:
- Observed TPP:
- Missing TPP Prior:
- Missing TPP Posterior:

$$\mathcal{M}_r = \{ \epsilon_j = (y_j, \tau_j) | j \in [k], \tau_j < \tau_{j+1} \}$$
$$p(e_{k+1} | \mathcal{S}_k, \mathcal{M}_{\bar{k}})$$

$$p(\epsilon_r | \mathcal{S}_k, \mathcal{M}_{r-1})$$

r: $q(\epsilon_{r+1} | e_{k+1}, \mathcal{S}_k, \mathcal{M}_{r-1})$

The proposed model, **IMTPP** (Intermittentlyobserved Marked Temporal Point Processes) learns the dynamics of both observed and missing events:

- Coupled MTPPs for observed and missing events.
- Missing events as latent variables.
- Incrementally update on a new event.
 Notations:
- Sequence of observed events. $S_k = \{e_i = (x_i, t_i) | i \in [k], t_i < t_{i+1}\}$
- Generated *missing* events:
- Observed TPP:
- Missing TPP Prior:
- Missing TPP Posterior:

$$\mathcal{S}_{k} = \{e_{i} = (x_{i}, t_{i}) | i \in [k], t_{i} < t_{i+1}\}$$
$$\mathcal{M}_{r} = \{\epsilon_{j} = (y_{j}, \tau_{j}) | j \in [k], \tau_{j} < \tau_{j+1}\}$$
$$p(e_{k+1} | \mathcal{S}_{k}, \mathcal{M}_{\bar{k}})$$

$$q(\epsilon_{r+1}|e_{k+1}, \mathcal{S}_k, \mathcal{M}_{r-1})$$

 $p(\epsilon_r | \mathcal{S}_k, \mathcal{M}_{r-1})$

The proposed model, **IMTPP** (Intermittentlyobserved Marked Temporal Point Processes) learns the dynamics of both observed and missing events:

- Coupled MTPPs for observed and missing events.
- Missing events as latent variables.
- Incrementally update on a new event.
 Notations:
- Sequence of observed events. $S_k = \{e_i = (x_i, t_i) | i \in [k], t_i < t_{i+1}\}$
- Generated *missing* events:
- Observed TPP:
- Missing TPP Prior:
- Missing TPP Posterior:

$$\begin{array}{c|c} & \underline{k} \\ \hline t_{k-1} \\ \hline t_k \\ t_k \\ \hline t_k \\ \hline t_k \\ t_k \\$$

$$\mathcal{M}_r = \{ \epsilon_j = (y_j, \tau_j) | j \in [k], \tau_j < \tau_{j+1} \}$$
$$p(e_{k+1} | \mathcal{S}_k, \mathcal{M}_{\bar{k}})$$

$$p(\epsilon_r | \mathcal{S}_k, \mathcal{M}_{r-1})$$
$$q(\epsilon_{r+1} | e_{k+1}, \mathcal{S}_k, \mathcal{M}_{r-1})$$

• Embed input event via a vector.

$$\boldsymbol{v}_k = \boldsymbol{w}_{t,v} t_k + \boldsymbol{w}_{x,v} x_k + \boldsymbol{w}_{t,\Delta} (t_k - t_{k-1}) + \boldsymbol{a}_v,$$

• Embed input event via a vector.

$$\boldsymbol{v}_k = \boldsymbol{w}_{t,v} t_k + \boldsymbol{w}_{x,v} x_k + \boldsymbol{w}_{t,\Delta} (t_k - t_{k-1}) + \boldsymbol{a}_v,$$

• Update the state of observed TPP.

$$\boldsymbol{s}_k = \tanh(\boldsymbol{W}_{s,s}\boldsymbol{s}_{k-1} + \boldsymbol{W}_{s,v}\boldsymbol{v}_k + (t_k - t_{k-1})\boldsymbol{w}_{s,k} + \boldsymbol{a}_s)$$

• Embed input event via a vector.

$$\boldsymbol{v}_k = \boldsymbol{w}_{t,v} t_k + \boldsymbol{w}_{x,v} x_k + \boldsymbol{w}_{t,\Delta} (t_k - t_{k-1}) + \boldsymbol{a}_v,$$

- Update the state of observed TPP. $s_k = \tanh(W_{s,s}s_{k-1} + W_{s,v}v_k + (t_k - t_{k-1})w_{s,k} + a_s)$
- Sample the mark of next event. $\mathbb{P}_{\theta,x}(x_{k+1} = x \mid \Delta_{t,k+1}, \boldsymbol{s}_k, \boldsymbol{m}_{\overline{k}})$ $= \frac{\exp(\boldsymbol{U}_{x,s}^{\top} \boldsymbol{s}_k + \boldsymbol{U}_{x,m}^{\top} \boldsymbol{m}_{\overline{k}})}{\sum_{x' \in \mathcal{C}} \exp(\boldsymbol{U}_{x',s}^{\top} \boldsymbol{s}_k + \boldsymbol{U}_{x',m}^{\top} \boldsymbol{m}_{\overline{k}})},$

• Embed input event via a vector.

$$\boldsymbol{v}_k = \boldsymbol{w}_{t,v} t_k + \boldsymbol{w}_{x,v} x_k + \boldsymbol{w}_{t,\Delta} (t_k - t_{k-1}) + \boldsymbol{a}_v,$$

- Update the state of observed TPP. $s_k = \tanh(W_{s,s}s_{k-1} + W_{s,v}v_k + (t_k - t_{k-1})w_{s,k} + a_s)$
 - Sample the mark of next event.

$$\mathsf{P}_{\theta,x}(x_{k+1} = x \mid \Delta_{t,k+1}, \boldsymbol{s}_k, \boldsymbol{m}_{\overline{k}}) \\ = \frac{\exp(\boldsymbol{U}_{x,s}^\top \boldsymbol{s}_k + \boldsymbol{U}_{x,m}^\top \boldsymbol{m}_{\overline{k}})}{\sum_{x' \in \mathcal{C}} \exp(\boldsymbol{U}_{x',s}^\top \boldsymbol{s}_k + \boldsymbol{U}_{x',m}^\top \boldsymbol{m}_{\overline{k}})},$$

• Time using a LogNormal distribution [Schhur et al 2020].

 $\operatorname{LOGNORMAL}\left(\mu_e(\boldsymbol{s}_k, \boldsymbol{m}_{\overline{k}}), \sigma_e^2(\boldsymbol{s}_k, \boldsymbol{m}_{\overline{k}})\right),$

TPP for Missing Events

• Mostly same as the observed TPP.

TPP for Missing Events

- Mostly same as the observed TPP.
- Major Distinction:
 - Sampling the next missing event is bounded by the time of the next observed event.
 - Simple LogNormal won't work here.
 - Sample for a *truncated* LogNormal distribution.
 - $\begin{aligned} & \text{LOGNORMAL}\left(\mu_{\epsilon}(\boldsymbol{m}_{r-1},\boldsymbol{s}_{k}),\sigma_{\epsilon}^{2}(\boldsymbol{m}_{r-1},\boldsymbol{s}_{k})\right) \\ & \odot\left[\!\left[\tau_{r-1}+\Delta_{\tau,r} < t_{k+1}\right]\!\right], \end{aligned}$
 - We follow a similar procedure for Missing TPP prior.

IMTPP: Training Procedure

How is IMTPP trained?

• Likelihood of observed data demands marginalization with respect to the set of latent missing events.

IMTPP: Training Procedure

How is IMTPP trained?

- Likelihood of observed data demands marginalization with respect to the set of latent missing events.
- Therefore, we resort to maximizing a variational lower bound of the loglikelihood of the observed stream.

$$p(\mathcal{S}_K) = \prod_{k=1}^{K-1} \int_{\mathcal{M}_{\overline{k}}} p(e_{k+1} \,|\, \mathcal{S}_k, \mathcal{M}_{\overline{k}}) \, p(\mathcal{M}_{\overline{k}}) \, d\omega(\mathcal{M}_{\overline{k}})$$

• Maximixe the ELBO:

 $\max_{\theta,\phi} \text{ELBO}(\theta,\phi)$

	Mean Absolute Error (MAE)						Mean Prediction Accuracy (MPA)					
	Movies	Toys	Taxi	Retweet	SO	Foursquare	Movies	Toys	Taxi	Retweet	SO	Foursquare
HP (Hawkes, 1971)	0.060	0.062	0.220	0.049	0.010	0.098	0.482	0.685	0.894	0.531	0.418	0.523
SMHP (Liniger, 2009)	0.062	0.061	0.213	0.051	0.008	0.091	0.501	0.683	0.893	0.554	0.423	0.520
RMTPP (Du et al., 2016)	0.053	0.048	0.128	0.040	0.005	0.047	0.548	0.734	0.929	0.572	0.446	0.605
SAHP (Zhang et al., 2020)	0.072	0.073	0.174	0.081	0.017	0.108	0.458	0.602	0.863	0.461	0.343	0.459
THP (Zuo et al., 2020)	0.068	0.057	0.193	0.047	0.006	0.052	0.537	0.724	0.931	0.526	0.458	0.624
PFPP (Mei et al., 2019)	0.058	0.055	0.181	0.042	0.007	0.076	0.559	0.738	0.925	0.569	0.437	0.582
HPMD (Shelton et al., 2018)	0.060	0.061	0.208	0.048	0.008	0.087	0.513	0.688	0.907	0.558	0.439	0.531
IMTPP (our proposal)	0.049	0.045	0.108	0.038	0.005	0.041	0.574	0.746	0.938	0.577	0.451	0.612

Performance in terms of time prediction error (MAE) and mark prediction accuracy (MPA).

- Best in terms of time prediction.
- Comparable for mark prediction.

Six Datasets:

- Amazon Movies
- Amazon Toys

- NYC Taxi
- Retweet
- Stack Overflow
- Foursquare

Difference between the actual time and the time predicted by IMTPP for Movies and Toys dataset.

Generative Process and Scalability

Evaluating the generative process by next *N* event prediction given an input.

Generative Process and Scalability

References

- Du, N., Dai, H., Trivedi, R., Upadhyay, U., Rodriguez, M. G., and Song, L. (2016). Recurrent marked temporal point processes: Embedding event history to vector. In KDD.
- Hawkes, A. G. (1971). Spectra of some self-exciting and mutually exciting point processes. Biometrika, 58(1).
- Liniger, T. J. (2009). Multivariate hawkes processes. PhD thesis, ETH Zurich.
- Mei, H., Qin, G., and Eisner, J. (2019). Imputing missing events in continuous-time event streams. In ICML.
- Shchur, O., Biloš, M., and Günnemann, S. (2020). Intensity-free learning of temporal point processes. In ICLR.
- Shelton, C. R., Qin, Z., and Shetty, C. (2018). Hawkes process inference with missing data. In AAAI.
- Zhang, Q., Lipani, A., Kirnap, O., and Yilmaz, E. (2020). Self-attentive hawkes processes. ICML.
- Zuo, S., Jiang, H., Li, Z., Zhao, T., and Zha, H. (2020). Transformer hawkes process. In ICML.

Gupta et al. Learning Temporal Point Processes with Intermittent Observations.