Learning Temporal Point Processes for
Efficient Retrieval of Continuous Time Event Sequences

Vinayak Gupta*, Srikanta Bedathur* and Abir Def

* IIT Delhi, T IIT Bombay
{vinayak.gupta, srikanta} @cse.iitd.ac.in, abir @cse.iitb.ac.in

Abstract

Recent developments in predictive modeling using marked
temporal point processes (MTPP) have enabled an accurate
characterization of several real-world applications involving
continuous-time event sequences (CTESs). However, the re-
trieval problem of such sequences remains largely unaddressed
in literature. To tackle this, we propose NEUROSEQRET which
learns to retrieve and rank a relevant set of continuous-time
event sequences for a given query sequence, from a large
corpus of sequences. More specifically, NEUROSEQRET first
applies a trainable unwarping function on the query sequence,
which makes it comparable with corpus sequences, especially
when a relevant query-corpus pair has individually different
attributes. Next, it feeds the unwarped query sequence and the
corpus sequence into MTPP guided neural relevance models.
We develop two variants of the relevance model which offer a
tradeoff between accuracy and efficiency. We also propose an
optimization framework to learn binary sequence embeddings
from the relevance scores, suitable for the locality-sensitive
hashing leading to a significant speedup in returning top-K re-
sults for a given query sequence. Our experiments with several
datasets show the significant accuracy boost of NEUROSE-
QRET beyond several baselines, as well as the efficacy of our
hashing mechanism.

1 Introduction

The recent developments in marked temporal point processes
(MTPP) has dramatically improved the predictive analytics in
several real world applications— from information diffusion
in social networks to healthcare— by characterizing them
with continuous-time event sequences (CTESs) (Tabibian
et al. 2019; Gupta et al. 2021a; Samanta et al. 2017; De
et al. 2018; Valera et al. 2014; Rizoiu et al. 2017; Wang
et al. 2017; Daley and Vere-Jones 2007; Guo et al. 2018;
Du et al. 2015; Tabibian et al. 2019; Kumar et al. 2019; De
et al. 2016; Zhang et al. 2021; Du et al. 2016; Farajtabar
et al. 2017; Jing and Smola 2017; Saha et al. 2018; Gupta
and Bedathur 2021; Likhyani et al. 2020). In this context,
given a query sequence, retrieval of relevant CTESs from
a corpus of sequences is a challenging problem having a
wide variety of search-based applications. For example, in
audio or music retrieval, one may like to search sequences
having different audio or music signatures; in social network,

Copyright © 2022, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

retrieval of trajectories of information diffusion, relevant to
a given trajectory can assist in viral marketing, fake news
detection, efc. Despite having a rich literature on searching
similar time-series (Blondel et al. 2021; Gogolou et al. 2020;
Alaee et al. 2020; Yoon et al. 2019; Cai et al. 2019; Shen
et al. 2018; Cuturi and Blondel 2017; Paparrizos and Gravano
2015), the problem of designing retrieval models specifically
for CTES has largely been unaddressed in the past. Moreover,
as shown in our experiments, the existing search methods for
time sequences are largely ineffective for a CTES retrieval
task, since the underlying characterization of the sequences
vary across these two domains.

1.1 Present work

In this paper, we first introduce NEUROSEQRET, a family
of supervised retrieval models for continuous-time event se-
quences and then develop a trainable locality sensitive hash-
ing (LSH) based method for efficient retrieval over very large
datasets. Specifically, our contributions are as follows:

Query unwarping. The notion of relevance between two
sequences varies across applications. A relevant sequence
pair can share very different individual attributes, which can
mislead the retrieval model if the sequences are compared as-
it-is. In other words, an observed sequence may be a warped
transformation of a hidden sequence (Xu et al. 2018; Gervini
and Gasser 2004). To tackle this problem, NEUROSEQRET
first applies a trainable unwarping function on the query
sequence before the computation of a relevance score. Such
an unwarping function is a monotone transformation, which
ensures that the chronological order of events across the
observed and the unwarped sequences remains the same (Xu
et al. 2018).

Neural relevance scoring model. In principle, the relevance
score between two sequences depends on their latent simi-
larity. We measure such similarity by comparing the gener-
ative distribution between the query-corpus sequence pairs.
In detail, we feed the unwarped query sequence and the cor-
pus sequence into a neural MTPP based relevance scoring
model, which computes the relevance score using a Fisher
kernel (Jaakkola et al. 1999) between the corpus and the un-
warped query sequences. Such a kernel offers two key bene-
fits over other distribution similarity measures, e.g., KL diver-
gence or Wasserstein distance: (i) it computes a natural simi-
larity score between query-corpus sequence pairs in terms of

the underlying generative distributions; and, (ii) it computes
a dot product between the gradients of log-likelihoods of
the sequence pairs, which makes it compatible with locality-
sensitive hashing for certain design choices and facilitates
efficient retrieval. In this context, we provide two MTPP mod-
els, leading to two variants of NEUROSEQRET, which allows
a nice tradeoff between accuracy and efficiency.

SELFATTN-NEUROSEQRET: Here, we use transformer
Hawkes process (Zuo et al. 2020) which computes the like-
lihood of corpus sequences independently of the query se-
quence. Such a design admits precomputable corpus likeli-
hoods, which in turn allows for prior indexing of the corpus
sequences before observing the unseen queries. This setup
enables us to apply LSH for efficient retrieval.

CROSSATTN-NEUROSEQRET: Here, we propose a novel
cross attention based neural MTPP model to compute the
sequence likelihoods. Such a cross-attention mechanism ren-
ders the likelihood of corpus sequence dependent on the
query sequence, making it a more powerful retrieval model.
While CROSSATTN-NEUROSEQRET is not directly com-
patible with such a hashing based retrieval, it can be em-
ployed in a telescopic manner— where a smaller set of rel-
evant candidate set is first retrieved using LSH applied on
top of SELFATTN-NEUROSEQRET, and then reranked using
CROSSATTN-NEUROSEQRET.

Having computed the relevance scores, we learn the unwarp-
ing function and the MTPP model by minimizing a pairwise
ranking loss, based on the ground truth relevance labels.

Scalable retrieval. Next, we use the predictions made by
SELFATTN-NEUROSEQRET to develop a novel hashing
method that enables efficient sequence retrieval. More specifi-
cally, we propose an optimization framework that compresses
the learned sequence embeddings into binary hash vectors,
while simultaneously limiting the loss due to compression.
Then, we use locality-sensitive hashing (Gionis et al. 1999) to
bucketize the sequences into hash buckets, so that sequences
with similar hash representations share the same bucket. Fi-
nally, given a query sequence, we consider computing rele-
vance scores only with the sequences within its bucket. Such
a hashing mechanism combined with high-quality sequence
embeddings achieves fast sequence retrieval with no signifi-
cant loss in performance.

Finally, our experiments with real-world datasets from
different domains show that both variants of NEUROSE-
QRET outperform several baselines including the methods for
continuous-time series retrieval. Moreover, we observe that
our hashing method applied on SELFATTN-NEUROSEQRET
can make a trade-off between the retrieval accuracy and ef-
ficiency more effectively than baselines based on random
hyperplanes as well as exhaustive enumeration.

2 Preliminaries

In this section, we first sketch an outline of marked tempo-
ral point processes (MTPP) and then setup our problem of
retrieving a set of continuous time event sequences relevant
to a given query sequence.

2.1 Overview of marked temporal point processes

Continuous time event sequences (CTESs). Marked tem-
poral point processes (MTPP) are stochastic processes which
capture the generative mechanism of a sequence of discrete
events localized in continuous time. Here, an event e is re-
alized using a tuple (¢,x), where t € Ry and x € X are
the arrival time and the mark of the event e. Then, we use
H(t) to denote a continuous time event sequence (CTES)
where each event has arrived until and excluding time ¢,
i.e, H(t) := {e; = (ti,x;) | ti=1 < t; < t}. Moreover we
use 7 (t) and M (t) to denote the sequence of arrival times
{ti | e; € H(t)} and the marks {z; | e; € H(t)}. Finally, we
denote the counting process N (t) as counts of the number
of events happened until and excluding time ¢, encapsulating
the generative mechanism of the arrival times.

Generative model for CTES. The underlying MTPP model
consists of two components— (i) the dynamics of the ar-
rival times and (ii) the dynamics of the distribution of marks.
Most existing works (Du et al. 2016; Zhang et al. 2020;
Mei et al. 2019; Mei and Eisner 2017; Shelton et al. 2018;
Zuo et al. 2020) model the first component using an in-
tensity function which explicitly models the likelihood of
an event in the infinitesimal time window [t,¢ + dt), i.e.,
A(t) = Pr(dN(t) = 1|H(t)). In contrast, we use an intensity
free approach following the proposal by Shchur et al. (2020),
where we explicitly model the distribution of the arrival time
t of the next event e. Specifically, we denote the density p
of the arrival time and the distribution m of the mark of the
next event as follows:

p(t)dt = Pr(ein [t, t 4 dt) | H(t)), (1)

m(x) = Pr(z |H(t)) (2)
As discussed by Shchur et al. (2020), such an intensity free
MTPP model enjoys several benefits over the intensity based
counterparts, in terms of facilitating efficient training, scal-
able prediction, computation of expected arrival times, etc.

Given a sequence of observed events H(T") collected during
the time interval (0, T, the likelihood function is given by:

p(H(T)) = Heiz(t,i7xi)eH(T) p(ti) x m(z;) 3)

2.2 Problem setup

Next, we setup our problem of retrieving a ranked list of
sequence from a corpus of continuous time event sequences
(CTESs) which are relevant to a given query CTES.

Query and corpus sequences, relevance labels. We op-
erate on a large corpus of sequences {H.(T.)|c € C},
where H.(T.) = {(t{?,2{9)[t{? < T.}. We are given
a set of query sequences {H,(Ty) | ¢ € Q} with H(T;,) =
{9, 27419 < T,}, as well as a query-specific rele-
vance label for the set of corpus sequences. That is, for a
given query sequence H,, we have: y(H,, He) = +1if H.
is marked as relevant to H, and y(H,, H.) = —1 otherwise.

We define Cpy = {c € C|y(Hq, He) = +1},and, Cyp =
{ceCly(Hq, He) = —1}, with C = Cy4 UC,—. Finally, we
denote T' = max{T,,T.|q € Q,c € C} as the maximum
time of the data collection.

Our goal. We aim to design an efficient CTES retrieval sys-
tem, which would return a list of sequences from a known
corpus of sequences, relevant to a given query sequence H,,.
Therefore, we can view a sequence retrieval task as an in-
stance of ranking problem. Similar to other information re-
trieval algorithms, a CTES retrieval algorithm first computes
the estimated relevance s(#,, H.) of the corpus sequence H..
for a given query sequence H, and then provides a ranking
of C in the decreasing order of their scores.

3 NEUROSEQRET model

In this section, we describe NEUROSEQRET family of MTPP-
based models that we propose for the retrieval of continuous
time event sequences (CTES). We begin with an outline of
its two key components.

3.1 Components of NEUROSEQRET

NEUROSEQRET models the relevance scoring function be-
tween query and corpus sequence pairs. However the rele-
vance of a corpus sequence to the query is latent and varies
widely across applications. To accurately characterize this rel-
evance measure, NEUROSEQRET works in two steps. First,
it unwarps the query sequences to make them compatible
for comparing with the corpus sequences. Then, it computes
the pairwise relevance score between the query and corpus
sequences using neural MTPP models.

Unwarping query sequences. Direct comparison between
a query and a corpus sequence can provide misleading out-
comes, since they also contain their own individual idiosyn-
cratic factors in addition to sharing some common attributes.
In fact, a corpus sequence can be highly relevant to the query,
despite greatly varying in timescale, initial time, etc. In other
words, it may have been generated by applying a warping
transformation on a latent sequence (Xu et al. 2018; Gervini
and Gasser 2004). Thus, a direct comparison between a rele-
vant sequence pair may give poor relevance score.

To address this challenge, we first apply a trainable un-
warping function (Xu et al. 2018) U (+) on the arrival times
of a query sequence, which enhances its compatibility for
comparing it with the corpus sequences. More specifically,

we define U(H,) == {(U(tEQ)), 15{”)} In general, U satis-
fies two properties (Xu et al. 2018; Gervini and Gasser 2004):
unbiasedness, i.e., having a small value of ||U(t)] — ¢|| and
monotonicity, i.e., dU(t)/dt > 0. These properties ensure
that the chronological order of the events across both the
warped observed sequence and the unwarped sequence re-
mains same. Such a sequence transformation learns to capture
the similarity between two sequences, even if it is not appar-
ent due to different individual factors, as we shall later in our

experiments (Figure 1).

Computation of relevance scores. Given a query sequence
‘H, and a corpus sequence #., we compute the relevance
score s(H 4, H.) using two similarity scores, e.g., (i) a model
independent sequence similarity score and (ii) a model based
sequence similarity score.

—DModel independent similarity score: Computation of model
independent similarity score between two sequences is widely
studied in literature (Xiao et al. 2017; Mueen and Keogh

2016; Su et al. 2020; Abanda et al. 2019; Miiller 2007). They
are computed using different distance measures between two
sequences, e.g., DTW, Wasserstein distance, etc. and there-
fore, can be immediately derived from data without using
the underlying MTPP model. In this work, we compute the
model independent similarity score, SIMy (H4, H.), between
H4 and H, as follows:

SMy (Hg, He) = —Au(U(Hq), He) — Aa(Hg, He) (D)
where, A; and A, are defined as:

Af(U(Hy), He) = ij U(t§q>)—zf§.c>‘+ S (-,

=0 t; GHCUHQ
Hoin 7> ‘ Hminl
Ao(Hg He) = D U2l # 2]+ |[He| — [Hyl|.
1=0

Here, Hpnin = min{|H,|, |H¢|}, T = max{Ty, T.} where
the events of H, and H. are gathered until time T, and
T respectively; Ay (U(H,), H.) is the Wasserstein distance
between the unwarped arrival time sequence U(#H,) and
the corpus sequence (Xiao et al. 2017) and, A, (Hq, He)
measures the matching error for the marks, wherein the last
term penalizes the marks of last |H.| — |H,| events of |H.|.

—Model based similarity score using Fisher kernel: We hy-
pothesize that the relevance score s(H,, H.) also depends
on a latent similarity which may not be immediately evident
from the observed query and corpus sequences even after un-
warping. Such a similarity can be measured by comparing the
generative distributions of the query-corpus sequence pairs.
To this end, we first develop an MTPP based generative model
po(H) parameterized by # and then compute a similarity
score using the Fisher similarity kernel between the unwarped
query and corpus sequence pairs (U(H,), H.) (Jaakkola
et al. 1999). Specifically, we compute the relevance score
between the unwarped query sequence U (#,,) and the cor-
pus sequence H, as follows:

Kipg (Mg, He) = vpy (U(Hyg)) 0y (He) (5)

where 0 is the set of trainable parameters; vy, (-) is given by

v, (H) = I, * Vg log po(H)/||I, /* Vg log po(H)||2,

Iy is the Fisher information matrix (Jaakkola et al. 1999),
ie, Iy = Eqpye) [V@ log pe(H)Vy logpg(H)T]. We
would like to highlight that k,,(H,, H.) in Eq. (5) is a
normalized version of Fisher kernel since ||v,,(-)|| = 1.
Thus, kp, (M4, H.) measures the cosine similarity between
Vpy (U(Hq)) and vy, (He).

Note that, KL divergence or Wasserstein distance could
also serve our purpose of computing the latent similarity
between the generative distributions. However, we choose
Fisher similarity kernel because of two reasons: (i) it is known
to be a natural similarity measure which allows us to use
the underlying generative model in a discriminative learn-
ing task (Jaakkola et al. 1999; Sewell 2011); and, (ii) un-
like KL divergence or other distribution (dis)similarities, it
computes the cosine similarity between vy, (U(H,)) and
Vp, (H.), which makes it compatible with locality sensitive
hashing (Charikar 2002).

Finally, we compute the relevance score as
sp.u (Mg, He) = kp (Hqg, He) +7SIMy (Hy, He) (6)
where 7 is a hyperparameter.

3.2 Neural parameterization of NEUROSEQRET

Here, we first present the neural architecture of the un-
warping function and then describe the MTPP models used
to compute the model based similarity score in Eq. (5).
As we describe later, we use two MTPP models with dif-
ferent levels of modeling sophistication, viz., SELFATTN-
NEUROSEQRET and CROSSATTN-NEUROSEQRET. In
SELFATTN-NEUROSEQRET, the likelihood of a corpus se-
quence is computed independently of the query sequence
using a self attention based MTPP model, e.g., Trans-
former Hawkes Process (Zuo et al. 2020). As a result, we
can employ a locality sensitive hashing based efficient re-
trieval based SELFATTN-NEUROSEQRET. In CROSSATTN-
NEUROSEQRET, on the other hand, we propose a more ex-
pressive and novel cross attention MTPP model, where the
likelihood of a corpus sequence is dependent on the query
sequence. Thus, our models can effectively tradeoff between
accuracy and efficiency.

Neural architecture of U(-). As discussed in Section 3.1,
the unwarping function U (-) should be unbiased and mono-
tonic. To this end, we model U(-) ~ U,(-) using a nonlin-
ear monotone function which is computed using an uncon-
strained monotone neural network (UMNN) (Wehenkel and
Louppe 2019), i.e.,

t
Us(t) = / ug(T)dT + 1, @)
0

where ¢ is the parameter of the underlying neural network
ug(-), n € N(0,0) and uy : R — Ry is a non-negative
nonlinear function. Since the underlying monotonicity can
be achieved only by enforcing non-negativity of the inte-
grand ugs, UMNN admits an unconstrained, highly expres-
sive parameterization of monotonic functions. Therefore, any
complex unwarping function Ug(-) can be captured using
Eq. (7), by integrating a suitable neural model augmented
with ReLU(+) in the final layer. In other words, if uy is a
universal approximator for positive function, then Uy can
capture any differentiable unwarping function. We impose an

additional regularizer 5 fOT lug(t) — 1 I|? dt on our training
loss which ensures that ||U(¢) — t|| remains small.

Neural architecture of MTPP model py(-). We provide
two variants of pg(-), which leads to two retrieval mod-
els, viz.,, SELFATTN-NEUROSEQRET and CROSSATTN-
NEUROSEQRET.

SELFATTN-NEUROSEQRET: Here, we use Transformer
Hawkes process (Zuo et al. 2020) which applies a self
attention mechanism to model the underlying generative
process. In this model, the gradient of corpus sequences
vg(H.) = Vglogpe(H.) are computed independently of
the query sequence H,. Once we train the retrieval model,
vg(H.) can be pre-computed and bucketized before observ-
ing the test query. Such a model, together with the Fisher
kernel based cosine similarity scoring model, allows us to
apply locality sensitive hashing for efficient retrieval.

CROSSATTN-NEUROSEQRET: The above self attention
based mechanism models a query agnostic likelihood of
the corpus sequences. Next, we introduce a cross atten-
tion based MTPP model which explicitly takes into ac-
count of the underlying query sequence while modeling
the likelihood of the corpus sequence. Specifically, we mea-
sure the latent relevance score between H, and #H. via
a query-induced MTPP model built using the cross atten-
tion between the generative process of both the sequences.
Given a query sequence H, and the first r events of the
corpus sequence H,., we parameterize the generative model

for (r 4+ 1)-th event, i.e., p(eﬁ1 | H(t,)) as pg(-), where

Do (651)1) = pg(tii)l) my (xﬁ)l), where p and m are the den-

sity and distribution functions for the arrival time and the
mark respectively, as described in Eq. (1).
(@)

—Input Layer: For each event e,
(e)
J

H., the input layer computes the initial embeddings ygq) and

yj(.c) as follows:

in the query sequence H,

and each event e’ in the first r events in the corpus sequence

yz(q) = wyﬂxz(‘q) + wyiU(tz(‘Q))

+wya (VD) = UHD)) +by, Vi € [[Hy]
yj(-c) = wy@xy) + wy,ttgc)
+wy A (t.§°’> - t§c_)1) + by, € [He(t)] — 1]
where w, o and b, are trainable parameters.

—Attention layer: The second layer models the interaction
between all the query events and the past corpus events,
i.e., Hy and H.(t,) using an attention mechanism. Specifi-
cally, following the existing attention models (Vaswani et al.
2017; Kang and McAuley 2018; Li et al. 2020) it first adds
a trainable position embedding p with y— the output from
the previous layer. More specifically, we have the updates:

yi(q) — yZ@ + p; and y§c) — yj(-c) + p;. where, p, € RP.

Next, we apply two linear transformations on the vectors
[y,(Q)]ie[qu and one linear transformation on [yj(p)] el
ie.,s; = Wsyj(-c)7ki = WhylD o, = WVy§Q). The

state-of-the-art works on attention models (Vaswani et al.
2017; Zuo et al. 2020; Kang and McAuley 2018; Li et al.
2020) often refer so, ke and vo as query, key and value
vectors respectively. Similarly, we call the trainable weights
WS,WK and WV as the Query, Key and Value ma-
trices, respectively. Finally, we use the standard attention

recipe (Vaswani et al. 2017) to compute the final embedding

vector h;c’q) for the event egc), induced by query H,. Such a

recipe adds the values weighted by the outputs of a softmax
function induced by the query and key, i.e.,

.
i exp (3» kl/\/ﬁ>
= S —— v, ®
i€[|Hql] Zi’e[l?—lq\] exp (Sj ki//\/ﬁ>
—Output layer: Given the vectors h;c’q) provided by the at-

tention mechanism (8), we first apply a feed-forward neural

network on them to compute Eic’q) as follows:

RO = 3 [wﬁ ©ReLU(R\™™ @ wi, ¢ + bpo) + bg} 7
j=1

where w, ., we and b,. Finally, we use these vectors to

compute the probability density of the arrival time of the

next event 6521’ i.e., pg(t,+1) and the mark distribution

my(xr41). In particular, we realize pg(¢,41) using a log

normal distribution of inter-arrival times, i.e.,
tffﬁl — () ~ LOGNORMAL (/Je (R(f:’q)> 02 (Eic’q))))

where, {ue (Hicﬂ)) ,Oc (Eicﬂ))} = Wt7qﬁic’q)—&— b4 Sim-

ilarly, we model the mark distribution as,
exp ('w;mﬁ(cm n b%m)

Zz’GX exp (w;’mﬁ(aq) + bz’,m)

where W, , are the trainable parameters. Therefore the set
of trainable parameters for the underlying MTPP models is
9 = {W.7 WO,'? 'LU., w.,07 b.’ b.7.}~

)]

mg(Tri1) =

3.3 Parameter estimation

Given the query sequences {7{, }, the corpus sequences {#.}
along with their relevance labels {y(#,, H.)}, we seek to
find € and ¢ which ensure that:

Spe,U¢(Hq,HC+) > Spg,Ud,(,Hm,Hc,)VCi S qu. (10)

To this aim, we minimize the following pairwise ranking
loss (Joachims 2002) to estimate the parameters 6, ¢:

I(l;lgl E : E : [5P97U¢(qurHC—) 75P97U¢(H(1’HC+)+5}+7
q€Qci€Cyy,
c—€Cq_

where, ¢ is a tunable margin.

4 Scalable retrieval with hashing

Once we learn the model parameters 6 and ¢, we can rank
the set of corpus sequences . in the decreasing order of
S5pg,U,(Hgq , He) for a new query H,s and return top— K se-
quences. Such an approach requires |C| comparisons per each
test query, which can take a huge amount of time for many
real-life applications where |C| is high. However, for most
practical query sequences, the number of relevant sequences
is a very small fraction of the entire corpus of sequences.
Therefore, the number of comparisons between query-corpus
sequence pairs can be reduced without significantly impact-
ing the retrieval quality by selecting a small number of candi-
date corpus sequences that are more likely to be relevant to a
query sequence.

4.1 Trainable hashing for retrieval

Computation of a trainable hash code. We first apply a
trainable nonlinear transformation A, with parameter) on
the gradients v° = v, (H.) and then learn the binary hash
vectors (¢ = sign (Ay (v°)) by solving the following opti-
mization, where we use tanh (A, (+)) as a smooth approxi-

Algorithm 1: Efficient retrieval with hashing

Require: Trained corpus embeddings {v° = vp,(H)} using
SELFATTN-NEUROSEQRET; new query sequences {#, }, K:
of corpus sequences to return; trained models for SELFATTN-
NEUROSEQRET and CROSSATTN-NEUROSEQRET.
: Output: {L, }: top-K relevant sequences from {H.}.
1) < TRAINHASHNET (Ay, [v]cec)
: INITHASHBUCKETS(+)
for c € C do
¢° + COMPUTEHASHCODE (v°; Ay)
B + ASSIGNBUCKET(¢®)

end for

: for each new query H, do

v SELFATTN-NEUROSEQRET(H,,/)
¢l COMPUTEHASHCODE(’vq/; Ay)

11: B+« ASSIGNBUCKET(¢?')
12: forc € Bdo

R AR A

._
e

13: Vs, Vs CROSSATTN-NEUROSEQRET(H,/, He)
14: Spg,U(b (Hq’) Hc) — SCORE('Ugrossy Uccrossz HLI? HC)

15: end for

161 Ly + RANK({spy.v,(Hy, He)} . K)

17: end for

18: Return {L, }

mation of sign (Ay(+)).

. c
min il Z ‘IT tanh (Ay (v))‘

< i 2 lbanh (A) =1, (D)
ceC
+f§3)\ S ek (Ay (0°) i) - tanh (A ()]
S

Here Z?zl 7; = 1. Moreover, different terms in Eq. (11) al-
low the hash codes ¢ to have a set of four desired properties:
(i) the first term ensures that the numbers of +1 and —1 are
evenly distributed in the hash vectors (¢ = tanh (Ay (v°));
(ii) the second term encourages the entries of ¢ become
as close to +1 as possible so that tanh(-) gives an accurate
approximation of sign(-) ; (iii) the third term ensures that the
entries of the hash codes ¢¢ contain independent information
and therefore they have no redundant entries. Trainable hash-
ing has been used in other domains of information retrieval
including graph hashing (Liu et al. 2014; Qin et al. 2020; Roy
et al. 2020), document retrieval (Zhang et al. 2010; Salakhut-
dinov and Hinton 2009; Zamani Dadaneh et al. 2020). How-
ever, to the best of our knowledge, such an approach has
never been proposed for continuous time sequence retrieval.

Outline of our retrieval method. We summarize our re-
trieval procedure in Algorithm 1. We are given gradient
vectors v¢ = w,,(H,.) obtained by training SELFATTN-
NEUROSEQRET. Next, we train an additional neural network
Ay, parameterized by 1) (TRAINHASHNET(), line 2), which
is used to learn a binary hash vector ¢ for each sequence H..
Then these hash codes are used to arrange corpus sequences
in different hash buckets (for-loop in lines 4-7) using the
algorithm proposed by Gionis et al. (1999), so that two se-
quences H., H. lying in the same hash bucket have very
high value of cosine similarity cos(v°®, vcl) (bucketization
details are in Appendix B). Finally, once a new query #

comes, we first compute v? using the trained SELFATTN-
NEUROSEQRET model and then compute the binary hash
codes ¢?' using the trained hash network A, (lines 9-10).
Next, we assign an appropriate bucket B to it (line 11) and
finally compare it with only the corpus sequences in the same
bucket, i.e., H. € B (lines 12-15) using our model.

Recall that we must use SELFATTN-NEUROSEQRET to
compute gradient vectors for subsequent hash code gener-
ation (in lines 9-10). However, at the last stage for final
score computation and ranking, we can use any variant
of NEUROSEQRET (in line 13), preferably CROSSATTN-
NEUROSEQRET, since the corpus sequences have already
been indexed by our LSH method.

5 Experiments

In this section, we provide a comprehensive evalu-
ation of NEUROSEQRET and our hashing method.
Appendix D (Gupta et al. 2021b) contains additional exper-
iments. Our implementation and datasets are available at
https://github.com/data-iitd/neuroseqgret/.

5.1 Experimental Setup

Datasets. We evaluate the retrieval performance of NEU-
ROSEQRET and other methods across large-scale real-world
datasets with up to 60 million events. The statistics of all
datasets are given in Appendix (Gupta et al. 2021b). Across
all datasets, |H,| = 5K and |H.| = 200K.

(1) Audio: The dataset contains audio files for spoken
commands to a smart-light system and the demographics(age,
nationality) of the speaker. Here, a query corpus sequence
pair is relevant if they are from an audio file with a common
speaker.

(2) Sports: The dataset contains actions (e.g.run, pass,
shoot) taken while playing different sports. We consider the
time of action and action class as time and mark of sequence
respectively. Here, a query corpus sequence pair is relevant if
they are from a common sport.

(3) Celebrity: In this dataset, we consider the series of
frames extracted from youtube videos of multiple celebrities
as event sequences where event-time denotes the video-time
and the mark is decided upon the coordinates of the frame
where the celebrity is located. Here, a query corpus sequence
pair is relevant if they are from a video file having a common
celebrity.

(4) Electricity: This dataset contains the power-
consumption records of different devices across smart-homes
in the UK. We consider the records for each device as a
sequence with event mark as the normalized change in the
power consumed by the device and the time of recording as
event time. Here, a query corpus sequence pair is relevant if
they are from a similar appliance.

(5) Health: The dataset contains ECG records for patients
suffering from heart-related problems. Since the length of
the ECG record for a single patient can be up to 10 million,
we generate smaller individual sequences of length 10,000
and consider each such sequence as an independent sequence.
The marks and times of events in a sequence are determined
using a similar procedure as in Electricity. A query corpus
sequence pair is relevant if they are from a common patient.

For Health, Celebrity and Electricity, we lack the true
ground-truth labeling of relevance between sequences. There-
fore, we adopt a heuristic in which, given a dataset D, from
each sequence seq, € D with ¢ € [|D[], we first sam-
ple a set of sub-sequences U, = {H C seq, } with U] ~
Unif [200, 300]. For each such collection {4, we draw exactly
one query H, uniformly at random from Uy, i.e., Hq ~ U,.
Then, we define C = Ugeqp) Uy \Hg> Cqr = U\ H4 and
qu = Uczgq (UC\HC)

Baselines. We consider three continuous time-series retrieval
models: (i) MASS (Mueen et al. 2017), (ii)) UDTW (Rak-
thanmanon et al. 2012) and (iii) Sharp (Blondel et al. 2021);
and, three MTPP models (iv) RMTPP (Du et al. 2016), (v)
SAHP (Zhang et al. 2020), and (vi) THP (Zuo et al. 2020).
For sequence retrieval with MTPP models, we first train them
across all the sequences using maximum likelihood estima-
tion. Then, given a test query H,/, this MTPP method ranks
the corpus sequences {#,.} in decreasing order of their cosine
similarity CosSim(emb(?), emb(®)), where emb(®) is the
corresponding sequence embedding provided by the underly-
ing MTPP model. In addition, we build supervised ranking
models over these approaches, viz.,, Rank-RMTPP, Rank-
SAHP and Rank-THP corresponding to RMTPP, SAHP, and
THP. Specifically, Rank-MTPP formulates a ranking loss on
the query-corpus pairs based on the cosine similarity scores
along with the likelihood function to get the final training
objective. Therefore, the vanilla MTPP models are used as
unsupervised models and the corresponding Rank-MTPP
models work as supervised models. Appendix C (Gupta et al.
2021b) contains the implementation details.

Evaluation protocol. We partition the set of queries Q into
50% training, 10% validation and rest as test sets. First, we
train a retrieval model using the set of training queries. Then,
for each test query ¢’, we use the trained model to obtain a
top- K ranked list from the corpus sequences. Next, we com-
pute the average precision (AP) and discounted cumulative
gain (DCG) of each top-K list, based on the ground truth.
Finally, we compute the mean average precision (MAP) and
NDCG@ K, by averaging AP and DCG values across all test
queries. We set K = 10.

5.2 Results on retrieval accuracy

Comparison with baselines. First, we compare our model
against the baselines in terms of MAP and NDCG.
Table 1 summarizes the results, which shows that
(i) both CROSSATTN-NEUROSEQRET and SELFATTN-
NEUROSEQRET outperform all the baselines by a substan-
tial margin; (i) CROSSATTN-NEUROSEQRET outperforms
SELFATTN-NEUROSEQRET, since the former has a higher
expressive power; (iii) the variants of baseline MTPP mod-
els trained for sequence retrieval, i.e., Rank-RMTPP, Rank-
SAHP, and Rank-THP outperform the vanilla MTPP models;
(iv) the performances of vanilla MTPPs and the time series
retrieval models (MASS, UDTW and Sharp) are comparable.

Ablation study. Next, we compare the retrieval performance
across four model variants: (i) our model with only model-
independent score i.e., s, U, (Hq, He) = —Da(Hg, He) —

Mean Average Precision (MAP) in % NDCG@10 in %
Audio Celebrity Electricity Health Sports Audio Celebrity Electricity Health Sports
MASS (Mueen et al. 2017) SIIE00 58200 193%00 26400 547+00 | 207£00 387200 9.F00 13.6400 223%0.0
UDTW (Rakthanmanon etal. 2012) | 507400 58.7+0.0 20300 28.1+0.0 545200 | 21.3+00 39.6£0.0 97+0.0 147400 22.9+0.0
Sharp (Blondel et al. 2021) 524402 598405 228402 28602 [56.8+03]| 219402 40.6+05 117£0.01 168+0.1 237402
RMTPP (Du et al. 2016) 489423 57.6+1.8 187408 248412 503%25 | 20.01+19 394421 83408 123+£05 19.1+18
Rank-RMTPP 526420 60317 234407 293+0.6 558421 | 224+13 412413 114404 155405 239+14
SAHP (Zhang et al. 2020) 494432 572429 190+18 260+2.1 539436 | 204423 390430 87412 132+14 226425
Rank-SAHP 529418 618423 26.5+12 316+l 551423 | 233+14 420417 133£07 175409 254+18
THP (Zuo et al. 2020) 518423 603£19 213209 279409 542421 | 22.1£L1 403+12 104406 144403 229411
Rank-THP [543x17] [63.1%2.1] [294209] [33.6£13] 56.3x19 |[254209] [44.2+10] [153£04] [19.7+04] [265£0.9]
SELFATTN-NEUROSEQRET S58E18 GA4ELD 30.7E07 359E00 57.6E19 | 259E11 458E10 165105 204+04 27.8%L1
CROSSATTN-NEUROSEQRET 5624211 65.1+197 324+081 3741097 587421 | 2831117 46.9+121 1814077 22.0+047 27.9+12

Table 1: Retrieval accuracy in terms of mean average precision (MAP) and NDCG@ 10 (both in %) of all the methods across five
datasets on the test set. Numbers with bold font (underline) indicate best (second best) performer. Boxed numbers indicate best
performing state-of-the-art baseline. Results marked T are statistically significant (two-sided Fisher’s test with p < 0.05) over the
best performing state-of-the-art baseline (Rank-THP or Sharp). The standard deviation for MASS and UDTW are zero, since

they are deterministic retrieval algorithms.

Variant Audio Celebrity Health

O Spy.U, (Has He) = —Da(Hy, He) — Ae(Up(Hy), He) | 36.1£0.0 437200 18.9£0.0
(ii) Spg,v, (Has He) = Fipy (Hg, He) 539419 625+1.3 33.6+0.7
(ifi) $pp,v, (Ha, He) = Fipg (Ha, He) — 7A (Hq, He) 54.6+19 63.1+14 337407
(iV) Spg,U, (Ha, He) = ripy (Mg He) — YAL(Us(Hq), He) | 557420 63.7+1.8 359408
(v) CROSSATTN-NEUROSEQRET Without Us (+) 552422 629420 34.3+09
(vi) CROSSATTN-NEUROSEQRET 56.2+2.1 65.1+1.9 37.4409

Table 2: Ablation study.
T 2.4

<18
S12
| 0.6

* 0.0

T 2.4

—\' 1.8
512
X
= 0.0

0 5 10 15 0 5 10 15
 (index of e;) — % (index of e;) —
(@) Hq, He (b) Uy (Hq), He

Figure 1: Effect of unwarping on a relevant query-corpus pair
in Audio. Uy (+) learns to transform #,, in order to capture a
high value of its latent similarity with ..

A(Up(Hyg), He); (ii) our model with only model-dependent
score, ie., Sp,u,(Hq He) Kpe (Hq, Hc); (i) our
model without any model independent time similarity i.e.,
Spo,Us (Mg, He) = kipy(Hg, He) — 7D (Mg, He); (iv) our
model without any model independent mark similarity
i.e., 5py.u, (Hq, He) = fipy(Hg, He) — 7AL(Us(Hq), He);
(v) our model without unwarping function Uy(-); and
(vi) the complete design of our model. In all cases, we used
CROSSATTN-NEUROSEQRET.

Table 2 shows that the complete design of our model (vari-
ant (vi)) achieves the best performance. We further note that
removing xp, from the score (variant (i)) leads to signifi-
cantly poor performance. Interestingly, our model without
any mark based similarity (variant (iv)) leads to better perfor-
mance than the model without time similarity (variant (iii))—
this could be attributed to the larger variance in query-corpus
time distribution than the distribution of marks. Finally, we
observe that the performance deteriorates if we do not use an
unwarping function Uy(+) (variant (v)). Figure 1 illustrates
the effect of U, (+). It shows that Uy (-) is able to learn suitable
transformation of the query sequence, which encapsulates
the high value of latent similarity with the corpus sequence.

5.3 Results on retrieval efficiency

We compare our efficient sequence retrieval method given
in Algorithm 1 against random hyperplane (RH) method
(Appendix B in (Gupta et al. 2021b)) and three variants of our
proposed training problem in Eq. (11). (i) Our(7s, n3) which

e Our (1, M3)
— Our(n1,n2)

== RH
e Our(n2,13)

% Exhaustive
s Our (71, 72, 73)

—~48 -
X2 “ng
2 215
@30 912
9] &)
\ 3 U 24 O
Audio E Celebrity E Health
50 25 50 75 (%) 8525 80 7 (%) 59 35 50 75 (%)

Reduction Factor— Reduction Factor—

Reduction Factor—

Figure 2: Tradeoff between NDCG@ 10 vs. Reduction factor,
i.e., % reduction in number of comparisons between query-
corpus pairs w.r.t. the exhaustive comparisons for different
hashing methods. The point marked as x indicates the case
with exhaustive comparisons on the set of corpus sequences.

sets 71 = 0 and thus does not enforce even distribution of 1
in ¢¢; (ii) Our(n1, n3) which sets 17, = 0 and thus tanh does
not accurately approximate sign; (iii) Our(ny, 772) which sets
13 = 0 and thus does not enforce ¢ to be compact and free
of redundancy. Our(7, 12, 13) is the complete design which
includes all trainable components. Figure 2 summarizes the
results.

Comparison with random hyperplane. Figure 2 shows that
our method (Our(7)1, 72, 73)) demonstrates better Pareto effi-
ciency than RH. This is because RH generates hash code in a
data oblivious manner whereas our method learns the hash
code on top of the trained embeddings.

Ablation study on different components of Eq. (11). Fig-
ure 2 summarizes the results, which shows that (i) the first
three variants are outperformed by Our (7,72, 73); (i) the
first term having 777 # 0, which enforces an even distribution
of +1, is the most crucial component for the loss function—
as the removal of this term causes significant deterioration of
the performance.

6 Conclusions

In this paper, we proposed a novel supervised continuous
time event sequence retrieval system called NEUROSEQRET
using neural MTPP models. To achieve efficient retrieval over
very large corpus of sequences, we also propose a trainable
hash-coding of corpus sequences which can be used to narrow
down the number of sequences to be considered for similarity
score computation. Our experiments with real world datasets
from a diverse range of domains show that both our retrieval
model and hashing methods are more effective than several
baselines.

References

Abanda, A.; Mori, U.; and Lozano, J. A. 2019. A review on
distance based time series classification. In DMKD.

Alaee, S.; Kamgar, K.; and Keogh, E. 2020. Matrix Profile
XXII: Exact Discovery of Time Series Motifs under DTW.
In ICDM.

Blondel, M.; Mensch, A.; and Vert, J.-P. 2021. Differentiable
Divergences Between Time Series. In AISTATS.

Cai, X.; Xu, T.; Yi, J.; Huang, J.; and Rajasekaran, S. 2019.
DTWNet: a dynamic time warping network. In NeurIPS.
Charikar, M. S. 2002. Similarity estimation techniques from
rounding algorithms. In STOC.

Cuturi, M.; and Blondel, M. 2017. Soft-dtw: a differentiable
loss function for time-series. In ICML.

Daley, D. J.; and Vere-Jones, D. 2007. An introduction to
the theory of point processes: volume II: general theory and
structure. Springer Science & Business Media.

De, A.; Bhattacharya, S.; and Ganguly, N. 2018. Demarcating
endogenous and exogenous opinion diffusion process on
social networks. In Proceedings of the 2018 World Wide Web
Conference, 549-558.

De, A.; Valera, I.; Ganguly, N.; Bhattacharya, S.; and Gomez-
Rodriguez, M. 2016. Learning and Forecasting Opinion
Dynamics in Social Networks. In NeurlPS.

Du, N.; Dai, H.; Trivedi, R.; Upadhyay, U.; Gomez-
Rodriguez, M.; and Song, L. 2016. Recurrent marked tem-
poral point processes: Embedding event history to vector. In
KDD.

Du, N.; Farajtabar, M.; Ahmed, A.; Smola, A. J.; and Song,
L. 2015. Dirichlet-hawkes processes with applications to
clustering continuous-time document streams. In KDD.
Farajtabar, M.; Yang, J.; Ye, X.; Xu, H.; Trivedi, R.; Khalil,
E.; Li, S.; Song, L.; and Zha, H. 2017. Fake news mitigation
via point process based intervention. In ICML.

Gervini, D.; and Gasser, T. 2004. Self-modelling warping
functions. Journal of the Royal Statistical Society: Series B
(Statistical Methodology), 66(4): 959-971.

Gionis, A.; Indyk, P.; and Motwani, R. 1999. Similarity
Search in High Dimensions via Hashing. In VLDB.

Gogolou, A.; Tsandilas, T.; Echihabi, K.; Bezerianos, A.; and
Palpanas, T. 2020. Data series progressive similarity search
with probabilistic quality guarantees. In SIGMOD.

Guo, R.; Li, J.; and Liu, H. 2018. INITIATOR: Noise-
contrastive Estimation for Marked Temporal Point Process.
In IJCAL

Gupta, V.; and Bedathur, S. 2021. Region Invariant Normal-
izing Flows for Mobility Transfer. In CIKM.

Gupta, V.; Bedathur, S.; Bhattacharya, S.; and De, A. 2021a.
Learning Temporal Point Processes with Intermittent Obser-
vations. In International Conference on Artificial Intelligence
and Statistics, 3790-3798. PMLR.

Gupta, V.; Bedathur, S.; and De, A. 2021b. Supplemen-
tary Material for Learning Temporal Point Processes for
Efficient Retrieval of Continuous Time Event Sequences.
https://github.com/data-iitd/neuroseqret/.

Jaakkola, T. S.; Haussler, D.; et al. 1999. Exploiting genera-
tive models in discriminative classifiers. Advances in neural
information processing systems, 487-493.

Jing, H.; and Smola, A. J. 2017. Neural survival recom-
mender. In WSDM.

Joachims, T. 2002. Optimizing Search Engines Using Click-
through Data. 133-142. ACM.

Kang, W.-C.; and McAuley, J. 2018. Self-Attentive Sequen-
tial Recommendation. In /CDM.

Kumar, S.; Zhang, X.; and Leskovec, J. 2019. Predicting dy-
namic embedding trajectory in temporal interaction networks.
In KDD.

Li, J.; Wang, Y.; and McAuley, J. 2020. Time Interval Aware
Self-Attention for Sequential Recommendation. In WSDM.

Likhyani, A.; Gupta, V.; Srijith, P.; Deepak, P.; and Bedathur,
S. 2020. Modeling Implicit Communities from Geo-tagged
Event Traces using Spatio-Temporal Point Processes. In
WISE.

Liu, W.; Mu, C.; Kumar, S.; and Chang, S.-F. 2014. Discrete
graph hashing.
Mei, H.; and Eisner, J. M. 2017. The neural hawkes process:

A neurally self-modulating multivariate point process. In
NeurIPS.

Mei, H.; Qin, G.; and Eisner, J. 2019. Imputing Missing
Events in Continuous-Time Event Streams. In /ICML.

Mueen, A.; and Keogh, E. 2016. Extracting optimal perfor-
mance from dynamic time warping. In KDD.

Mueen, A.; Zhu, Y.; Yeh, M.; Kamgar, K.; Viswanathan, K.;
Gupta, C.; and Keogh, E. 2017. The Fastest Similarity Search
Algorithm for Time Series Subsequences under Euclidean
Distance. Http://www.cs.unm.edu/ mueen/FastestSimilarity-
Search.html.

Miiller, M. 2007. Dynamic time warping. Information re-
trieval for music and motion, 69-84.

Paparrizos, J.; and Gravano, L. 2015. k-shape: Efficient and
accurate clustering of time series. In SIGMOD.

Qin, Z.; Bai, Y.; and Sun, Y. 2020. GHashing: Semantic
Graph Hashing for Approximate Similarity Search in Graph
Databases. In KDD.

Rakthanmanon, T.; Campana, B.; Mueen, A.; Batista, G.;
Westover, B.; Zhu, Q.; Zakaria, J.; and Keogh, E. 2012.
Searching and Mining Trillions of Time Series Subsequences
under Dynamic Time Warping. In KDD.

Rizoiu, M.-A.; Xie, L.; Sanner, S.; Cebrian, M.; Yu, H.; and
Van Hentenryck, P. 2017. Expecting to be hip: Hawkes
intensity processes for social media popularity. In WWW.

Roy, L.; De, A.; and Chakrabarti, S. 2020. Adversarial Per-
mutation Guided Node Representations for Link Prediction.
arXiv preprint arXiv:2012.08974.

Saha, A.; Samanta, B.; Ganguly, N.; and De, A. 2018. Crpp:
Competing recurrent point process for modeling visibility dy-
namics in information diffusion. In Proceedings of the 27th
ACM International Conference on Information and Knowl-
edge Management, 537-546.

Salakhutdinov, R.; and Hinton, G. 2009. Semantic hashing.
In International Journal of Approximate Reasoning.
Samanta, B.; De, A.; Chakraborty, A.; and Ganguly, N. 2017.
LMPP: a large margin point process combining reinforce-
ment and competition for modeling hashtag popularity. In
1JCAL

Sewell, M. 2011. The fisher kernel: a brief review. RN,
11(06): 06.

Shchur, O.; Bilo§, M.; and Giinnemann, S. 2020. Intensity-
Free Learning of Temporal Point Processes. In ICLR.
Shelton, C. R.; Qin, Z.; and Shetty, C. 2018. Hawkes Process
Inference with Missing Data. In AAAI

Shen, Y.; Chen, Y.; Keogh, E.; and Jin, H. 2018. Accelerating
time series searching with large uniform scaling. In SDM.
Su, H.; Liu, S.; Zheng, B.; Zhou, X.; and Zheng, K. 2020.
A survey of trajectory distance measures and performance
evaluation. VLDB Journal.

Tabibian, B.; Upadhyay, U.; De, A.; Zarezade, A.; Scholkopf,
B.; and Gomez-Rodriguez, M. 2019. Enhancing human learn-
ing via spaced repetition optimization. PNAS.

Valera, I.; Gomez-Rodriguez, M.; and Gummadi, K. 2014.
Modeling Diffusion of Competing Products and Conventions
in Social Media. arXiv preprint arXiv:1406.0516.

Vaswani, A.; Shazeer, N.; Parmar, N.; Uszkoreit, J.; Jones, L.;
Gomez, A. N.; Kaiser, L.; and Polosukhin, I. 2017. Attention
is All You Need. In NeurlPS.

Wang, P;; Fu, Y.; Liu, G.; Hu, W.; and Aggarwal, C. 2017.
Human Mobility Synchronization and Trip Purpose Detection
with Mixture of Hawkes Processes. In KDD.

Wehenkel, A.; and Louppe, G. 2019. Unconstrained mono-
tonic neural networks. In NeurIPS.

Xiao, S.; Farajtabar, M.; Ye, X.; Yan, J.; Song, L.; and Zha,
H. 2017. Wasserstein Learning of Deep Generative Point
Process Models. In NeurIPS.

Xu, H.; Carin, L.; and Zha, H. 2018. Learning registered
point processes from idiosyncratic observations. In ICML.
Yoon, J.; Jarrett, D.; and van der Schaar, M. 2019. Time-
series generative adversarial networks. In NeurlPS.

Zamani Dadaneh, S.; Boluki, S.; Yin, M.; Zhou, M.; and Qian,
X. 2020. Pairwise Supervised Hashing with Bernoulli Varia-
tional Auto-Encoder and Self-Control Gradient Estimator. In
UAL

Zhang, D.; Wang, J.; Cai, D.; and Lu, J. 2010. Self-taught
hashing for fast similarity search. In SIGIR.

Zhang, P.; Iyer, R.; Tendulkar, A.; Aggarwal, G.; and De,
A.2021. Learning to Select Exogenous Events for Marked
Temporal Point Process. Advances in Neural Information
Processing Systems, 34.

Zhang, Q.; Lipani, A.; Kirnap, O.; and Yilmaz, E. 2020. Self-
attentive Hawkes processes. ICML.

Zuo, S.; Jiang, H.; Li, Z.; Zhao, T.; and Zha, H. 2020. Trans-
former Hawkes Process. In ICML.

Appendix
(Learning Temporal Point Processes for Efficient Retrieval
of Continuous Time Event Sequences)

A Background: Marked Temporal Point Processes

Marked Temporal point processes (MTPP) are probabilistic generative models for continuous-time event sequences. MTPP can
be represented as a probability distribution over sequences of variable lengths belonging to a time interval [0, T'|. Therefore,
they can be realized as an event sequence Sy, = {(t1,m1), - (tn,mn)}, where N is the number of events. Here, the times are
ever-increasing i.e. 0 < t; < --- <ty < T and m; € C is the corresponding mark with C as the set of all categorical marks. A
MTPP can be characterized by its conditional intensity function, A*(¢). The * denotes a dependence on the history. Given the
conditional intensity function, we can obtain the conditional probability density function (PDF) as:

Ay
p* (At,i) = A* (ti—l + Atﬂ') exp (— /)*(ti—l + T)d’f‘) (12)
0

where A ; denotes the inter-event time interval i.e., t; — ;1.

In recent years, neural enhancements to MTPP models have significantly enhanced the predictive power of these models.
Specifically, they combine the continuous-time approach from the point process with deep learning approaches and thus can
better capture complex relationships between events. The most popular approaches (Du et al. 2016; Mei and Eisner 2017;
Shchur et al. 2020; Zhang et al. 2020; Zuo et al. 2020) use different methods to model the time- and mark-distribution via
neural networks. Specifically, (Du et al. 2016) embeds the event history to a vector representation via a recurrent encoder that
updates its state after parsing each event in a sequence; (Mei and Eisner 2017) modified the LSTM architecture to employ a
continuous-time state evolution; (Shchur et al. 2020) replaced the intensity function with a mixture of Log-Normal flows for
closed-form sampling; (Zhang et al. 2020) utilized the transformer architecture(Vaswani et al. 2017) to capture the long-term
dependencies between events in the history embedding and (Zuo et al. 2020) used the transformer architecture for sequence
embedding but extended it to graph settings as well. However, these models were designed to capture the generative distribution
of future events in sequences, rather than the relevance between sequences. Thus, these models cannot be extended to the problem
of sequence retrieval.

B Hashing
B.1 Random hyperplane based hashing method

Since the relevance between the query and corpus sequence pairs (H4, 7.) is measured using the cosine similarity between
the gradient vectors, i.e., kp, (H,, Hc), one can use random hyperplane based locality sensitive hashing method for hashing
the underlying gradient vectors v, (H.) (Charikar 2002). Towards this goal, after training SELFATTN-NEUROSEQRET
we generate R unit random vectors w,. € R? from i.i.d. Normal distributions and then compute a binary hash code (¢ =
[sign(u] vy, (He)), - - -, sign(u vy, (H,))] for each ¢ € C. This leads to 27 possible hash buckets {B}, where each corpus
sequence is assigned to one hash bucket using the algorithm proposed by Gionis et al. (1999).

When we encounter an unseen test query H,, we compute the corresponding hash code {7, assign it to a bucket B and finally
return only those sequences H. which were assigned to this bucket B. Thus, for each query, the number of comparisons is reduced
from |C| to |B|, i.e., the number of corpus sequences in the bucket /3. Thus, if the corpus sequences are assigned uniformly across
the different buckets, then the expected number of comparisons becomes |C|/2%, which provides a significant improvement for
R > 2.

Limitations. In practice, binary hash codes are not trained from data and consequently, they are not optimized to be uniformly

distributed across different hash buckets. Consequently, the assignment of corpus sequences across different buckets may be
quite skewed, leading to inefficient sequence retrieval.

B.2 Details about our proposed hashing method

As suggested in (Gionis et al. 1999), we design multiple hash tables and assign a bucket to the hashcode of a sequence using only
a set of bits selected randomly. More specifically, let the number of hash-tables be M. Given a query sequence, we calculate

its hashcode using the procedure described in Algorithm 1, Cq/ = sign (Aw(vq/)). The hash code is a R dimension vector

with ¢ ¢ ¢ {—1,1} and from this vector, we consider L bits at random positions to determine the bucket to be assigned
to the sequence. Here, ¢ ¢ represent the numbers between {0, 2L — 1}, i.e., one of the 2% different buckets in a hash table.
Correspondingly, we assign ¢ 7 into a bucket. However, such a procedure is dependent on the specific set of bits —that were
selected randomly— used for deciding the bucket-ID. Therefore, we use M hash-tables and repeat the procedure of sampling L
bits and bucket assignment for each table. We follow a similar bucket assignment procedure for corpus sequences. As described
in Algorithm 1, for an incoming query sequence in the test set, we use the above bucket assignment procedure and compute the
relevance score for only the corpus sequences within the same buckets. For all our experiments we set I same as the hidden
dimension D, M = 10, and L = 12.

Dataset | Audio Celebrity Electricity Health Sports

[Cq+1/1C] 0.25 0.23 0.20 0.28 0.30
Total Events M 50M 60M 60M 430k
Marks 5 16 5 5 21

Table 3: Statistics of the search corpus for all datasets. |C,4|/|C| denotes the ratio of positive corpus sequences to the total
sequences sampled for training. The ratio is kept same for all queries.

C Additional details about the experimental setup
In this appendix, we elaborate on the details of dataset characteristics, evaluation metrics, and hardware configuration.

C.1 Dataset Statistics

We evaluate the retrieval performance of NEUROSEQRET and other methods across large-scale real-world datasets with up to 60
million events. The statistics of all datasets are given in Table 3. Across all datasets, |#,| = 5K and |H.| = 200K . We partition
the set of queries into 50% training, 10% validation, and the rest as test sets. During training, we negatively sample 100 corpus
sequences for each query.

(1) Audio: The dataset contains audio files for spoken commands to a smart-light system and the demographics(age,
nationality) of the speaker. Here, a query corpus sequence pair is relevant if they are from an audio file with a common speaker.

(2) Sports: The dataset contains actions (e.g.run, pass, shoot) taken while playing different sports. We consider the time of
action and action class as time and mark of sequence respectively. Here, a query corpus sequence pair is relevant if they are from
a common sport.

(3) Celebrity: In this dataset, we consider the series of frames extracted from youtube videos of multiple celebrities as event
sequences where event-time denotes the video-time and the mark is decided upon the coordinates of the frame where the celebrity
is located. Here, a query corpus sequence pair is relevant if they are from a video file having a common celebrity.

(4) Electricity: This dataset contains the power-consumption records of different devices across smart-homes in the UK. We
consider the records for each device as a sequence with event mark as the normalized change in the power consumed by the
device and the time of recording as event time. Here, a query corpus sequence pair is relevant if they are from a similar appliance.

(5) Health: The dataset contains ECG records for patients suffering from heart-related problems. Since the length of the ECG
record for a single patient can be up to 10 million, we generate smaller individual sequences of length 10,000 and consider
each such sequence as an independent sequence. The marks and times of events in a sequence are determined using a similar
procedure as in Electricity. Here, a query corpus sequence pair is relevant if they are from a common patient.

For Health, Celebrity and Electricity, we lack the true ground-truth labeling of relevance between sequences. Therefore,
we adopt a heuristic in which, given a dataset D, from each sequence seq, € D with ¢ € [|D|], we first sample a set of

sub-sequences U, = {’H C seqq} with || ~ Unif [200, 300]. For each such collection U/, we draw exactly one query H,
uniformly at random from Uy, i.e., Hq ~ Uy. Then, we define C = Uye(jp Uy \Hq: Cqt = Ug\Hq and Cq— = Uezg (Uc\He).

C.2 System Configuration

All our models were implemented using Pytorch v1.6.0 '. We conducted all our experiments on a server running Ubuntu 16.04,
CPU: Intel(R) Xeon(R) Gold 6248 2.50GHz, RAM: 377GB, and GPU: NVIDIA Tesla V100.

C.3 Hyperparameters setup

We set the hyper-parameters values of NEUROSEQRET as follows: (i) contribution of model-independent similarity score
in Eq. (6), v = 0.1; (ii) margin parameters for parameter estimation, 6 € {0.1,0.5, 1} and weight for constraint violations,
A € {0.1,0.5,1}; (iii) weight parameters for hashing objective (11) 71,712,713 € {0.1,0.2,0.25} and correspondingly 74 €
{0.25,0.4,0.7}.

Datasets
Parameters
Audio Celebrity Electricity Health Sports
~ 0.1 0.1 0.5 0.1 0.1
§ 0.5 0.5 0.1 0.1 0.5

{m,m2,ms} {04,03,03} {04,03,03} {04,03,03} {0.5,0.250.25} {0.5,0.25, 025}
Batch-size B 32 32 32 16 16
D 64 64 48 32 32

Table 4: Hyper-parameter values used for different datasets. The values are determined by fine-tuning the performance on the
validation set.

"https://pytorch.org/

T 0.8 vs Rank-SAHP T 0.8 vs Rank-SAHP T 0.8 vs Rank-SAHP T 0.8 vs Rank-SAHP T 0.6 vs Rank-SAHP

~ = vs Rank-THP | & = vs Rank-THP | & = vs Rank-THP | A& = vs RanlkeTHP | A& I = vs Rank-THP

< 04 < 04 < 04 < 04 <

E: L E: E g 02

= 0.0 = 00 = 00 = 0.0 = 0.0

& —0.4| Audio $—o0.4) Vox & _o.4| Electricity &—o0.4| Health g0z Sports
0 05 1 1.5 2x10° 0 05 1 15 2x10° 0 05 1 1.5 2x10° 0 05 1 1.5 2x10° 0 0.3 6 0.%10%
q’ (sorted by gain) — q’ (sorted by gain) — q’ (sorted by gain) — q’ (sorted by gain) — ¢’ (sorted by gain) —

Figure 3: Query-wise performance comparison between NEUROSEQRET and best baseline methods — Rank-THP, Rank-SAHP.
Queries are sorted by the decreasing gain in AP.

Moreover, the values of training specific parameter values are: (i) batch-size, B is selected from {16, 32}, i.e.for each batch
we select B query sequences and all corresponding corpus sequences; (ii) hidden-layer dimension for cross-attention model,
D € {32,48,64}; (iii) number of attention blocks N, = 2; (iv) number of attention heads IV}, = 1 and (v) UMNN network as
a 2 layer feed-forward network with dimension {128, 128}. We also add a dropout after each attention layer with probability
p = 0.2 and an [, regularizer with over the trainable parameters with the coefficient set to 0.001. All our parameters are learned
using the Adam optimizer. We summarize the details of hyperparameters across different datasets in Table 4.

C.4 Evaluation metrics

We evaluate NEUROSEQRET and the baselines using mean average precision (MAP), NDCG @k, and mean reciprocal rank
(MRR). We calculate these metrics as follows:

1
= > AP,, NDCG@k =
| q’| g €My

DCGy MRR 1 1

MAP = =
IDCGy’ [Hy |

—, (13)
qEH g e

where AP/, DCGy,, IDCGy, and - denote the average precision, discounted cumulative gain at top-k position, ideal discounted
cumulative gain (at top-k), and the topmost rank of a related corpus sequence respectively. For all our evaluations, we follow a
standard evaluation protocol (Kang and McAuley 2018; Li et al. 2020) for our model and all baselines wherein for each query
sequence in the test set, we rank all relevant corpus sequence and 1000 randomly sampled non-relevant sequences. All confidence
intervals and standard deviations are calculated after 5 independent runs. For all metrics - MAP, NDCG, and MRR, we report
results in terms of percentages with respect to maximum possible value i.e. 1.

C.5 Baseline Implementations

For all the baselines, we use the official python implementations released by the authors of MASS 2, UDTW 3, Sharp #, RMTPP >,
SAHP ©, and THP 7 and we thank them for making their codes public. For MASS and UDTW, we report the results using the
default parameter values. For Sharp, we tune the hyper-parameter ‘gamma’ (for more details see (Blondel et al. 2021)) based
on the validation set. In RMTPP, we set the BPTT length to 50, the RNN hidden layer size to 64, and the event embedding
size 16. These are the parameter values recommended by the authors. For SAHP and THP, we set the dimension to 128 and the
number of heads to 2. The values for all other transformer parameters are similar to the one we used for the attention-part in
NEUROSEQRET.

D Additional experiments with real data
D.1 Analysis of Retrieval Accuracy

In addition to results in Table 1, we evaluate the performance of NEUROSEQRET and all baselines through mean reciprocal
rank (MRR) and NDCG @20, given in Table 5 and Table 6 respectively. These results show that NEUROSEQRET outperforms
all other baseline models across different evaluation metrics. Moreover, in contrast to Table 1, we note that NEUROSEQRET
outperforms Rank-THP in both MRR and NDCG @20 metrics.

D.2 Analysis at a query level

Next, we compare the performance between NEUROSEQRET and other state-of-the-art methods, at a query level. Specif-
ically, for each query H, we compute the advantage of using NEUROSEQRET in terms of gain in average precision, i.e.,
AP(NEUROSEQRET) — AP(baseline) for two most competitive baselines — Rank-SAHP and Rank-THP. We summarize the
results in Figure 3, which show that for at least 70% of the queries, NEUROSEQRET outperforms or fares competitively with
these baselines, across all datasets.

2https://www.cs.unm.edu/~mueen/MASS.py
3https://github.com/klon/ucrdtw
*https://github.com/google-research/soft-dtw-divergences
Shttps://github.com/Networks-Learning/tf_rmtpp
Shttps://github.com/Qiang AIResearcher/sahp_repo
https://github.com/SimiaoZuo/Transformer-Hawkes-Process

Dataset Mean Reciprocal Rank (MRR)
Audio Celebrity Electricity Health Sports

MASS (Mueen et al. 2017) 57.3+0.0 63.7£0.0 17.6+£0.0 27.24+0.0 61.6+0.0
UDTW (Rakthanmanon et al. 2012) | 58.5+0.0 64.84+0.0 18.7+£0.0 29.2+0.0 61.24+0.0
Sharp (Blondel et al. 2021) 58.7+1.7 654+£2.6 19.840.6 30.4+0.7 61.1+£2.3
RMTPP (Du et al. 2016) 542439 64.5+4.6 158412 252+1.8 56.24+4.8
Rank-RMTPP 60.8+3.7 65.6£4.0 23.3+1.5 30.7£1.7 62.7+£3.9
SAHP (Zhang et al. 2020) 56.9+4.3 64.2+4.8 172413 26.74£2.1 59.4449
Rank-SAHP 60.3+2.5 66.1£29 259+1.2 32.6+14 62.1+£2.9
THP (Zuo et al. 2020) 58.6+2.6 65.0+29 20.1+1.1 28.2+1.3 60.9+3.3
Rank-THP 62.24+2.8 689+3.0 314+14 362417 634129
SELFATTN-NEUROSEQRET 63.6+2.7 69.3+3.1 334+1.6 379417 64.3+£3.1
CROSSATTN-NEUROSEQRET 64.5+2.9 70.1+3.3 35.2+1.7 40.3+1.9 66.7+3.1

Table 5: Retrieval quality in terms of mean reciprocal rank(MRR in %) of all the methods across five datasets on the test set.
Numbers with bold font (underline) indicate best (second best) performer. Boxed numbers indicate best performing state-of-the-art
baseline.

Dataset NDCG@20
Audio Celebrity Electricity Health Sports

MASS (Mueen et al. 2017) 17.5+0.0 31.4+0.0 8.1+0.0 13.5+0.0 16.34+0.0
UDTW (Rakthanmanon et al. 2012) | 17.940.0 32.54+0.0 8.8+0.0 14.4+£0.0 16.040.0
Sharp (Blondel et al. 2021) 18.2+0.5 33.64+0.7 11.9+£0.3 159404 17.2+0.7
RMTPP (Du et al. 2016) 16.0£1.1 32.2+1.6 7.1+0.5 12.1£0.7 17.1£1.1
Rank-RMTPP 20.2+1.0 334+14 10.5+£0.5 154406 21.8+1.2
SAHP (Zhang et al. 2020) 19.8+1.4 31.7£2.1 7.84+0.5 13.1£0.9 19.2+1.5
Rank-SAHP 21.5+09 34.1£1.0 12.3+04 17.44+06 22.9+1.0
THP (Zuo et al. 2020) 19.7£0.8 32.941.0 9.5+0.4 14.4+£0.5 20.840.9
Rank-THP 21.8+0.9 37.74£12 144+0.6 19.34+0.6 23.3+£1.1
SELFATTN-NEUROSEQRET 229+1.3 403%1.5 16.3+0.7 20.94+1.0 23.841.6
CROSSATTN-NEUROSEQRET 24.2+1.5 42.0+1.8 17.6+0.8 223+1.0 25.7+1.7

Table 6: Retrieval quality in terms of NDCG@20 (in %) of all the methods across five datasets on the test set. Numbers with bold
font (underline) indicate best (second best) performer. Boxed numbers indicate best performing state-of-the-art baseline.

Variant Electricity Sports

() spg,Uy (He, He) = —Du(Hg, He) — Ae(Up(Hq), He) 18.94+0.0 41.3£0.0
(1) 8py,Uy (Has He) = ipy (Hq, He) 30.6£0.9 56.3+2.1
(i) 8pg, v, (Hq, He) = Kpg(Hq, He) — 7Az(Hg, He) 30.8£0.8 55.6+2.0
(V) 8py,uy (Has He) = Kpy (Ha, He) — YA (Up(Hq), He) | 313208 58.1£2.0
(v) CROSSATTN-NEUROSEQRET Without Uy (-) 297413 562423
(vi) CROSSATTN-NEUROSEQRET 32.4+0.8 58.7£2.1

Table 7: Ablation study of CROSSATTN-NEUROSEQRET and its variants in terms of MAP (in %).

[RunTime [Audio | Celebrity | Electricity | Health | Sports |
[NEUROSEQRET || <3hr | <5hr [<6hr [<6hr [<2hr |

Table 8: Training-times of NEUROSEQRET for all datasets.
D.3 Ablation Study

We also perform an ablation study for Electricity and Sports datasets in Table 7, which reveal similar insights as in Table 2,

D.4 Comparison with Random Hyperplane

We also perform an ablation study of our efficient retrieval method along with its comparison against RH for Electricity and
Sports datasets. The results in Figure. 4, reveal similar insights as in Figure 2.

D.5 Runtime Analysis

Next, we calculate the run-time performance of NEUROSEQRET. With this experiment, our goal is to determine if the training
times of NEUROSEQRET are suitable for designing solutions for real-world problems. From the results in Table 8, we note that
even for datasets with up to 60 million events, the training times are well within the feasible range for practical deployment.

% Exhaustive = = RH s Our (11, M3)
— Our(7y,m2,M3) = Our(nz,n3) =——Our(n,mn2)

[~3(
S
15
S14 S0
g 12 @
&)
Q 10 Q
% Electricity E 5| Sports
0 25 50 75 (%) 0 25 50 75 (%)
Reduction Factor— Reduction Factor—

Figure 4: Tradeoff between NDCG @ 10 vs. Reduction factor, i.e., % reduction in number of comparisons between query-corpus
pairs w.r.t. the exhaustive comparisons for different hashing methods. The point marked as * indicates the case with exhaustive
comparisons on the set of corpus sequences.

[H,] = (10, 20) Audio Celebrity Health Electricity Sports
Rank-THP 18.97 22.06 9.48 12.27 26.58
CROSSATTN-NEUROSEQRET | 21.30 25.77 15.83 10.79 27.63
Table 9: Retrieval quality in terms of mean average precision (MAP) for query sequence lengths sampled between 10 and 50.
[H,] = (50, 100) Audio Celebrity Health Electricity Sports
Rank-THP 27.94 37.85 17.58 21.61 31.26
CROSSATTN-NEUROSEQRET | 28.58 41.92 19.67 23.54 36.92

Table 10: Retrieval quality in terms of mean average precision (MAP) for query sequence lengths sampled between 50 and 100.
D.6 Query Length

We perform an additional experiment of sequence retrieval with varying query lengths. Specifically, we sample queries of lengths
|Hq| ~ Unif(10,50) and [H,| ~ Unif(50,100) and report the sequence retrieval results in Table 9 and Table 10 respectively.
The results show that the performance of all models deteriorates significantly as we reduce the length of query sequences. They
also show that even with smaller query lengths, CROSSATTN-NEUROSEQRET significantly outperforms the other state-of-the-art
baseline Rank-THP.

D.7 Qualitative Analysis

To get deeper insights into the working of our model, we perform a qualitative analysis between a query sequence from the
dataset and the sequence retrieved by NEUROSEQRET. More specifically, we aim to understand the similar patterns between
query and corpus sequences that NEUROSEQRET searches for in the corpus and plot the query sequence and the corresponding
top-ranked relevant corpus sequence retrieved by NEUROSEQRET. The results across all datasets in Figure 5 show that the
inter-arrival times of the CTES retrieved by NEUROSEQRET closely matches with the query inter-arrival times.

401= NeuroSeqRet o4l™ NeufoSeqRet
720 "732 - Query .—'(18 - Qudty
« < 9y S
|10 |16 |12
0
5 10 15 10 15 0 5 10 15 0 5 10 15
¢ (index of e;) — % (index of e;) — ¢ (index of e;) — ¢ (index of e;) —
(a) Audio dataset
60
16{— NeuroSegRet 40{= NeuroJeqRet = NguroSeqRet
Ti2 = Query
oy
| 8
< g
0 0
0 15 30 45 0 15 30 45 0 15 30 45 0 15 30 45
¢ (index of e;) — ¢ (index of e;) — % (index of e;) — ¢ (index of e;) —
(b) Celebrity dataset
= |NpuroSeqRet 251= NeuroS¢qRet 257 Neuro et
720 I 201= Query
<15 15
! 10 I 10
0 0
0 15 30 45 0 15 30 45 0 15 30 45 0 15 30 45
i (index of e;) — % (index of e;) — ¢ (index of e;) — ¢ (index of e;) —
(c) Electricity dataset
50 60
507= NeuroSeqRet = NpuroSeqRet - uroSeqRet 60
~40{- Q ~40 45 -
1 ugry [20 N ery T ry 145
+ 30 > -0330 hd 30
| 20 I 20 | [
<10 <10 $15 <15
0 0 0 0
0 15 30 45 0 15 30 45 0 15 30 45 0 15 30 45
% (index of e;) — % (index of e;) — ¢ (index of e;) — ¢ (index of e;) —
(d) Health dataset
121~ [NefroSeqRet = NpuroSeqRet NeurpSeqRet 107 NeuroSeqRet
I ol” ry ‘I 81= Query
« + 6
|6 |4
0 0
5 10 10 15 0 5 10 15 0 5 10 15

¢ (index of e;) — ¢ (index of e;) —

(e) Sports dataset

Figure 5: Qualitative examples of inter-event times of events in a query sequence and the top-search results by NEUROSEQRET

for all datasets.

% (index of e;) —

% (index of e;) —

