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Performance Analysis and Scheduling of Stochastic
Fork-Join Jobs in a Multicomputer System

Anurag Kumar, Senior Member, IEEE, and Rajeev Shorey

Abstract— We model a parallel processing system comprising
several homogeneous computers interconnected by a communica-
tion network. Jobs arriving to this system have a linear fork-join
structure. Each fork of the job gives rise to a random number
of tasks that can be processed independently on any of the
computers. Since exact analysis of fork-join models is known to
be intractable, we resort to obtaining analytical bounds to the
mean job response time of the fork-join job. For jobs with a
single fork-join and, probabilistic allocation of tasks of the job
to the N processors, we obtain upper and lower bounds to the
mean job response time. Upper bounds are obtained using the
concept of associated random variables and are found to be a
good approximation to the mean job response time. A simple
lower bound is obtained by neglecting queuneing delays. We also
find two lower bounds that include queueing delays. For multiple
fork-join jobs, we study an approximation based on associated
random variables. Finally, two versions of the Join-the-Shortest-
Queue (JSQ) allocation policy (i.e., JSQ by batch and JSQ by
task) are studied and compared, via simulations and diffusion
limits.

Index Terms—Fork-join parallelism, lower/upper bounds, per-
formance evaluation, queueing models, stochastic scheduling, task
allocation policies.

I. INTRODUCTION

HE areas of parallel processing and distributed computing

systems have been the focus of a tremendous amount of
research in the last decade. The technological limitations on
the speed of uniprocessor computer systems have led to the
emergence of multiprocessor systems that consist of several,
loosely or tightly, interconnected processors. The jobs to be
processed are in some way apportioned among the processors,
and various techniques are used to coordinate the processing
of the various pieces of the jobs.

With the advent of multiprocessors and programming lan-
guages that support parallel programming, there is an in-
creasing interest in the performance analysis of parallel pro-
grams. In this paper, we study the performance of a particular
type of parallel program, a stochastic fork-join job, on a
multiprocessor system consisting of homogeneous processors
interconnected by a communication network.

A stream of jobs having a linear fork-join structure arrives
to the various nodes of the computing system. Each such job
consists of a series of forks and joins, such as those that might
be created by “parbegin” and “parend” constructs in paralle]
programming languages. Each fork gives rise to a random
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Fig. 1. A job with multiple fork-joins.

number of tasks that can be processed independently on any
of the computers.The job terminates after a random number
of fork-joins (Fig. 1). Our objective is to study the response
times of such jobs in a multicomputer system.

In such a system jobs may arrive to a central host computer
which allocates tasks to other computers, and is responsible
for delivering the final results to the users. This would yield
the model in Fig. 2.

Alternatively, users may submit jobs to any of the comput-
ers; the computer at which a job “originates” is responsible
for allocating tasks to computers (including itself), and for
delivering results to the users. This would yield the model in
Fig. 3. In this paper we do not model communication delays,
the overheads involved in task allocation, and assembly of
results. Under this assumption, it is clear that the two job
arrival and task allocation scenarios are equivalent. Further,
if we assume that in the model of Fig. 3 the job arrival
processes are independent Poisson processes, then the model
is equivalent to that in Fig. 2 with Poisson job arrivals and
A= Efv—_»l Ai-

With these assumptions, we obtain the model shown in Fig.
2. This is the fork-join queueing model that has two variations
from the version studied in the literature; namely:
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Fig. 2.

Multicomputer model: all jobs arrive to a central scheduler.
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Fig. 3. Multicomputer model: each processor has its own job arrival stream.

1) The number of tasks in each fork is random.
2) There is an allocation policy for tasks created by a fork.
3) A job completes after a random number of forks.

Observe that, except in certain special cases (e.g., Poisson
batch size, probabilistic task allocation, and a single fork per
job), this model is not equivalent to the fork-join model studied
in the literature.

Fork-join queueing models similar to that described above
have been studied in the literature in the context of Manufac-
turing Systems and Parallel Processing Systems [6]. The main
difference between the fork-join model we have described and
the “standard” one studied in the literature is that in the latter
model the task structure of the arriving jobs is deterministic
(i.e., the number of tasks in a fork is a constant) and the
tasks map exactly on to the processing elements, one task to
each element. For example, in the most commonly studied
model, each job brings N tasks, there are N processors, and
one arriving task is scheduled on each processor. It is clear
that such a model is appropriate for a manufacturing system,
or a dedicated computing system, that repeatedly processes
different instances of the same job, but is entirely inappropriate
for a general purpose parallel processing system.

Even in these simpler models, the synchronizations induced
by the forks and joins destroy all nice properties like insen-
sitivity or product form [33], so that the analysis becomes
computationally hard. Exact analysis is only possible for
very simple system models and computation graphs. Exact
solutions have been provided when there are two processors
(f10], [2]). Approximate solutions and bounds have been
provided for arbitrary values of processors (N) ([5], [20)).
Baccelli [5] has considered a fork-join queue consisting of
N > 2 heterogeneous servers, with general arrival and service
processes. An upper bound is obtained by considering N
mutually independent GI/GI/1 parallel queueing systems,
and a lower bound is obtained by considering N D/GI/1
parallel queueing systems.
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Conditions for stability have been presented for arbitrary
values of N ([3], [26]). Finally, models have been developed
for programs exhibiting parallel fork-join structures that are
executed on multiple processors serving a single queue ([19],
[14], [30]). Note that Nelson ([19]) considers a job structure
that is not deterministic; i.e., the number of tasks in a job
is a random variable. However, the model analysed is that
of a centralized parallel processing system (and, hence does
not yield a fork-join queue) where the N servers are all fed
by a single queue, whereas what we model and analyze is a
distributed parallel processing system with a queue associated
with each of the NV servers.

In our model where jobs have a fork-join structure, since
the number of arriving tasks is possibly different from the
number of processors, a task allocation policy needs to be
specified. When a job (or, equivalently a task batch) arrives,
the policy allocates a subbatch of tasks to each processor.
What makes our model more complex to analyze than those
studied previously ([20], [5]) is the fact that the subbatches
are dependent. The dependency between the components of
a batch causes the subbatch service times to be dependent. It
is worth noting that if we consider Poisson batch size, and
if we multinomially partition the arriving batch over the N
processors, then the subbatches are independent. However, in
general, there will be a dependency between the subbatches
of a job.

The paper is organized as follows. In Section II, we in-
troduce a general model of a parallel processing system.
The multicomputer system with N homogeneous processing
elements is modeled as a queueing system with N servers.
Each job arriving to this queueing system is a random batch
of tasks with precedence constraints. Stability conditions are
obtained for the general model.

For the remainder of the paper we consider only fork-join
queueing models with the stochastic fork-join job structure
described above.

Exact analysis of fork-join queueing models is well known
to be intractable, hence, as usual, we resort to obtaining
analytical bounds. In Sections III and IV we study the situation
where there is only one fork-join in each job.

In Section III, we find upper bounds to the mean response
time of a job with the fork-join structure. We consider an
allocation policy in which the arriving batch is multinomially
partitioned over the N processors, each task going to the
ith processor with probability p;. We first obtain an upper
bound based on the I/;-norm, and convexity. Another upper
bound is obtained using the concept of associated random
variables. By comparison with simulations, we find that the
first upper bound is quite loose, whereas the upper bound based
on associated random variables can also serve as a reasonably
good approximation.

Section IV describes various lower bounds to the mean
job response time in a fork-join system. One lower bound
to the mean job response time is the mean delay in any of
the N component queues of the fork-join queueing system. A
lower bound that ignores queueing delays is discussed. Finally,
we find a lower bound which is a function of both p and
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Fig. 4. The general model of a multicomputer.

In Section V, we study a simple approximation for the fork-
join queueing model where jobs have a multiple fork-join
structure. This approximation is based on associated random
variables.

In Section VI, we compare two JSQ (Join-the-Shortest-
Queue) allocation policies. We compare JS(Q by batch to JSQ
by task and study the effect of increasing the load on the mean
response time of a fork-join job in these two systems. Our
results are based on simulation and diffusion limit analysis.

Finally, in Section VII, we discuss the conclusion and scope
for further extensions.

II. THE GENERAL QUEUEING MODEL
OF A MULTICOMPUTER SYSTEM

We consider a multicomputer system with N identical
(homogeneous) processing elements, modeled as a queueing
system with N servers. At this point, we do not specify how
the tasks are queued up and are allocated to servers. Thus,
in Fig. 4, we represent the queueing system as a black box,
that could comprise, for example, either a single queue with
all tasks joining the queue, or a queue per server with some
policy for allocating tasks to queues. Jobs arrive to the system
in a continuous random stream, each job is a random batch
of tasks with precedence constraints. The precedence relation
between the tasks in a job constitutes a partial order that can
be represented by a Directed Acyclic Graph (DAG) [31].

Tasks of a job are assigned in their entirety to the processors
(servers), and at each processor tasks are served to completion,
i.e., we do not allow preemption of tasks. The processing of
a job is complete when all its constituent tasks have been
processed, in accordance with the precedence requirements.
The time duration between the arrival of a job and the
completion of its processing is the job response time (or
sojourn time).

We adopt a convention whereby sets are denoted by Greek
letters in upper case, say I',©, etc. Consider a set of tasks
© = {T1,T»,---, }. These tasks constitute a job. Let < be a
partial binary relation on ©, with T; < T; meaning that task
i in a job precedes task j. Define T’ def {G,7) : T: < T3} C
© x ©. We require that < be transitive and antisymmetric.
Thus, I can be represented by a directed acyclic graph [31].

We begin in a general setting by assuming that the job
arrival epochs form a renewal point process, the jobs comprise
batches of tasks with independent and identically distributed
(i.i.d) batch sizes, and the task service times are i.i.d random
variables (from job to job and within a job). So far we have
left the queueing and service discipline unspecified.
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Let B denote the task service time random variable. Let C'
denote the random number of tasks in a batch. Let A be the
arrival rate of jobs.

We denote this class of models by GI¥ /GI/N, where P
stands for “batch arrivals with precedence constraints.”

Definition 1: We say that the class of models GI” /GI/N
is potentially stable if there exists a queueing and service
discipline that yields a stable queueing system (in the usual
sense that the task queue length converges in distribution to a
proper random variable).

Proposition 1: i) A necessary condition for the system
GI” /GI/N to be potentially stable is

AE[C]E[B] < N

ii) A sufficient condition for the system GI”/GI/N to be
potentially stable is

AE[C]E[B] < N.

Proof: 1) The rate of arrival of tasks to the system shown
in Fig. 4 is AE[C]. Mean service time of each task is F[B]. If
the system is stable, then the rate of task completion is AE[C].
Applying Little’s law to the N servers, we get mean number
of busy servers = AE[C|E[B]. Hence N > AE[C]E[B].

ii) We will show that there is a queueing and service
discipline that renders the system stable under the given
condition. A

Given any precedence relation I', let I' be a linear prece-
dence relation (i.e., a chain or a complete order) such that
(i,j) € T = (i,j) € I. Given a job with precedence
constraints I', if we process it according to I" then none of
the original constraints are violated and the task execution is
sequential. Therefore we process jobs as follows: Replace the
precedence graph I of a waiting job by a linear graph T' as
above. Whenever a complete job departs, start the first task of
a waiting job on the free server. Continue processing this job
on this server until all tasks are finished. It will be as if the
job occupied the server for its total service time whose mean
is E[C|E[B]. The system is now equivalent to a GI/GI/N
queue and hence the system is stable if AE[C]E[B] < N
[33]. O

In the remainder of the paper we consider a special case of
the class of models introduced in this section, namely, a fork-
join queueing model with stochastic fork-join job structure.

II1. UPPER BOUNDS TO THE MEAN JOB
RESPONSE TIME: SINGLE FORK-JOIN

Assume that the job arrival epochs form a Poisson process,
and each job has only one fork-join. Thus, each job can be
considered to be a batch of tasks. An arriving batch of tasks is
split probabilistically into subbatches which are then assigned
to the processing elements. Thus, the batch is multinomially
partitioned over the N processors, each task going to the
ith processor with probability p;. Note that, in general the
subbatches assigned to the queues are dependent, and some
subbatches may be empty.
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Thus, the job sojourn time is the maximum of the sojourn
times of the nonempty subbatches, but these random variables
are dependent. In this section we obtain upper bounds to the
mean job sojourn time.

We use the following notation:

B(t) - task service time distribution;

b(s) - Laplace—Stieltjies Transform (LST) of the task ser-

vice time distribution;

Cr - number of tasks in the nth arriving job;

() = P(Co=3),n21,720;

CY) - size of the nth arriving subbatch to processor 7,

1<i< N

()= P{CP = j}, 1<i<N, j20,n21;

fo) - service time of the nth arriving subbatch to processor

~ i, 1 <7 < N;

d®(s) - LST of the subbatch service time at the ith queue.

Note that, for analytical convenience we allow C(0) =
0, owing to Poisson job arrivals this does not loose any
generality. Further, we assume that B(0t) = 0; thus, a
nonempty subbatch assigned to a queue has positive sojourn
time with probability one.

We assume that the condition of stability for each queue
is satisfied, i.e., for each queue, we have A(mean subbatch
service time) < 1 which gives the condition

MY P{CDY = j}i)(-b(0)) < 1. )
=0

Let the stationary joint distribution of the virtual waiting
times of the IV queues be the same as that of the random vector
(WO W), WO will be the stationary distribution of
the ith queue in isolation. This is simply an M/G/1 queue
with batch arrivals, and the distribution of W) can be
obtained as the waiting time distribution of an M/G/1 queue
with an arrival rate of A and whose service time LST is
J(i)(s). Consider now a job arrival. Since job arrivals are
Poisson, it follows from the PASTA (Poisson Arrivals See
Time Averages) theorem [33] that the job sees the virtual
waiting time vector (W), W@ ... W),

Thus, we have

W . Stationary Waiting Time of the subbatch at the ith
queue, 1 = 1,2,.--,N;

Let D©) denote a random variable with the same distribution
as the common distribution of Dﬁf ), n > 1.

Hence, denoting the stationary sojourn time of a job by T,
we have

T= max

1<i< N((W(i) + DN Iiews0)

@
where Iy ; is the indicator function of the event {.}.

Recall that for analytical convenience, we allow empty
batches to occur with positive probability. Thus, along with
our assumption that task service times do not have an atom at
0, (2) implies that the atom of 7" at 0 corresponds to empty
arriving batches. It follows that the mean sojourn time of the
nonempty batches, i.e., the actual jobs, is E[T]/P(C > 0).
We shall seek bounds for E[T] from which bounds for the
mean job sojourn time will follow.
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Owing to the fact that DY =oiff C{) = 0, (2) can be
written as

= () (3)
T IISII%XN(W +D )I{D(1)>g}.

(€)

Owing to independence between jobs, (D), D®), ...
DY I WM, W@, ..., W), where the symbol IT stands
for independence. We note here the fact that the D)’s are not
independent except for Poisson batch sizes.

A. A Simple Upper Bound

We use a lemma given by Aven [1] to bound the expression
in (3). Let r be an integer such that 1 < r < oo, and X;’s are
real valued random variables, then it has been proved [1] that

Bl max Xl < {3 E( X )}

=1

Q)

N
=

Applying this to (3) for the job response time we get

N
, . .
< OCEB((WE + DN Iposey) )

i=1

We now attempt to simplify the expression for the upper
bound above as follows: first consider the term E(.)", where,
for ease of notation, we drop the superscript (¢) from W and
D. Then,

E((W + D)'| = E[(W + D)"I{p=0}]
+ E[(W + D) Iipsoy]
= EW"I(p_g)] + E[(W + D) I{ps0}]
= E[WT"]P|[D =0]+ E[(W + D)TI(D>0}]

where the first term in last expression follows since W and
D are independent random variables. We therefore have from
above

E[(W + D) I{psoy] = E[(W + D)) — P(D = O)E[W'(]S.)

Reintroducing the superscript (i), we have,

N
E[T < {3 E(WD + D) piysy)}*

i=1

N
= {3 E(WD + DOY I po s}
;1
= {D_(B(W® + DOYT]
i=1
~ P(DY = 0)B[(WO))}*.
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Theorem 1: In the fork-join queue with Poisson job ar-
rivals, i.i.d. task batches and i.i.d. task service times, an upper
bound to the mean response time of the fork-join job is given
by

N
D_(EBW® + DOYT - P(DD = 0)B[(WO)])}+
=1
/P(C > 0). ©)
Proof: As above. O

Note that the result holds for any allocation policy for which
the sequence {Ds,'),n > 1}isiid, forevery 1 <i < N.

In order to compute the upper bound, we require moments of
the subbatch waiting time random variable W and the subbatch
service time random variable D. Each of the N queues is an
M/G/1 queue with batch arrivals at rate \. The moments of
the waiting time can be obtained from the Takdcs recurrence
formula [13]. We have done the computations for multinomial
partitioning of the task batches with p; = 1/N.

The mean batch size (E[C]) is set equal to the number
of processors, N. The mean task service time (') is set
equal to 1. When the task allocation probability p; is equal
for all the N queues, i.e., when p; = 1 /N, it follows that
the service utilization factor at each queue (p) is equal to the
job arrival rate (}), since, p = AE[C]p;/u. We have studied
Poisson and Geometric batch sizes. Exact value of the mean
job sojourn time is obtained by simulation of the fork-join
queue. Numerical results from these analysis will be presented
later in this paper (see Figs. 5, 6, 7, and 8).

Owing to the obvious relation to the [, norm, we call this
the I, upper bound. Note that for each case, r can be chosen
to minimize the upper bound. Even with r chosen to optimize
the bound, these upper bounds were found to be quite loose.
Hence we search for better bounds.

B. Upper Bound Based on Associated Random Variables

We use the properties of associated random variables ([7),
[4], [9]) to compute upper bounds to the mean job response
time. The definition of associated random variables, and their
useful properties, are given in Appendix A.

The statistics of the maximum of {T, - --, T} are typically
very difficult to compute in the presence of inter-variable
correlations, as it is the case in many stochastic models of
interest. However, when the RV’s {T},---,Tx} are associ-
ated, Proposition A.2 (Appendix A) suggests a natural way of
generating computable bounds on these statistics. This is the
technique that has been adopted in the previous literature.

Thus, if {T1,---,Tn} are associated, then

N
Plmax T, > ] <1-[[ P(T: < t).

1<i<N ! @
== i=1
It follows that if the random variables T;, i = 1,---, N are
identically distributed, then
= N
;| < - < .
Blow TI< [Ca-(@<oMa @
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We now prove that if the subbatches at the N queues are
associated then the subbatch service times are also associated.
It will then follow that the subbatch sojourn times are associ-
ated. We will then be able to compute an associativity upper
bound to the mean job response time.

As per the notation described before, we have the following:

C'@) - size of the subbatch at the ith processor,i = 1,---, N

D® - service time of the subbatch at the ith processor,
i=1,--,N

Let Yk('), k > 1 be iid nonnegative random variables
Vi,1 <4 < N, independent of {cW,Cc,....cM} and
(Y3 k> B3I {Y%) k > 1} V iy, is. Let the distribution
of Yk(’) be B(.), the task service time distribution.

Let

c®
DO =%"y® 1<i<N.
k=1

If C(? = 0 then the sum is taken to be zero.

Lemma 1: If the random variables {C(),C®),... ,c(V)}

are associated then {DM),D® ... DN} are associated.
Proof: See Appendix B. |

Let X®),4 = 1,2,.--,N denote the subbatch sojourn
time in the ith processor. Following our earlier notation for
subbatch waiting time and subbatch service time, we have

Lemma 2: The random variables X® i = 1,2,... N
given by X® = W® 4 D@ are associated.

Proof: See Appendix B. a.

We have thus shown that if the subbatch sizes are associated
then the subbatch sojourn times at the N queues are associated.

We now proceed to find situations in which subbatch sizes
are associated.

First, we obtain a necessary condition. For simplicity, we
consider the two processor model. Now, C = ¢() 4+ ¢,
and the conditional joint distribution of (C1), C®) given C
is Multinomial(C, p, (1 — p)) where p is the probability of
allocating a task to processor 1.

Clearly, if the random variables C') and C(?) are associated
then [7]

Cov(CH,0®) > 0. ©
We shall use the notation U “£* V" to denote that the random
variables U and V have the same distribution. )

Lemma 3: Let C = C)+C®@), where (COV,C?)/C dist
Multinomial(C,p,1— p). Then, Cov(C),C?) > 0 if and
only if Var(C) > E(C).

Proof: See Appendix B. O

It is easily verified that the condition Var(C) > E(C)
is satisfied if C is either Poisson, or Geometric or Negative
Binomial. For Poisson, of course, Var(C) = E(C).

It is clear that if the task batch size is Poisson distributed
then the subbatches obtained by a multinomial partition are
associated, by virtue of their being independent.

We now show that multinomial partitions of a geometrically
distributed random variable are associated. It will then follow,
from the arguments above, that the subbatch service times in
the N queues are associated and finally the subbatch sojourn
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times in the N queues are associated. Associativity upper
bounds to the mean job response time then follow as discussed.

We begin by considering two processors. C(1) and C®) are
subbatch size random variables at the two queues respectively.
C is the batch size random variable having a geomerric
distribution with parameter «.. Hence,

Cc=cW4o®
c & Geometric(a) i.e.,
PC=z)=0*(1~a),r>0,0<a<1
(CW, 0@ /C E Multinomial(C,p, 1 — p).

Thus, the joint probability mass function of CV) and C?
is given by

S

P(CY = 5,0 = ) =a"tt(1 - a)(s + t)ps(l -p)t

def

£ f(s.t). (10)
Proposition 2: f(s,t) is totally positive of order 2.
Proof: See Appendix B. O

Corollary 1: The random variables C(!) and C® are as-
sociated.

Proof: This follows directly from Theorem 4.2 in [7]
which states that if C(1) and C®) are totally positive of order
2, then they are associated. O

We now extend the above results to our model with N
processors, where a job is multinomially partitioned over the
N processors, each task going to the ith processor with
probability p,.

As before, we have the random variables

C denoting batch size, and

C) denoting the subbatch at the ith procesor, i = 1,-- -, N.

Using Corollary 4.15 in [7], the Corollary to our Proposition
2 is easily extended to NV processors. This is done as follows.
The batch size C has a geometric distribution with parameter
a.

c & Geometric(a)

N
i=1

(CW,c® ... o)y dst
Multinomial(C,p1,p2,- -, pN).

We denote the joint probability mass function of the
0(1)7' : ’C(N) by f(x17 e 11'N)' Then’

fl@y, 22, an)=P(CW=g,,CP =g, ... cM=gy)
N o

— a(m1+zg+~-+zN)(1 _ a) (Z;\-]:l le). H f‘
[[o ! o

(11)

It can be shown quite easily that f(z;,---,zy) is totally

positive of order 2 in each pair of arguments for fixed values

of the remaining arguments. It follows from Corollary 4.15 in

[7] that {C(V,C@) ... 0™} are associated random variables.
We have thus proved
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Theorem 2: The components of a Multinomial partition of
a Geometric random variable are associated.

Computation of the upper bound is now merely a matter
of computing the subbatch sojourn time distribution at each
queue, and then using (8). Division by P(C > 0) yields
the desired upper bound. Laplace transforms, a numerical
inversion technique, and numerical integration were used in
carrying out the computations.

C. Comparison of the Two Upper Bounds
with Simulation Results

We plot the mean job response time versus p (the server
occupancy for each server) for Poisson and geometric batch
size distributions. We consider two values for N, the number
of processors, i.e., 4 and 7. The arrivals of jobs is Poisson
and the task service times are assumed to be exponential
with parameter 1. We have kept the mean job size equal to
the number of processors (V) in the system. Figs. 5 and 6
show the mean job response time obtained through simulation,
and the two upper bounds: the I, upper bound and the just
discussed associativity upper bound for Poisson batch size.
Figs. 7 and 8 correspond to geometric batch size. In these
figures only the associativity upper bound is shown. We see
from these graphs that the [, upper bounds are very loose
as compared to the associativity upper bounds. Since the
associativity upper bounds are quite close to the mean job
response time obtained from the simulation study, they can be
taken as a good approximation to the mean job response time.

The simulation programs have been written in SIMSCRIPT
IL5. They were terminated after the variations in the measured
mean response time were judged to be negligible.

Two further observations can be made from these numerical
results. In making these, we recall that the variance to mean
ratio for the geometric distribution is greater than 1, whereas
for the Poisson distribution it is equal to 1. Thus, in this
sense the geometric batch sizes display more variability than
Poisson batch sizes. The results show that the mean job sojourn
times with geometric batch sizes are larger than with Poisson
batch sizes. Further, the associativity upper bound is looser for
geometric batch sizes. This is because the positive correlation
between subbatch sojourn times is accentuated by the pos-
itively correlated subbatches, thus making the independence
approximation yield a looser bound.

IV. LOWER BOUNDS TO THE MEAN
JoB RESPONSE TIME: SINGLE FORK-JOIN

We continue with the same stochastic assumptions as in
Section III.

A. Each Component Queue as a Lower Bound

From (3) and (5) it easily follows that
E[T] > max {(1- P(DY = 0)EW®] + E[DY]} (12)

where E[W] can be found from standard analysis for the
M/G/1 queue.

It is quite clear that this will yield a bound that is only a
function of A (or p) and not of N, the number of processors.
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Hence, this is not a useful lower bound. We therefore search Now, define
for lower bounds which are a function of N.

— (@)
We call this lower bound as lower bound 1. Tr= lgli%XN(D Iipor>0})- a4
B. Lower Bounds Neglecting Queueing Delays Consider now a queueing system with a single queue that
From (3) we observe that, since w® >0, is served in a FCFS manner by the N servers. This system is

shown in Fig. 9. Consider a single batch arriving to this system

@) P
Tz 12‘?5\7(1) Iiprsoy)- 3 and finding the system empty. Let 7’ denote the sojourn time



1154 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 4, NO. 10, OCTOBER 1993

20.00

ossociativity upper bound (analysis)
15.00

simulation

10.00

Mean Job Response Time
o
o
o
pavd e Loy ey e by v a b vl

OOO TTVTTTT VI T T I I T vy T T T T Iy T T T T I T T Iy TreTTT T

0.00 0.20 0.40 0.60 0.80 1.00
rho

Fig. 7. Upper bounds on mean job response time. Number of processsors = 4. Geometric batch size.

20.00
7] associativity upper bound (onalysis)
o B simulation
£ 15.00
= 4
@ 1
a ]
2 i
S ]
Q N
n -
& 10.00 A
a 7]
re) N
= ]
c J
9 ]
= 5.00 -]
O-OO _]|||I||||||—||‘[||I||1IIIIITITII'|||llllllll\llll\l
0.00 0.20 0.40 0.60 0.80 1.00

rho

Fig. 8. Upper bounds on mean job response time. Number of processor = 7. Geometric batch size.

of this batch in the system. Denoting stochastic ordering by system (i.e., our original system and the system with a single
>st, we have queue). Denote by §; (resp., 6, 1 < i < k, the ith ordered
Theorem 3: departure epoch from the original system (resp., the single
R R queue system). Clearly, for this batch of size k,
T Zst T’
T =6, and
Proof: The result follows easily from the arguments in ., ,
[34] and [27]. For consider a batch of size k entering either T" = b
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Fig. 9. The centralized system serving fork-join jobs.

But Wolff’s argument [34] asserts that 6, >4 6. It follows
that (unconditioning on the batch size) T > 1. a

It follows that E[T] > E[T] > E[T"], hence E[T"] is a
lower bound to E[T].

Notice that the above lower bound amounts to comparing
the two queueing systems in the limit as p — 0, and thus
ignores the queueing delays. Unlike the bound in Section V-A,
however, this bound does depend on the number of processors
(N). We call this lower bound as lower bound 2.

For exponential task service time with mean 1/, it easily
follows that

N

. H i k-N Hy
Ef =% ck==+ Y (k) (7 + =y as)
k=0 k=N+1 K s
where
1 1 1
H, = Sy 44D
r=1+ g T3t +t3 (16)

As before, we divide the lower bound E[T"] by (1- P(C = 0))
to get a lower bound on the actual delay of nonempty jobs.

The lower bound found above (lower bound 2) is a function
of N only. We still seek a lower bound which varies with
both p and N.

C. The Centralized System as a Lower Bound

In this section, we use the technique in [6] to show that if
the task service time distribution is replaced by a deterministic
distribution, having the same mean, then the resulting system is
a lower bound in the sense of convex increasing order. Further,
if in the latter system the N queues are replaced by a single
queue serviced by the N servers, then we get a sample path
wise lower bound that yields a lower bound to the original
system in the sense of convex increasing order. The latter
system is analyzable exactly.

In the first part, we prove that the original system with
deterministic service time is a lower bound (in the sense
of convex increasing ordering) on the same system with
exponential service time. The proof is based on the properties
of convex increasing ordering [33].

In the symbols we define below, subscript n refers to
the mth arriving batch, n > 0. For the original system
(with exponential task service times), as before, we recall the
following definitions, where 1 <+ < N,and n > 1,

Dﬁf? - service time of the subbatch at the ith queue;

W,El) - waiting time of the subbatch at the ith queue;

T,S’) - sojourn time of the subbatch at the ith queue;

T, - job sojourn time in-the system;

b - mean task service time.

1155

Let DS), W,(li), T,(Li), and T, be the corresponding quantities
for the system with deterministic task service time b. The fixed
service time is equal to the mean service time in our original
system with exponential servers.

Finally, recall that,

Tn - interarrival time between the nth and the (n+1)th job;

CS) - subbatch size at the ith queue.

Lemma 4: For all n > 0, we have Ty, <¢i Tn

Proof: See Appendix B for an outline of the proof. [

Corollary 2: 1f limiting distributions exist in either case, let
T and T denote the limiting random variables for the sojourn
times in the two systems, then, T <4 T.

Proof: Suppose, {T},} converges in distribution to T and
{T} converges in distribution to T. If E(T) and E(T) are
finite, then, from Lemma 4 and from the property that <
ordering is closed under convergence in distribution [33]}, we
conclude that T <; T. O

Now, consider yet another system in which tasks with
deterministic service times are all put into a single queue,
that is served in a first-come-first-served fashion by the N
servers. This represents a system with centralized queueing
of tasks and distributed service [19]. Let T' denote the
stationary sojourn time in the centralized system. It is easily
seen that (see [34], and [15]) the task sojourn times in the
deterministic service time system with centralized queueing
are smaller sample-path-wise than in the deterministic service
time system with distributed queueing. These arguments and
theorem immediately yield the following theorem

Theorem 4: T' <q T.

Thus, E[T'] < E[T]. We call the resulting lower bound
lower bound 3.

The centralized system with deterministic service time is
exactly analyzable for Geometric batch sizes (see Appendix
C). Numerical results were obtained from this analysis. Exact
analysis of the lower bound system for Poisson batches
is difficult. For Poisson batches, however, the subbatches,
allocated to queues are independent, and the lower bounds
in [3] suffice.

D. Comparison of the Lower Bounds

We plot the three lower bounds to the mean response time
of a fork-join job. As before we assume Poisson job arrivals
and exponential task service times with a mean of 1. E[T
and its bounds are plotted as a function of p, the occupancy
of each server.

Fig. 10 corresponds to Geometric batch size and 4 proces-
sors (N = 4), whereas Fig. 11 corresponds to Geometric batch
size with 7 processors (N = 7).

We find that for this set of parameters values, lower bound
1 performs the best. As expected, lower bound 2, which is not
a function of load, performs the worst. Note, however, that as
N increases, if we let the mean task batch size be equal to
N, lower bound 3 will increase and eventually exceed lower
bound 1. In fact, if the task batch size is equal to N, then for
geometric batch size, lower bound 3 at p = 0 has a limit of
b/(1—e~!) as N — oo, whereas lower bound 1 at p = 0
is equal to b for all N. Note also that at p = 0 lower bound
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2 will always exceed lower bound 3, since lower bound 3 thus, has a random number of fork-joins, each fork-join with

corresponds to deterministic service times. a random number of tasks (see Fig. 1).
V. JoBS WITH MULTIPLE FORK-JOINS A. Model Description
In this section, we study a simple approximation for the We model the situation with jobs that have multiple fork-

mean sojourn time of jobs with multiple fork-joins. The joins as a fork-join N processor system with feedback (see Fig.
number of fork-joins in a job is a random variable. A job, 12). After the completion of a join, with probability p, the job
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Fig. 12. A multiple fork-join queueing system.
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Fig. 13. M/G/1 queue with feedback.
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Fig. 14. M/G/1 queue with feedback at the server.

is fedback to the main arrival stream, and with probability
(1 — p) the job leaves the system. Thus, the number of fork-
joins in a job is geometrically distributed with parameter p,
ie.,

P(K=k)=p*'(1-p), k>1, 0<p<1 (17
where K is the random variable corresponding to the number
of fork-joins in the job.

Job arrivals are Poisson with rate A\. The number of tasks
in a single fork-join has a Poisson distribution. Further, we
assume that the task service times are exponentially distributed
with parameter p.

As compared to the simple fork-join system, the analysis of
the fork-join queueing system with feedback is considerably
harder. Note that although the external arrival process of jobs
is Poisson, owing to feedback, the aggregate arrival process
of fork-joins to the queue is not Poisson.

B. An Approximation to the Mean Job Response Time

To motivate the approximate analysis of a fork-join queue-
ing system with feedback, we first recall the analysis of an
M/G/1 queue with feedback. This is shown in Fig. 13, where
G denotes the service time random variable.

Single task jobs arrive at the M/G/1 queue with rate A. With
probability p, a customer is fed back to the queue and with
probability (1 — p) the customer departs from the queue. This
queue is equivalent to an M/G/1 queue with feedback at the
server itself in the sense that the queue length distribution is the
same. An M/G/1 queue with feedback at the server is shown
in Fig. 14 with feedback probability p. Fig. 15 shows the same
queue with the effective service time random variable denoted
by B. We note that B is just a geometric sum of G’s.
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Fig. 15. An equivalent M/G/1 queue.
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Fig. 16. An approximation to M/G/1 queue with feedback.

The two queueing systems shown in Fig. 13 and Fig. 15 are
equivalent in terms of the mean delay per job.

We cannot extend the above idea of feedback at the server to
the fork-join queueing system with feedback. This is because
of the join synchronization delays experienced by a subbatch
that finishes earlier than the other subbatches in a batch.
These subbatches must “join” with their other “siblings” before
being fed back, thus rendering instantaneous feedback an
inappropriate model.

We reconsider, therefore, the M/G/1 queue with feedback.
Let us denote the net arrival rate of jobs at the queue in
Fig. 13 by M. It is clear that N’ = )\/(1 — p), provided
A(1-p) < (E[G])7! (i.e., the rate of arrivals of fork-joins
in the original model is \).

A simple approximation for the M/G/1 queue with feedback
would be to consider an M/G/1 queue with arrival rate
X and service time distribution G (see Fig. 16), and then
approximate the job sojourn time in the feedback model with
the convolution of a geometric number of sojourn times in the
model of Fig. 16.

Letting W’ denote the approximation to the mean waiting
time obtained this way, we will get

cé+1
2

E[G)]
(1-p)

BW') = 12

) (18)

where p is the service utilization factor and c2G is the coefficient
of variation of the service time G, given by,

Var(QG)
(ElG)*

g = (19)

Let W be the waiting time random variable in the M/G/1
queue with feedback at the server (i.e., the exact waiting time),
as shown in Fig. 13.

Proposition 3: E[W'] > E[W] if ¢& > 1.

Proof: In Fig. 15, B is the service time RV which is

equal to a geometric sum of G’s. From (17) the LST of B
can then be written as

bs) = 32 (1~ )l o)
k=1
_ (-pits)
BT OR @
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The second moment of the service time random variable B
can be found from the expression (20) as follows:

E[B’=b"(s)|, _,

_ EIG*)1 - p) + 2(BIG)?
-9

For E[W'] to be an upper bound to E[W|, the following
inequality must be satisfied:

@D

2
(f[—Gpiz 2 ElBY)
E[G?] _ E[G?*|(1-p)+ 2p(E[G])®
1-p?%~ (1-p)?
Var(G)
&G 2
=& >1. (22

Therefore, the inequality (22) implies that the mean waiting
time in the M/G/1 queue in Fig. 16 is an upper bound to the
mean waiting time of the M/G/1 queue shown in Fig. 15. O

We use this simple analysis to motivate the following
approximation.

The aggregate fork-join arrival rate is A/(1 — p). The
approximation takes this process of arrivals of fork-joins to
be Poisson.

Let T' denote the response time of a fork-join in this system.

We have already computed upper bounds to E[T] in Section
IV. These were based on the concept of associated random
variables.

Let Sg denote the approximate response time of a job with
K fork-joins. Then,

ElSk|=E (23)

i
5)

where T is the approximate response time of the ith fork-join
within a job. In steady state, the Ty’s are identically distributed.
Thus, E[Ti] = E[T] V i.

Since K is independent of ff’,"s, it follows from Wald’s
lemma [33] that

K

BQT)

= E(K)E(T). 24)

It follows from (17) that E[K] = 1/(1 — p).
Finally, since we consider only nonempty jobs, i.e., those
in which there is at least one nonempty fork-join, we have

E(K)E(T)
P(nonempty job)
- E(T)
" (1 - p)P(nonempty job)

E[8k] =

(25)

We have assumed the distribution of the number of tasks in
a fork-join to be Poisson with parameter z. We now find the
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probability of a nonempty job.
P(nonempty job) = 1 — P(all subjobs are empty)

=1- Z P(K = n)[P(empty job)|"

n=1
o0
=1-) p" A -p)(e®)"
n=1
l1-e%

From (26) and (25), we get the expression for E[Sk] given as

E[T](1 - pe™)
(1-p(1-e=)

We now consider a single queue in the fork-join queueing
system with feedback. This is an M/G/1 queue with bulk
arrivals and feedback, with a synchronization delay after the
service of a subbatch. Note that for Poisson batch size, the
size of a subbatch at each component queue is also Poisson
distributed. It is easily shown that the coefficient of variation
of the service time random variable, G, given by cZ, satisfies
the inequality cG > 1. This condition along with Proposition
3 suggests that the approximation to the response time of a
job (E[Sk]) may be an upper bound to E[Sk]| (the actual
response time of a job).

We use the associativity upper bound for E [T] and in each
case use the corresponding value of E [S’ k| as an approxima-
tion to the mean sojourn time of a job with K fork-joins.

E[$k] = 27)

C. Numerical Results

Denote by Sk the actual response time random variable
of a job with multiple fork-joins. In Table I, we show the
approximation to the mean response time of the job obtained
using (27). The table shows approximation and simulation
results for various values of the number of processors (V),
the arrival rate of jobs ()), and the parameter of the geometric
distribution of the number of fork-joins in a job (p).

The distribution of the fork-join batch size is Poisson with
parameter (mean) z. The task service time is an exponential
random variable with parameter 1. Finally, p is the occupancy
of each processor.

We see that for p < 0.6 the approximation to the mean
response time of the job is good. The value of E[Sk] is
obtained from simulation. Notice that, as suggested by the
analysis earlier, the approximation over estimates E[Sk].
Recall that there are actually two approximations being made
here: the Poisson arrival of the successive fork-joins of a job,
and the approximation to the mean delay of each fork-join. It
has been mentioned before that due to feedback, the Poisson
arrival nature of the fork-joins is destroyed. This is because, an
arrival at the queueing system triggers another arrival, thereby
the interarrival times become dependent. However, in the case
of a multiple fork-join queue, there is a synchronization delay
incurred at the join. This added delay makes the arrivals to the
system less bursty and the Poisson assumption may actually
be a good approximation. Thus, most of the error in the
approximation may be due to the approximation for E[T].
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TABLE 1
APPROXIMATION TO E[Sk] IN MurtipLE FORK-JOIN QUEUE
N P A p E[Sk] Approximation
4 0.3 0.20 0.286 4.881 5.126
0.50 0.714 10.811 12.528
0.60 0.857 19.648 22.802
0.5 0.20 0.400 8.249 8.469
0.7 0.23 0.766 29.818 35.105
0.9 0.05 0.500 36.484 50.228
5 0.3 0.20 0.286 5.464 5.690
0.50 0.714 12.242 13.920
0.60 0.857 23.559 25.107
7 0.3 0.20 0.286 6.292 6.599
0.50 0.714 14.613 16.169
0.60 0.857 27.376 28.658

VI. COMPARISON OF TWO JSQ ALLOCATION POLICIES

In this section we study two versions of the Join-the-
Shortest-Queue (JSQ) policy for single fork-join jobs: JSQ
by batch and JSQ by task. In JSQ by batch, an arriving batch
(with a random number of tasks) is assigned to the shortest of
the N queues in the multicomputer system. We therefore refer
to this as task allocation with no splitting. In JSQ by task, the
tasks of an arriving batch are ordered in an arbitrary way and
are then successively assigned to the shortest queue as if they
were a stream of task arrivals. This queueing system is thus
JSQ with splitting.

Through simulation and analysis of these two JSQ allocation
policies, we see that for low and moderate utilizations of the
queues, JSQ by task yields a strictly lower value of mean
job response time as compared to JSQ by batch. However,
at high utilizations, the two policies approach each other in
mean delay performance. Thus, if communication delays were
included in the model, JSQ by batch would yield lower mean
response time than JSQ by task for high loads. This suggests an
adaptive allocation policy: do JSQ by task at low and moderate
loads and do JSQ by batch at high loads.

A. Simulation Results

For the simulation study, we keep the batch size distribution
and the number of processors fixed and plot the mean job
response time (E[T7]) versus p (the occupancy of each server)
for the two systems: JSQ with splitting and JSQ with no
splitting. In the simulation study, job arrivals are Poisson. Job
size distribution is Poisson with mean batch size being equal to
the number of processors. Task service times are exponentially
distributed with parameter set to 1.

Figs. 17 and 18 show the comparison of the two systems,
with N = 4 and 7, respectively. From the figures, one sees that
JSQ with splitting yields a lower expected response time for
low to medium utilizations but as we go to high utilizations,
JSQ by task (splitting) and JSQ by batch (nonsplitting) yield
almost the same response time.

Further, it is seen from the curves that as we go from N = 4
to N = 7, the point at which the two curves meet, shifts
toward higher p values.
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Nelson [18] makes a similar observation, but the two queue-
ing systems are slightly different from ours. They compare two
different multiprocessor architectures, one in which fork-join
jobs are executed concurrently by all the processors and the
other where these jobs are executed sequentially and shortest
queue routing is used. The job size is deterministic and is
equal to the number of procesors. In the splitting model, upon
a job arrival, the N tasks are scheduled so that one goes to
each of the N processors. The nonsplitting model is the same
as ours, except that, in [18], the number of tasks in a job
is equal to N. The comparison of the two systems in [18]
reveals a tradeoff between them. The splitting model has a
lower expected response time for low to medium utilizations
but for high utilizations the nonsplitting model is better. The
crossover occurs because JSQ is not used when the job is split
over several processors.

Thus, our simulation results and those in [18] suggest
the following: for low uilizations, executing the tasks of a
job concurrently is beneficial, whereas for large utilizations,
nonsplitting of jobs yields a lower response time.

B. Analytic Explanations of the Results

We now give analytical explanations for our simulation
results. For low utilizations, it can be proved that JSQ by
task yields a strictly lower value of mean job response time
than that in JSQ by batch. _

Consider the case when p — 0. For such a system, there is
no queueing and we can consider a single batch arriving at an
empty queueing system. Now, in JSQ by batch, the entire batch
is allocated to one queue whereas in JSQ by task, tasks within
a batch are allocated successively into the shortest queue as
if they were separate arrivals. In [32], it is proved that of all
the allocation strategies, the strategy that minimizes the mean
customer waiting time is the one which assigns each arrival to
the shortest queue, provided each customer’s service time is a
random variable with a nondecreasing hazard rate [7].

Since, in our model, task service time is exponential, which
corresponds to a constant hazard rate (hence, nondecreasing),
it follows from the proof in [32] that JSQ by task yields lower
mean job response time as compared to JSQ by batch in the
limit when p — 0, i.e., at low load values.

Theorem 5: In the limit when p — 0, JSQ by task yields
a strictly lower value of mean job response time as compared
to JSQ by batch.

Proof: As discussed above. O

At high utilizations, we see that the two policies approach
each other in mean delay performance. This can be explained
as follows. In the JSQ by task policy, the queue lengths at
the N queues of the system are stochastically equal under
heavy loads. This in turn means that under heavy loads, the
synchronization delays in this system are negligible. In JSQ by
batch, we have seen that there are no synchronization delays,
as the entire batch is assigned to the shortest queue. Further,
heavy traffic analysis shows that the task queue lengths in
the two systems become stochastically the same under heavy
loads. Thus, the subbatch delays in JSQ by task policy, and
the batch delay in the JSQ by batch policy tend to become
equal under heavy loads.
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Fig. 17. JSQ allocation (Poisson batch size). Comparison of JSQ by task
(splitting) versus JSQ by batch (nonsplitting). N = 4.

In fact using some diffusion approximation results [22],
the following explicit results can be developed. Consider
Geometric batch sizes, with C(k) = ¥~ 1(1-z), k> 1, 0 <
z < 1, and a Poisson job arrival process. It follows that the
task arrival process is also renewal. Assume exponential task
service times. The foregoing implies that the batch service
times are also i.i.d. exponential. It can now be shown, using
the results in [22], that in the heavy traffic limit

1) the normalized job sojourn time in JSQ by batch, and the
normalized job sojourn time in JSQ by task, converge
weakly to the same process, and

2) the normalized task sojourn time and batch sojourn time
in JSQ by task converge to the same heavy traffic limit.
This last result is obtained via a simple modification of
the proof of Theorem 3 in Section 5.2 of [22].

VII. DISCUSSION

We have studied the performance of a distributed computing
system where each processor has its own queue of tasks,
and incoming jobs to the system consist of batches of tasks
with precedence constraints among them defined by a linear
sequence of forks and joins. The main points of deviation from
other works are: a) using a distributed system of processors
each with its own queue as opposed to a central queue b) using
a random number of tasks generated by a fork and (c) using a
random number of forks and joins in a given job. As in most
other works in the literature, communication and coordination
overheads have been neglected.

To study the above class of systems, we have extended the
scope of fork-join queueing models by allowing a random
number of tasks in each fork, different task allocation policies,
and multiple forks in a job. Most of the earlier work in fork-
join queueing models assumed a deterministic structure of
fork-join jobs. Although, Nelson et al. [19], did consider fork-
join jobs with a random number of tasks, however, they have
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Fig. 18. JSQ allocation (Poisson batch size). Comparison of JSQ by task

(splitting) versus JSQ batch (nonsplitting) N = 7.

analyzed a centralized parallel processing system, where the
N identical processors serve a single queue.

What makes our model more complex to analyze than those
studied previously is the fact that the job structure is stochastic
and, in general, the task subbatches allocated to the N queues
are dependent. This, in turn; causes the task subbatch service
times to be dependent. This additional dependency between
the N queues does not permit the analysis in the literature
to be directly applicable. Moreover, in our model, since the
number of tasks in a job is possibly different from the number
of processors, a task allocation policy needs to be specified.

In Section II, we considered a general model of a paraliel
processing system and derived the stability conditions. The
main result in Section II is a Proposition where we proved a
necessary and sufficient condition for the queueing system to
be potentially stable.

For the case of jobs with a single fork-join and, probabilistic
allocation of tasks of the job to the N processors, we obtained
upper and lower bounds to the mean response time of the fork-
join job. We developed the upper bounds in Section III and
the lower bounds in Section IV.

In Section III we proved (Lemma 1) that if the random
variables corresponding to the task subbatch sizes at the N
queues are associated, then the subbatch service times in
the N queues are associated. It follows from this result that
the subbatch sojourn times at the N queues are associated
(Lemma 2). This allows us to find an upper bound to the
mean response time of a fork-join job. We then went on to
prove that if the task batch size distribution is geometric, the
probabilistic partition of the batch yields associated subbatches
(Theorem 2). This, combined with the previous result, yields
an upper bound to the mean job sojourn time. By comparison
with simulation, it was found that this upper bound serves
as a reasonably good approximation. Simulation studies have
shown that for the same mean batch size, geometric batches
yield larger mean delays than Poisson batches (see [25]).
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The main results in Section IV are Lemma 4 and Theorem
4. In Lemma 4, we showed that if the task service time
distribution is replaced with a deterministic distribution, with
the same mean, then the mean job response time in the
resulting system is a lower bound in the sense of convex
increasing order. In Theorem 4, we further prove that if in
the latter system the N queues are replaced by a single queue
serviced by the IV servers, then we get a further lower bound in
the sense of convex increasing order. This system is analyzable
exactly for geometric batch sizes (Appendix C).

In Section V, for the case of multiple fork-join jobs we
studied an approximation motivated by an approximation for
the M/G/1 queue with feedback.

Finally, we discussed an interesting simulation result in
Section VI, where we compared two JSQ (Join the Shortest
Queue) allocation policies, namely, JSQ by task and JSQ
by batch. We were able to prove analytically using earlier
known results that in the limit when p — 0, JSQ by task
has smaller delay than JSQ by batch (Theorem 5). However,
at high loads, the two policies begin to yield the same mean
delay. This suggested that if the communication delays were
to be incorporated, then JSQ by task would become worse at
high loads, thus motivating an adaptive allocation policy: do
JSQ by task at light loads and JSQ by batch at high loads.

There are several extensions of this work that are of interest.
Extending the basic model to the case where the servers
are of different speeds would model a system consisting of
nonhomogeneous processors. Furthermore, one could relax the
exponential assumptions on the arrival process.

We have not modeled communication delays in the fork-join
queueing system. In practical systems such communication
delays exist because of either interprocess communication or
moving the tasks from one processor to another processor.
Thus, incorporation of communication delays in the analysis
of a fork-join queueing system will be a useful extension.
Some related work may be found in [17] and [16].

The approximation for the multiple fork-join queueing sys-
tem is rather ad hoc, and more work is needed to develop
provable bounds, and good approximations.

APPENDIX A
ASSOCIATED RANDOM VARIABLES

Definition: The R-valued random variables {T},T», - -+, T, }
are said to be associated if the inequality

E[f(T)g(T)] = E[f(T)|E[g(T)]

holds for all monotone nondecreasing mappings f,g :
R — R for which the expectations E[f(T)], E[g(T)] and
E[f(T)g(T)] exist.
Association of random variables satisfies the following
desirable multivariate properties [7]:
(P1) Any subset of associated random variables is associ-
ated.
(P2) The set consisting of a single random variable is
associated.
(P3) Increasing functions of associated random variables
are associated.

(28)
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(Py) If two sets of associated random variables are inde-
pendent of one another, then their union is a set of
associated random variables.

(Ps) Independent random variables are associated.

The key result which we use in the computation of the upper
bound to the mean job response time is given as a proposition
below: [29]

Proposition A.1: If the random variables {11, T5,---, Tk}
are associated, then the inequalities

PIT; <a;,1<i< K] >

=

P[T;<a]  (29)

=1

hold true for all @ = (a1,---,ax) in RX.

An alternate and useful way of expressing (29) is obtained
as follows: The R-valued random variables {77, - , T} are
said to form an independent version of the random variables
{Th, -, Tk} if

1) The random variables {T},---,T. K } are mutually inde-

pendent, and

2) For every 1 <4 < K, the random variables T; and T;

have the same probability distributiori.

With this notion, Proposition A.1 takes the following form.
[29]

Proposition A.2: If the random variables {71, -, Tk} are
associated, then the inequalities

P[T;<a;,1<i<K|>P[T; <a;,1<i< K] (30)
hold true for all a; in RX, whence
max T; <q max T.. 31

1<i<K 1<i<K

Definition: [7] Let S and T be two discrete random vari-
ables. The joint frequency function of S and T is denoted by
f(s,t) and is defined as

fey ¥ Ps=5T=1.

We then say that f(s,t) is totally positive of order 2 if

f(s1,t1)  f(s1,t2)
flsatr) flsarta)| 20

for all 51 < s, t; < t2 in the domain of S and T.

APPENDIX B
PROOFS

Lemma 1: If the random variables {C(1),C®) ....C(NM)} are
associated then {D(l),_D(z),- . ~,D(N )} are associated.

Proof: Since Yk(l), 1 <4< N, k> 1 are mutu-
ally independent random variables, therefore they are asso-
ciated. Further, since {C(10,C®) ... C™)} are associated and
{(CO,c@ ... .cY T (V{1 <i < Nk > 1}, therefore it
follows from property Py of associated random variables that
{C(l),C(z),~ . -,C(N),Yk(i), 1<i< N,k >1} are associated.

Now D® = $2¢"y® 1 < i < N. It follows that
D@ can be written as a function f of C(i),Yk(’), k>1or
DO = f(cD v v ...) where Y >0, k > 1. We
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observe that f is nondecreasing in each argument. Hence by
property P3, the RV’s {D D@ DN are associated
since each is an increasing function of associated RV’s. (O
Lemma 2: The random variables X (), i =1,2,... N given
by X® = W 4 DO are associated.
Proof: In the previous lemma, we have shown that the
D®_ 4§ =1,2,.-- N are associated.
Denote
W _ waiting time of the nth subbatch to processor
41 <3< N;
Dﬁl’) - service time of the nth subbatch to processor 4,1 <
1 < N;
- Interarrival time between the nth and the (n + 1)th
subbatch to queue .

We have

TT(L:)- 1

X® =w® 4 p®, (32)
We first establish that W,(Li),i = 1,2,---, N are associated.
We prove this by induction following an argument essentially
the same as in [20]. )

Basis Step: The random variables Wl(l),i =1,2,---,N are
associated since, assuming that the system is initially empty,
the equations W) = 0,i = 1,2, -, N, hold with probability
1.

Inductive Step: Assume that Wr(yf),i = 1,2,---,N, are
associated for m = 1,2, -- -, n. We will show that this implies
that W,S:)_l,i = 1,2,---,N are associated. We have the
following equality [6]

Wn(.l-i)-l = (W7(Ll) +D1('Ll> _Tr(r,z-{)—l)-f—v = 1721"'vN (33)
where (z)+ = max(0, ).

We note that the max function is an increasing function. By
the inductive hypothesis, W,(f),i =1,2,---, N are associated.
The fo)’s, ¢ = 1,---,N are associated, by Lemma 1. We
observe that

8 = T (G4

is one random variable, independent of all others. Hence, the
random variable —7, is associated.

Therefore, W,glll,i =1,2,---, N are associated, since (33)
shows that they are increasing functions of associated random
variables.

The union of sets WT(Li),i = 1,---,N and DS),i
1,---,N are associated. It follows that since X,(f),i =
1,---, N, is an increasing function of associated RV’s, it is
associated.

Finally, assuming that each of the N queues is stable and
ergodic, the stationary limits X® i = 1,--.,N are also
associated. O

Lemma 3: Let C = C 4+ C®, where (CV,C®)/C dist
Multinomial(C,p, 1 — p). Then Cov(CV), C®) > 0 if and
only if var(C) > E(C).

Proof: Clearly CV/C 2" Binomial(C, p). Denoting
by &(.) and &)(.) the generating functions of C' and C', it
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easily follows that &1{z) = &pz + (1 — p)). Hence
E[c™] = pE[C]
E[CW) = p*E[C*] + p(1 - p)E[C).

Further,
E[0(1)0(2)] - E[C(l)(C _ C(l))]
= E[ccW] - E[cM2, (35)
Now,
E[ccM) = E{E[cc™/C)}
= E{CE[c™/c]}
= E(pC?)
= pE[C?).
Hence,

E[cWC®)] = pE[C] - pE[C] - p(1 - p)E[C], (36)
and
E[CW]E[C?] = E[CW]E[C - eV
= p(1 - p)(E[C))? €y
Thus
E[C(I)Cm] - E[C(l)]E[C(2)] =
{p(1 - p)E[C?] - p(1 - p)E[C]} - p(1 — p)(E[C])?
(38)

Hence E[C(DC®] > E[CW]E[C®)] iff
p(1 = p)E[C?] — p(1 - p)E[C] > p(1 - p)(E[C])*.
This is always true if p = 1 or p = 0, whereas, if 0 < p < 1,
it is true iff the following holds:
E[C?] - E[C] > (E[C))?
Var(C)

(39

& —EW > 1. (40)

Therefore, we have for 0 < p < 1,
Cov(CM,CP) >0 <= Var(C) > E[C]  (41)
which proves the lemma. a

Proposition 2: f(s,t) is totally positive of order 2.
Proof: With s1 < s and ¢; < t2 consider the inequality

f(s1,t1)  f(s1,t2)

Fsotr) Flsata)| 2

42)

This is true iff

(Xsl+t1 (1—(1)(81 :‘ tl )ps; (l_p)t1a52+t2(1_a) ( 32:; t2)
1

_psz(l _ p)tz _ a51+t2(1 _ (1) ( S1 ;" (3 )psl (1 _ p)tz asz-Hl
51

+t 55 X
a=a(? ) a-pe 20
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— (81+t1)(82+t2> _ <31+t2>(52+t1> >0
S1 82 S1 82
(s1+t1)! (s2+22)! (51 +12)! (2 +11)!

s1ltq! salto! s1lta! solty!
<= (31 + tl)!(82 + tz)! — (81 + tg)!(Sz —+ tl)! >0.

>0

Since 51 < sz and t; < %y, the above expression can be
written as

(Sl + tl)!{(SZ + tz)(sZ + tz - 1) e (Sz + tl + 1)}(82 +t1)!—
{(s1+t2)(s1+t2—1) ... (s +t1+1)}(s1+t1)!(s2+2£1)! > 0.

=>(82+t2)(82+t2—1)‘-'(82+t1+1)
—(s1+t)(s1+ta—1)---(s1+t1+1)>0. (43)

The last inequality holds since s > s;. Hence f(s,t) is
totally positive of order 2, which proves the proposition. O
Lemma 4: For all n > 0, we have T, <o T,,.
Proof: We have that
T, = .

O 4 DOV .
X AWn” + D 50

and that

T, = max (WO + DY},

1<iSN ci>o}

Denote by 7,,, n > 0, the inter arrival time between the nth
and the (n + 1)th batch. Let G be the sigma field defined by

g = a{(C§1)7 tt C§N)7 Tl)v(Cél)v Tty CéN)vTZ)y"'}~

Where o{-} as usual denotes the o field generator by the
random variables in {-}.
Now clearly, for 1 < i < N, n >0,

E(DY) /) = b CP
= DY,

(44)

It now easily follows from an argument identical to that in [6],
that for 1 < i < N,and n > 0,

EWY/G) 2 W,
Now
— (4) (%) ;
T, = 1r5n¢a§}§v(W" =+ D" )I{Cfn’)>0}'
Hence, by the convexity of max{}

E(T./9) > max E(W + DV c950))/9)-

But I{CS)>0} € G.
Hence

E(T./G) > 1rgniaéxN E(W + DE)/G) I{CL">0})

> max (W + DY) I
1<i<N

=T,.

{ci? >0}
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It now follows that, for n > 0,

Tn Zci Tn

APPENDIX C
ANALYSIS OF MX /D/N QUEUE
WITH BATCH SYNCHRONIZATION

We observe that 7 is the batch sojourn time in an
MX/D/N queue in which a batch departs the system only
when all its constituent tasks have completed service. We begin
by noting that with deterministic service times, and FCFS
service, the batch sojourn time in such a system is the same
as the sojourn time of the last task in a batch.

We shall consider the case in which the batch size has a
geometric distribution, i.e.,

ek)=P(C=k)=2F11-2), k> 1.

Let the limiting random variable of the task sojourn time
be denoted by §’. 1t then follows from a result [11] that S’
and 7" have the same distribution for geometrically distributed
batch sizes. This is easily seen as follows. Order the tasks in
the successive batches in some arbitrary way and let S;, ¢ > 1
denote the sojourn time of the ith task.

Then
1 &
ES' = lim — > 8 as
i=1

Let

0 = { 1 if the ith task is the last task in a batch

t 0  otherwise '
Then

. 1 LA
ET' = lim - £;S! a.s.
n—oo 3o 1 b ; '

Note that for geometric batch sizes, {{;} is a Bernoulli
sequence, hence by “Bernoulli Arrivals See Time Averages”
[11], it follows that

ES = ET".

Observe that this result utilizes crucially the fact that service
times are deterministic. .

It now remains to determine the distribution of 7”. The
MX/D/N queue can be exactly analyzed using the well
known Crommelin argument and matrix analytic methods [21].
The transition matrix of the embedded Markov chain, in the
Crommelin approach has exactly the same structure as that in
the Bailey Bulk Server Queue model.

Letting mean task service time b =
(a0, a1, **-, ak, -} is given by

1, the wvector

ag = 6_)‘
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and for ¥ > 1
ar = P{k task arrivals in unit time}
E Niem

i!

()

Observe that the term in {.} in the last expression is the
Negative binomial distribution.

P{k task arrivals/ibatch arrivals}

<.
1
-

M-

%
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