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Contribution: Sequence Retrieval via Temporal Point Process
A novel sequence retrieval model, called NeuroSeqRet that learns to retrieve a relevant set of sequences
for a given query, from a large corpus of sequences. It applies a trainable unwarping function on the query
sequence, to make it comparable with corpus sequences and two MTPP guided neural relevance models which
offer a tradeoff between accuracy and efficiency. Moreover, we also propose an optimization framework to
learn binary sequence embeddings from the relevance scores, suitable for the locality-sensitive hashing.

Preliminaries
Temporal Point Processes (TPPs) are state-of-the-
art models for learning timestamped event-streams.

• Event sequence: Sk = {ei = (xi, ti)|ti < ti+1}.
• Time: ti ∈ R+ and discrete mark: xi ∈ C.
• Historical events influence future: ek+1 ∼ Sk.

Common in social networks (posts and comments),
healthcare (hospital visits), shopping (purchases and
reviews), finance (stocks and market trends) etc.

Time
Figure 1. A Temporal Point Process

Motivation: Designing retrieval models specifically
for continuous-time event sequences (CTES) has
largely been unaddressed in the past.

Sequence Retrieval Performance
Mean Average Precision (MAP)
Audio Cel. Ele. Health Sports

MASS 51.1 58.2 19.3 26.4 54.7
UDTW 50.7 58.7 20.3 28.1 54.5
Sharp 52.4 59.8 22.8 28.6 56.8
RMTPP 48.9 57.6 18.7 24.8 50.3
Rank-RMTPP 52.6 60.3 23.4 29.3 55.8
SAHP 49.4 57.2 19.0 26.0 53.9
Rank-SAHP 52.9 61.8 26.5 31.6 55.1
THP 51.8 60.3 21.3 27.9 54.2
Rank-THP 54.3 63.1 29.4 33.6 56.3
SelfAttn-NSQ 55.8 64.4 30.7 35.9 57.6
CrossAttn-NSQ 56.2 65.1 32.4 37.4 58.7

Table 1. Retrieval Performance: MAP (%)

Experiment Setting: Five real-world datasets –
Audio, Celebrity (Cel.), Electricity (Ele.), Health and
Sports. Evaluation metrics – Mean Average Precision
(MAP) and NDCG@10.

NDCG@10
Audio Cel. Ele. Health Sports

MASS 20.7 38.7 9.1 13.6 22.3
UDTW 21.3 39.6 9.7 14.7 22.9
Sharp 21.9 40.6 11.7 16.8 23.7
RMTPP 20.1 39.4 8.3 12.3 19.1
Rank-RMTPP 22.4 41.2 11.4 15.5 23.9
SAHP 20.4 39.0 8.7 13.2 22.6
Rank-SAHP 23.3 42.1 13.3 17.5 25.4
THP 22.1 40.3 10.4 14.4 22.9
Rank-THP 25.4 44.2 15.3 19.7 26.5
SelfAttn-NSQ 25.9 45.8 16.5 20.4 27.8
CrossAttn-NSQ 28.3 46.9 18.1 22.0 27.9

Table 2. Retrieval Performance: NDCG@10 (%)

Baselines: We use: (i) time-series retrieval mod-
els - MASS, UDTW, Sharp and (ii) MTPP models -
RMTPP, SAHP, THP. We also use ranking-loss based
MTPP models with prefix Rank-.
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Our Model: NeuroSeqRet
A family of supervised retrieval models for CTES
and a trainable locality sensitive hashing (LSH)
based method for very large datasets.
Key Contributions:

• Query unwarping function for better modeling
of query-corpus sequence similarity.

• A family of self-attention and cross-attention
based models for modeling temporal dynamics.

• Learnable hashing to compress sequence em-
beddings into binary hash vectors while limit-
ing the loss due to compression.

First of its kind application of MTPP.

Additional Experiments and Hashing Analysis
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Figure 2. Effect of Unwarping Figure 3. Drill-down Analysis
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Figure 4. Tradeoff between NDCG@10 vs. Reduction factor

Unwarping: In Figure 2, we show the effect of train-
able unwarping on a relevant query-corpus pair in Au-
dio. Uφ(·) learns to transform Hq in order to capture
a high value of its latent similarity with Hc. The
results highlight that we that the performance dete-
riorates if we do not use an unwarping function.

Drill-down Analysis: In Figure 3, we show a com-
parative analysis between Rank-SAHP and Rank-
THP to get the gain (or loss) for NeuroSeqRet for

the average precision per sequence.
Hashing Analysis: In Figure 4, we show the effi-
ciency of our hashing by plotting the reduction factor
i.e. % reduction in the number of comparisons be-
tween query-corpus pairs w.r.t. the exhaustive com-
parisons for different hashing methods. The point
marked as ? indicates the case with exhaustive com-
parisons on the set of corpus sequences. Here, η1, η2,
and η3 are hyper-parameters for training loss, and
Our(η1, η2, η3) is the complete variant.

Detailed Overview
NeuroSeqRet has the following components:
I. Query Unwarping (Uφ(·)): Use an uncon-
strained monotonic neural network (UMNN)[1].

Uφ(t) =

∫ T

0

uφ(τ) dτ + η,

where η ∼ N (0, σ) and uφ : R→ R+.

• Unbiasedness i.e. a small value of ||U(t)− t||.
• Monotonicity: sequence order remains same.

II. Similarity Metrics (sp,U (Hq,Hc)): Model-
based and model-independent similarity.
Model-Independent

• Wasserstein distance between times.

• Mark overlap between Hq and Hc.

Model-Based Fisher’s Kernel over sequence em-
beddings.

κpθ (Hq,Hc) = vpθ (U(Hq))>vpθ (Hc),

where vpθ denotes a sequence embedding. These
embeddings are derived from self-and cross-attention
variants of NeuroSeqRet.

• SelfAttn-NSQ: Transformer Hawkes[2] to
compute independently compute the likeli-
hood of sequences. Supports LSH for efficient
retrieval in large datasets.

• CrossAttn-NSQ: Jointly learns the likeli-
hood of future Hc events given complete Hq.

III. Learnable Hashing Assigns binary (+1 or -1)
hash vectors to sequences. Optimizes the following:

• Even distribution of ±1 in vectors.

• Approximates sign(·) using tanh(·).
• Hash code entries avoid redundancy.

Trainable hashing is used in IR applications, how-
ever, such an approach is novel for CTES retrieval.


