
1. (a) Given n elements and n3/2 CRCW processors, show how to compute the minimum in O(1) time.

Solution: In order to compute minimum of n elements in O(1) time, we need O(n2) CRCW
processors. So we partition n elements into

√
n blocks each consisting of

√
n elements. We

assign O(n) processors to each block and compute minimum of each block in O(1) time. Total
number of processors needed for this step are n×

√
n = n3/2.

Now we have O(
√
n) candidate elements and minimum of these can be computed using O(n)

processors in O(1) time.

(b) Extend the previous idea to compute minimum of n elements in O(1) time using n1+ε CRCW
processors for any 0 < ε < 1.

Solution: The main issue here, as was in the above problem, is that we do not have enough
processors to do it in one parallel step. So we partition the elements into blocks such that
all the blocks can be processed in O(1) parallel time. Then for the next round we have fewer
candidate elements and we again partition the elements into blocks of manageable size. The
termination condition is when number of processors is square of candidate elements and hence
we can compute minimum in one step. The number of parallel steps required should be function
of ε.

We partition n elements into n1−ε blocks each consisting of nε elements. We assign O(n2ε)
processors to each block and compute minimum of each block in O(1) time. Total number of
processors needed for this step are n2ε × n1−ε = n1+ε.

For the jth round we have n1−(2
j−1)ε blocks with n2

j−1ε elements each.

Total number of rounds: Let (j + 1)st be the round at which square of number of elements
is same as the total number of processors. That is,

n2×(1−(2
j−1)ε) = n1+ε

The number of rounds are log2(1
ε + 1) which is O(1) as ε is a constant.

2. Given an array of n elements a1, a2 . . . an, the nearest smaller value of any element ai is defined as

NSV (ai) = argminj>i{aj < ai}

The all nearest value problem (ANSV) is to compute for each element ai, its nearest smaller value.

(a) Design a linear time sequential algorithm for ANSV.

Solution:

procedure NearestSmallerValue(ai, j)
if j = −1 then

NSV (i)← −1
else if j = n+ 1 then

NSV (i)← −1
else if ai > aj then

NSV (i)← j
else if ai = aj then

NSV (i)← NSV (j)
else if ai < aj then

NearestSmallerValue(ai, NSV (j))
end if

end procedure

function Main(array a)
for i← n to 1 do

NearestSmallerValue(ai, i+ 1)
end for

end function

Proof of Correctness: We prove by contradiction. Let ai be an element such that ∀ l (i <
l ≤ n), NS(l) is correct. Let NS(i) = k and there exists an element aj such that j < k and
aj < ai. That is NS(i) should have been j. Now

ai < al, ∀ l i < l < j (By definition of NS)

aj < al, ∀ l i < l < j (as aj < ai)

=⇒ NS(l) ≤ j
=⇒ NS(i+ 1) ≤ j
=⇒ NS(i) ≤ j (By our Algorithm)

=⇒ k ≤ j (Contradiction)

�

Analysis: Consider two elements ai and aj such that i < j. So NSV (j) is computed before
NSV (i).

Claim: Only one of the recursive calls NearestSmallerValue(ai, k) or
NearestSmallerValue(aj , k) is possible while computing NSV (i) and NSV (j) respectively.

Proof by Contradiction:
Assume both the calls occured and while computing NSV (i) we compare ai to al and NSV (l) =
k. So the next recursive call is NearestSmallerValue(ai, k), therefore ak < al. Also al ≤ aj
else NSV (l) = j. Therefore ak < al ≤ aj . Due to the call NearestSmallerValue(aj , k),
aj < ak and hence aj < ak < al ≤ aj . A Contradiction. �

Since each element is part of exactly one recursive call, the running time of the algorithm is
O(n).

(b) Design a polylog time O(n) processors CRCW PRAM algorithm for ANSV problem.

Solution:
The procedure NearestSmallerValueParallel divides the array into two equal halves and
computes NSV and Prefix Minimum of the two halves recursively and in parallel. The NSV
of the two halves is then combined. NSV of the right half is fixed as the elements in the left
half does not affect it by definition of NSV . There may be some elements in left half whose
NSV does not exist in the left half but may exists in right half. Here we use the PrefixMin
values of the elements of right half to search for NSV of these elements.

Page 2

Assume number of elements is a power of 2.

1: procedure NearestSmallerValueParallel(array a, index i, index j)
2: if j = i then
3: NSV (i)← −1
4: else if j = i+ 1 then
5: if aj < ai then
6: NSV (i)← j
7: else
8: NSV (i)← −1
9: end if

10: NSV (j)← −1
11: else
12: mid← (i+ j)/2
13:

14: do in parallel
15: NearestSmallerValueParallel(a, i,mid)
16: NearestSmallerValueParallel(a,mid+ 1, j)
17: end parallel
18:

19: do in parallel
20: PrefixMin[i · · ·mid]← PrefixMinimumParallel(a, i,mid)
21: PrefixMin[mid+ 1 · · · j]← PrefixMinimumParallel(a,mid+ 1, j)
22: end parallel
23:

24: . Form PrefixMin of the array a[i · · · j]
25: for k ← mid+ 1 to j do in parallel
26: if PrefixMin[k] > PrefixMin[mid] then
27: PrefixMin[k]← PrefixMin[mid]
28: end if
29: end for
30:

31: . Combining the results of two halves to compute NSV of a[i · · · j].
32: for k ← i to mid do in parallel
33: if NSV (k) = −1 then
34: BinarySearch(a, k,mid+ 1, j)
35: end if
36: end for
37:

38: end if
39: end procedure
40:

41: procedure BinarySearch(array a, index k, index i, index j)
42: if j = i+ 1 then
43: if PrefixMin(i) = ai ∧ ai < ak then
44: NSV (k)← i
45: else if PrefixMin(j) = aj ∧ aj < ak then
46: NSV (k)← j
47: end if
48: else
49: mid← (i+ j)/2
50: if PrefixMin(mid) < ak then

Page 3

51: j ← mid
52: else if PrefixMin(mid) ≥ ak then
53: i← mid
54: end if
55: BinarySearch(a, k, i, j)
56: end if
57: end procedure
58:

Proof of Correctness: We will prove by induction on the size of the array n.

• Base Case: If n = 1 then due to line 2, the NSV (i) is set to −1, which is correct. If
n = 2 then due to line 4, the NSV (i) is set to j if aj < ai else it is set to −1.

• Inductive Hypothesis: Assume NSV of the two sub-arrays a[1 · · ·mid] and a[mid+1 · · ·n],
both of size n, is correct.

• Inductive Step: Consider an array of size 2n. Algorithm divide the array into two equal
size sub-arrays and compute the NSV s of the two sub-arrays independently. It then
combines the two NSV s array to form a final solution. The NSV values of the elements
in right sub-array will remain same in the final solution. Consider an element ak in left
sub-array such that NSV (k) = −1. Let there be an element al in right half such that
NSV (k) = l. The standard BinarySearch procedure with PrefixMin values as key
will set the NSV (k) to l. It is trivial to see that if condition at line 50 is satisfied then
NSV (k) is to left of the mid else its on right. The correctness of the BinarySearch
procedure can be established by simple inductive argument on the size of the array.

�

Analysis: The PrefixMin computation of n elements takes O(log(n)) time. The modifi-
cation of the PrefixMin values of the right half in parallel loop at line 25 takes O(1) time.
The BinarySearch procedure takes O(log(n) time and for element in left half it is called in
parallel. So the recurrence equation is

T
‖
ANSV (n, n) = T

‖
ANSV (n/2, n/2) +O(log(n/2))

Therefore, T
‖
ANSV (n, n) = O(log(n))

3. (a) Show how to obtain a better processor-time bound for the two versions of the prefix computation.
Recall that the first algorithm uses n log n processors and the second one uses n processors to obtain
the same parallel time bound of O(log n).

Solution: Given n elements a1, a2, · · · an, perform prefix computation to obtain S1, S2, · · ·Sn
where Si =

⊙
k=1 to i

ak. Using n log n processors:

1. Divide n elements into n
log(n) blocks each of size log(n).

2. For each block, perform partial prefix computation using a single processor. Let partial
prefix computation values of ith block be Si1, S

i
2, · · ·Silog(n). Number of processors needed

for this step are n
log(n) and time required is O(log(n)).

3. So final S(i−1) log(n)+k = Si(i−1) log(n)+k �
i⊙

j=2

Sj−1log(n). The second term can be thought

Page 4

of as a prefix computation value performed with S1
log(n), S

2
log(n) · · ·S

n/log(n)

log(n) as elements.

These prefix computation values can be performed using O(n
log(n) log(n

log(n))) processors

and time required is O(log(n
log(n))).

4. Each processor can update the partial prefix computation values of its block to obtain

final S(i−1) log(n)+k = Si(i−1) log(n)+k�
i⊙

j=2

Sj−1log(n). Number of processors needed are n
log(n)

and time required is O(log(n)).

Processor-Time Bound:

Number of processors =
n

log(n)
+

n

log(n)
log(

n

log(n)
) +

n

log(n)

= O(n)

Time taken = log(n) + log(
n

log(n)
) + log(n)

= O(log(n))

Therefore Processor-Time bound is O(n log(n)).

Using n processors: Step 3 of the above algorithm to perform prefix computation over the
partial sums can be done using O(n) processors and O(log(n)) time version algorithm. So the
required number of processors

Processor-Time Bound:

Number of processors =
n

log(n)
+

n

log(n)
+

n

log(n)

= O(
n

log(n)
)

Time taken = log(n) + log(
n

log(n)
) + log(n)

= O(log(n))

Therefore Processor-Time bound is O(n).

(b) Generalize the technique of clubbing k (a parameter between 1 and n) contiguous values, compute
the prefix recursively and then generate the missing values as a function of k and n.

Solution:

1. Divide n elements into n
k blocks each of size k.

2. For each block, perform partial prefix computation using a single processor. Let partial
prefix computation values of ith block be Si1, S

i
2, · · ·Sik. Number of processors needed for

this step are n
k and time required is O(k).

Page 5

3. So final S(i−1) k+j = Si(i−1) k+j �
i⊙
l=2

Sl−1j . The second term can be thought of as a prefix

computation value performed with S1
k, S

2
k · · ·S

n/k
k as elements. These prefix computation

values can be performed recursively. The time required is T (n/k).

4. Each processor can update the partial prefix computation values of its block to obtain

final S(i−1) k+j = Si(i−1) k+j �
i⊙
l=2

Sl−1j . Number of processors needed are n
log(n) and Time

required is O(k).

Time Analysis:

T(n) = O(k) + T (n/k) +O(k)

= O(k logkn)

4. Show how to sort n integers in the range [1 · · ·
√
n] using

√
n processors in O(

√
n) parallel steps. Specify

which PRAM model is used.

Solution:

1. Divide n elements into
√
n blocks each of size

√
n and assign each block to a processor.

2. Each processor pi performs a single pass over its block to count number of occurrences of each
integers in the range [1 · · ·

√
n]. Let Cji be the number of occurrences of integer i in block j.

Computing Cji ’s value of a block takes O(
√
n) time.

3. Final count of the number of occurrences of an integer is the sum of its number of occurrences

in each block computed in above step. So the number of occurrences of integer i is Ci =

√
n∑

j=1

Cji .

Computing all Ci’s takes O(
√
n) time.

4. Sorted sequence can be obtained by computing prefix sum over Ci’s. This step also takes
O(
√
n) time using single processor.

Time taken is O(
√
n) and the Number of processors required are also O(

√
n).

PRAM model used here is EREW as each of the Cji ’s and Ci’s are written and read exclusively by
single processor at a time.

Page 6

