

Contribution: Sequence Retrieval via Temporal Point Process

A novel sequence retrieval model, called NEUROSEQRET that learns to retrieve a relevant set of sequences for a given query, from a large corpus of sequences. It applies a trainable unwarping function on the query sequence, to make it comparable with corpus sequences and two MTPP guided neural relevance models which offer a tradeoff between accuracy and efficiency. Moreover, we also propose an optimization framework to learn binary sequence embeddings from the relevance scores, suitable for the locality-sensitive hashing.

PRELIMINARIES

Temporal Point Processes (TPPs) are state-of-theart models for learning timestamped event-streams.

- Event sequence: $\mathcal{S}_k = \{e_i = (x_i, t_i) | t_i < t_{i+1}\}.$
- Time: $t_i \in \mathbb{R}^+$ and discrete mark: $x_i \in \mathcal{C}$.
- Historical events influence future: $e_{k+1} \sim S_k$.

Common in social networks (posts and comments). healthcare (hospital visits), shopping (purchases and reviews), finance (stocks and market trends) etc.

Motivation: Designing retrieval models specifically for continuous-time event sequences (CTES) has largely been unaddressed in the past.

Our Model: NeuroSeqRet

A family of supervised retrieval models for CTES and a trainable locality sensitive hashing (LSH) based method for very large datasets.

Key Contributions:

- Query unwarping function for better modeling of query-corpus sequence similarity.
- A family of self-attention and cross-attention based models for modeling temporal dynamics.
- Learnable hashing to compress sequence embeddings into binary hash vectors while limiting the loss due to compression.

First of its kind application of MTPP.

REFERENCES

- [1] Wehenkel, A. and Louppe, G. Unconstrained monotonic neural networks. In NeurIPS, 2019.
- [2] Zuo S. et al. Transformer Hawkes Process. In ICML, 2020.

Learning Temporal Point Processes for Efficient Retrieval of **Continuous Time Event Sequences** Vinayak Gupta¹, Srikanta Bedathur¹, and Abir De² IIT Delhi¹, IIT Bombay²

DETAILED OVERVIEW

NEUROSEQRET has the following components: I. Query Unwarping $(U_{\phi}(\cdot))$: Use an unconstrained monotonic neural network (UMNN)[1].

$$U_{\phi}(t) = \int_0^T u_{\phi}(\tau) \, d\tau + \eta,$$

where $\eta \sim \mathcal{N}(0, \sigma)$ and $u_{\phi} : \mathbb{R} \to \mathbb{R}_+$.

- Unbiasedness *i.e.* a small value of ||U(t) t||.
- Monotonicity: sequence order remains same.

II. Similarity Metrics $(s_{p,U}(\mathcal{H}_q, \mathcal{H}_c))$: Modelbased and model-independent similarity.

Model-Independent

- Wasserstein distance between times.
- Mark overlap between \mathcal{H}_q and \mathcal{H}_c .

Model-Based Fisher's Kernel over sequence embeddings.

$$\kappa_{p_{\theta}}(\mathcal{H}_{q},\mathcal{H}_{c}) = \boldsymbol{v}_{p_{\theta}}(U(\mathcal{H}_{q}))^{\top}\boldsymbol{v}_{p_{\theta}}(\mathcal{H}_{c}),$$

where $\boldsymbol{v}_{p_{\theta}}$ denotes a sequence embedding. These embeddings are derived from self-and cross-attention variants of NEUROSEQRET.

- SelfAttn-NSQ: Transformer Hawkes[2] to compute independently compute the likelihood of sequences. Supports LSH for efficient retrieval in large datasets.
- CROSSATTN-NSQ: Jointly learns the likelihood of future \mathcal{H}_c events given complete \mathcal{H}_q .

III. Learnable Hashing Assigns binary (+1 or -1) hash vectors to sequences. Optimizes the following:

- Even distribution of ± 1 in vectors.
- Approximates $sign(\cdot)$ using $tanh(\cdot)$.
- Hash code entries avoid redundancy.

Trainable hashing is used in IR applications, however, such an approach is novel for CTES retrieval.

SEQUENCE RETRIEVAL PERFORMANCE

MAS UDT Shar RMT Rank SAH Rank THP Rank SELF

2.4**- 1.8** $\dot{\boldsymbol{\iota}}$ 1.2+

 ≈ 24 **9**18 **Ö** U 12

Unwarping: In Figure 2, we show the effect of train- the average precision per sequence. able unwarping on a relevant query-corpus pair in Au- Hashing Analysis: In Figure 4, we show the effidio. $U_{\phi}(\cdot)$ learns to transform \mathcal{H}_{q} in order to capture ciency of our hashing by plotting the reduction factor a high value of its latent similarity with \mathcal{H}_c . The *i.e.* % reduction in the number of comparisons beresults highlight that we that the performance dete- tween query-corpus pairs w.r.t. the exhaustive comriorates if we do not use an unwarping function. parisons for different hashing methods. The point marked as \star indicates the case with exhaustive com-**Drill-down Analysis:** In Figure 3, we show a comparisons on the set of corpus sequences. Here, η_1, η_2 , parative analysis between Rank-SAHP and Rankand η_3 are hyper-parameters for training loss, and THP to get the gain (or loss) for NEUROSEQRET for $Our(\eta_1, \eta_2, \eta_3)$ is the complete variant.

,											
	Mean Average Precision (MAP)						NDCG@10				
	Audio	Cel.	Ele.	Health	Sports		Audio	Cel.	Ele.	Health	Sports
SS	51.1	58.2	19.3	26.4	54.7	MASS	20.7	38.7	9.1	13.6	22.3
ΓW	50.7	58.7	20.3	28.1	54.5	UDTW	21.3	39.6	9.7	14.7	22.9
p	52.4	59.8	22.8	28.6	56.8	Sharp	21.9	40.6	11.7	16.8	23.7
ГРР	48.9	57.6	18.7	24.8	50.3	RMTPP	20.1	39.4	8.3	12.3	19.1
k-RMTPP	52.6	60.3	23.4	29.3	55.8	Rank-RMTPP	22.4	41.2	11.4	15.5	23.9
[P	49.4	57.2	19.0	26.0	53.9	SAHP	20.4	39.0	8.7	13.2	22.6
k-SAHP	52.9	61.8	26.5	31.6	55.1	Rank-SAHP	23.3	42.1	13.3	17.5	25.4
)	51.8	60.3	21.3	27.9	54.2	THP	22.1	40.3	10.4	14.4	22.9
k-THP	54.3	63.1	29.4	33.6	56.3	Rank-THP	25.4	44.2	15.3	19.7	26.5
FATTN-NSQ	55.8	64.4	30.7	35.9	57.6	SelfAttn-NSQ	25.9	45.8	16.5	20.4	27.8
SSATTN-NSQ	56.2	65.1	32.4	37.4	58.7	CROSSATTN-NSQ	28.3	46.9	18.1	22.0	27.9
Table 1. Retrieval Performance: MAP (%)						Table 2. Retrieval Performance: NDCG@10 (%)					

(MAP) and NDCG@10.

Experiment Setting: Five real-world datasets – **Baselines:** We use: (i) time-series retrieval mod-Audio, Celebrity (Cel.), Electricity (Ele.), Health and els - MASS, UDTW, Sharp and (ii) MTPP models -Sports. Evaluation metrics – Mean Average Precision RMTPP, SAHP, THP. We also use ranking-loss based MTPP models with prefix Rank-.

