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The Unicorn Runtime: Efficient distributed
shared memory programming for hybrid

CPU-GPU clusters
Tarun Beri, Sorav Bansal, and Subodh Kumar

Abstract—Programming hybrid CPU-GPU clusters is hard. This paper addresses this difficulty and presents the design and runtime
implementation of Unicorn – a parallel programming model for hybrid CPU-GPU clusters. In particular, this paper proves that efficient
distributed shared memory style programing is possible and its simplicity can be retained across CPUs and GPUs in a cluster, minus
the frustration of dealing with race conditions. Further, this can be done with a unified abstraction, avoiding much of the complication of
dealing with hybrid architectures. This is achieved with the help of transactional semantics (on shared global address spaces), deferred
bulk data synchronization, workload pipelining and various communication and computation scheduling optimizations. We describe the
said abstraction, our computation and communication scheduling system and report its performance on a few benchmarks like Matrix
Multiplication, LU Decomposition and 2D FFT. We find that parallelization of coarse-grained applications like matrix multiplication or 2D
FFT using our system requires only about 30 lines of C code to set up the runtime. The rest of the application code is regular single
CPU/GPU implementation. This indicates the ease of extending parallel code to a distributed environment. The execution is efficient as
well. When multiplying two square matrices of size 65536× 65536, Unicorn achieves a peak performance of 7.88 TFlop/s when run
over a cluster of 14 nodes with each node equipped with two Tesla M2070 GPUs and two 6-core Intel Xeon 2.67 GHz CPUs,
connected over a 32Gbps Infiniband network. In this paper, we also demonstrate that the Unicorn programming model can be
efficiently used to implement high level abstractions like MapReduce. We use such an extension to implement PageRank and report its
performance. For a sample web of 500 million web pages, our implementation completes a page rank iteration in about 18 seconds (on
average) on a 14-node cluster.
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1 INTRODUCTION

Achieving high performance on modern clusters with multi-
core CPUs and many-core GPUs can be tedious. Program-
mers have to overcome complexities arising out of hetero-
geneous architectures, non-uniform memory access latency,
network data transfers, overlapping data communication
with computations, scheduling and load balancing. Several
generic frameworks like Unicorn [1], StarPU-MPI [2], G-
Charm [3] and Legion [4] solve these problems to a varying
extent. While the latter three are primarily message-passing
systems, Unicorn provides a distributed shared memory
style programming environment. This paper specifically
focusses on the design, implementation and runtime opti-
mizations required to make such a system efficient.

Conventionally, shared memory programming [5] is
considered intuitive and familiar, but rather inefficient if
the memory is distributed across a network. As a re-
sult, message-passing systems have gained currency in dis-
tributed programming in spite of the fact that their program
structure is more complex as they leave data placement
and communication mostly to the application. Unicorn de-
livers simplicity by supporting deterministic execution of
distributed shared memory style programs. On the other
hand, prima-facie, this simplicity imposes significant over-
heads on the runtime. Hence, success depends critically on a
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careful design of the runtime to ensure that cluster devices
are kept busy by useful computation. This paper focusses
on Unicorn’s runtime and its optimizations that overcome
the traditional overheads of shared memory approach. In
part, this is made possible by a transactional style mem-
ory and bulk synchronicity [6]. In particular, the runtime
is able to hide remote data access latency behind coarse-
grained computation of work-items. It pipelines data check-
out (creating private local views of globally shared memory),
computation, and data check-in (from private views to the
shared memory, performing lazy resolution of conflicting
check-ins).

Unicorn [1] is a write-once, run-anywhere programming
model. A Unicorn application consists of a set of inter-
dependent tasks and can be thought of logically as BSP
(Bulk Synchronous Parallel) super-steps [6]. Tasks may also
hierarchically spawn other tasks. A task is ready to be
scheduled at the completion of all tasks it depends on.
The task graph is abstract and a program-time decision,
independent of the cluster topology. Our runtime maps
it dynamically to the presented cluster and executes it. A
task may request any number of concurrent subtasks, which
is a data-parallel work-sharing construct of a task, and is
individually scheduled on any available device (e.g., CPU
or GPU) in the cluster. Each subtask executes an application-
provided “kernel function,”1 which determines its share of

1. Kernels can be device-independent, or a user may provide opti-
mized kernels for each device type
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work based on its subtask ID and any task-wide parameters.
Unicorn schedules subtasks on devices and dynamically
balances their load, while also accounting for the location
of their data. There is an implied barrier at the end of a task.
However, the barrier’s overhead is effectively mitigated by
the balanced load. Further, the barrier can even be skipped
by subtasks whose input dependency is satisfied by the
subset of completed subtasks (of its preceding tasks).

Unicorn applications do not provide a dependency graph
of subtasks (the schedulable items). Rather, they specify
dependencies only among tasks. Subtasks of a task are con-
current with no inter-dependencies. This allows a natural
avenue to express a higher level of parallelism. More impor-
tantly, this not only makes graphs more compact, reducing
the runtime’s processing overhead, but also allows more
aggressive scheduling of subtasks and optimizations like
out-of-order subtask execution, arbitrary subtask grouping,
easy migration of subtasks across cluster nodes, etc.

Unicorn runtime supports allocation of global shared
memory regions called address spaces. Usually a task’s input
and output are stored here. While an address space is logi-
cally shared, it may be physically distributed across multi-
ple machines and devices by our runtime. An application-
provided callback lists the address space regions a subtask
needs to read or write. The subtask code operates only on
its local copy of the data. Its memory writes are visible
only to its dependent tasks, implying that any computation
requiring this output must either be in the same subtask or
in a subsequent task. Conflicting writes by different subtasks
are resolved by an application-provided callback. We have
chosen to omit any address space ‘flush’ or global read-
/write primitive and the nature of programming simplifies
significantly because of that choice. We demonstrate later
that this style of programming is still efficient and powerful
enough for many coarse-grained scientific applications.

Unicorn’s address spaces are inspired by the idea of
transactional memory. Each subtask logically checks-out its
local view from global shared address space and after op-
erating on it, the subtask checks-in its private view back to
the shared address space. These private views with deferred
synchronization lead to sequential consistency trivially. This
also avoids several data hazards and deadlocks among sub-
tasks, which again simplifies the application code. Thirdly,
this helps our runtime perform a scheduling optimization,
called multi-assign (section 4.3.3), where several independent
instances of a straggling subtask are started in the cluster.
Because of the transactional design of address spaces all
private views of all but one subtasks get trivially discarded.
This design also helps minimize address space coherence
messages in the cluster (section 3).

Besides multi-assign, the runtime employs several opti-
mizations (sections 3 and 4) for efficiency. Some of these
performance optimizations target scheduling, while others
focus on data transfers and minimizing control messages
within the runtime. The motivation and implementation of
these optimizations are the primary contributions of this
paper. These optimizations enable Unicorn to adopt a sim-
ple distributed shared memory based programming style
while retaining efficiency. This paper also explores various
optimization parameters. For example, we explore various
GPU cache policies. We study when to multi-assign and how

often the later assigned device finishes first. We analyze the
impact of variance in application controlled subtask size. We
also study the impact of changing input data availability
patterns in the cluster.

Another important contribution of this paper is to ex-
plore Unicorn as an extensible framework and orchestrate
its functionality into other well known programming mod-
els like MapReduce [7]. We use application-provided ker-
nel functions for the map stage whereas the application-
provided conflict resolution is used to reduce two subtasks at
a time. Section 5 evaluates this approach over PageRank [8]
computation for a collection of web pages. The map stage of
the experiment computes contributions of PageRank for all
outlinks in the web. The reduce stage accumulates individ-
ual contributions on all inlinks for each webpage. Results
demonstrate the efficiency of Unicorn’s implementation and
its MapReduce suitability in general.

2 PSEUDO CODE SAMPLE

This section provides an overview of the Unicorn pro-
gramming model by a pseudo code sample that multiplies
two square matrices (Figure 1). More details on Unicorn’s
programming model are presented in [1]. In the pseudo
code, the matrix multiply function (lines 3–30) takes matrix
and block dimensions as input. The first is the number of
rows/columns of the square matrices. The second is the
number of elements in rows/columns of each subtask. For
brevity, this sample assumes that matrix dim is divisible by
block dim. The sample first registers data subscription and
OpenCL based subtask execution callbacks (lines 6–7), and
then creates input and output address spaces (lines 13–15),
which are bound (lines 24–25) to the matrix multiplication
task submitted to Unicorn runtime for asynchronous execu-
tion (line 27). The purpose of data subscription callback is to
indicate access patterns and input data distribution among
subtasks. On the other hand, subtask execution callback
specifies the subtask execution logic. Each of the subtasks
executes matmul subsciption function to subscribe to their
input (or output) data (lines 50–52). The actual subscription
information can be specified as (offset, length) pairs for
contiguous subscriptions or in a quad-tuple format – (offset,
length, step, size) for block based subscriptions (lines 46–48).

In the example, we have omitted the core subtask logic,
for it is nothing but publicly available OpenCL implementa-
tion of matrix multiplication. Note that Unicorn subtasks can
be written more efficiently in languages closer to hardware
(i.e., CUDA or C/C++). However, for ease of programming,
we support the high level abstraction of OpenCL which
allows execution of same subtask code on CPUs and GPUs.

Unicorn is designed to treat data and tasks indepen-
dently. Thus, the lifetime of address spaces is explicitly
decoupled from tasks. This allows address spaces to outlive
and be used across multiple tasks. An address space can
be bound to a task in three modes – read-only, write-only
and read-write. The first one is useful for data sharing
across multiple concurrently running tasks. The other two,
however, need creation of private local views of subtasks
and synchronization for resolving conflicting writes. Note
that Unicorn allows concurrent tasks if they do not share
address spaces or the shared address spaces are bound in
read-only mode.
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1 struct matmul_conf { size_t matrix_dim, block_dim; };
2
3 matrix_multiply(matrix_dim, block_dim)
4 {
5 key = "MATMUL";
6 register_callback(key,SUBSCRIPTION, matmul_subscription);
7 register_callback(key, OPENCL, "matmul_ocl", "prog.ocl");
8
9 if(get_host() == 0) // Submit task from single host

10 {
11 // create address spaces
12 size = matrix_dim * matrix_dim * sizeof(float);
13 input1 = malloc_shared(size);
14 input2 = malloc_shared(size);
15 output = malloc_shared(size);
16
17 initialize_input(input1, input2); // application code
18
19 // create task -- one subtask per output matrix block
20 block_count = matrix_dim / block_dim;
21 subtasks = block_count * block_count;
22 task = create_task(key, subtasks, matmul_conf(matrix_dim

, block_dim));
23
24 bind_address_spaces(task, READ_ONLY, input1, input2);
25 bind_address_spaces(task, WRITE_ONLY, output);
26
27 submit_task(task);
28 wait_for_task_completion(task);
29 }
30 }

31 matmul_subscription(task, device, subtask)
32 {
33 matmul_conf* conf = (matmul_conf*)(task.conf);
34
35 block_count = conf→matrix_dim / conf→block_dim;
36 block_row = (subtask.id / block_count);
37 block_column = (subtask.id % block_count);
38 matrix_row_size = conf→matrix_dim * sizeof(float);
39 block_row_size = conf→block_dim * sizeof(float);
40 block_row_offset = block_row * conf→block_dim *

matrix_row_size;
41 block_column_offset = block_column * conf→block_dim *

sizeof(float);
42 block_offset = block_row_offset + block_column_offset;
43
44 // Specify subscriptions - (offset, size, step, count).

First input matrix subscribes to all blocks in the
row block_row, second input matrix subscribes to all
blocks in the column block_column, output matrix
subscribes to the block at (block_row, block_column)

45
46 block_subscription_info bsinfo0(block_row_offset,

matrix_row_size, matrix_row_size, conf→block_dim);
47 block_subscription_info bsinfo1(block_column_offset,

block_row_size, matrix_row_size, conf→matrix_dim);
48 block_subscription_info bsinfo2(block_offset,

block_row_size, matrix_row_size, conf→block_dim);
49
50 subscribe(task.id, device.id, subtask.id, 0, bsinfo0);
51 subscribe(task.id, device.id, subtask.id, 1, bsinfo1);
52 subscribe(task.id, device.id, subtask.id, 2, bsinfo2);
53
54 // OpenCL kernel launch configuration
55 set_launch_conf(task.id, device.id, subtask.id, ...);
56 }

Fig. 1: Unicorn program for Matrix Multiplication

3 SHARED ADDRESS SPACES

Unicorn applications can request the runtime to allocate
address spaces. A task binds itself to the address spaces it
plans to access, specifying read-only, write-only or read-write
intent. All subtasks of the task may then access the bound
address spaces. Address spaces may be shared by multi-
ple tasks. Two examples are: a task’s output (write-only)
address space bound as input (read-only) by a subsequent
task, or an address space containing constant data serving
as input to a series of tasks. Address spaces are generally
distributed with their data spread across multiple nodes.

Subtasks (of tasks) operate upon their bound address
spaces by means of subscriptions. Read subscriptions define
address space bytes required for computations done by the
subtask and write subscriptions define address space bytes
produced by the subtask (as output). These bytes can form
a single contiguous region of memory within the address

Fig. 2: Address Space Ownerships – PD represents Owner-
ship Directory, TD represents Temporary Ownership Direc-
tory, x represents non-existent directory, red text represents
changes from last state and light blue cells represent direc-
tory changes via explicit ownership update messages

space or a set of uniformly or randomly distributed contigu-
ous memory regions. A subtask may register any number
of such subscriptions with the runtime. Each subscription
is specified using the quad-tuple (offset, length, step, size).
This format enables applications to specify generally used
contiguous, block based and strided subscriptions in very
few calls. It also reduces the number of subscription calls
the runtime processes per subtask. Block and strided sub-
scription are similar to MPI Type vector [9].

As tasks execute and their subtask subscriptions are
processed, address spaces are logically fragmented into
memory regions defined by these subscriptions. Internally,
address spaces store these logical fragmentations (called data
regions) in terms of their quad-tuples. Each of these data
regions have an associated owner node in the cluster and this
owner node notionally contains the entire data corresponding
to the data region. The mapping of data regions to correspond-
ing owner nodes is stored in a directory called the address space
ownership directory, or simply the directory.

An application may create any number of address spaces
from any node in the cluster. The node on which an address
space is incarnated is called its creator node. Internally, Uni-
corn also assigns a master node to every address space created
by the application. As explained below, the master node
serves as an intermediary to enable efficient management
of the directory. Master nodes are chosen in round robin
fashion to balance the load of all address space routing
requests among all cluster nodes. The master node contains
the master copy of the directory for a given address space.
Other nodes using that address space generally contain a
partial map: a subset of master ownership directory. If these
other nodes require a region that exists in their partial map,
they directly send region fetch requests to the corresponding
owner. On the other hand, if a region is not present in
the partial map, they route address space fetches through
the master node. The master then consults its ownership
directory and forwards the request to the actual owner
containing the data region in question.

When an address space is created, it contains a single
region. The ownership directory on all nodes is updated to
map this region to the selected master (state I of figure 2).
As a subtask executes and commits its writes (originally in
its private view) to the address space, the node on which
the subtask executed becomes the new owner of the data re-
gions write-subscribed by the subtask. (For multiple writers,
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the final owner is where the final reduction occurs). At the
end of a task, the new owner node records this ownership
in its directory and also sends this ownership update to
the master (state IV of figure 2). If the master observes a
new owner node, it updates its own map and forwards the
ownership update message to the previous owner(s), which
also updates its map. All other nodes always initialize their
maps to point to the master at the end of the task. Thus, at
the beginning of a task all nodes map to themselves data
regions they own and point to the corresponding master for
all other data regions. The master, however, always knows
the true locations of all data regions in the address space.

Unicorn tasks guarantee transactional semantics. This
means that address space ownership updates are reflected
only at task boundaries and all subtasks of a task see the
same address space data during task execution. In other
words, even for an address space marked read-write, where
a few subtasks are updating the address space while a few
are reading it, the ones that are reading must not see the
new data but read the state at the inception of the task.
Our address spaces achieve transactional semantics simply
by deferring address space ownership updates to the end
of the task. Since ownerships are not modified during task
execution, all subtasks continue to refer to the original data
location until task boundary. The following sequence of
steps define our delayed ownership update semantics –

1) All nodes hold information about write subscrip-
tions of all locally committed subtasks in a local data
structure. This information is a set ‘S’ of quad tuples
(offset, length, step, size).

2) At the end of the task, all nodes commit ‘S’ into their
address space ownership directories and also send an
ownership update message to the master node. This
message also carries the set ‘S’.

3) The master commits the received set ‘S’ from every
other node. It records the data regions that have
changed owners (during the task) and sends the pre-
vious owners another ownership update message.

4) All non-master nodes process the ownership update
message from the master and record master as the
new owner of the data regions in the message.

Note that we maintain one set ‘S’ per master node. For
example, if a task employs three address spaces with two
having the same master and the third having a different
master, we maintain only two sets, one for each master.

Often, read subscriptions of subtasks (of a task) overlap.
In such cases, it is prudent that data once fetched (by
a subtask) not be re-fetched when requested by another
subtask on the same node. To accomplish this, our runtime
records all data fetched on a node in a separate address
space directory. This directory is temporary as its lifetime
is bound to that of the ongoing task and is thus called
temporary ownership directory. At inception, the temporary
directory is a logical replica of the address space ownership
directory on every node (state II of figure 2). Specifically, as
data is fetched, it records the updates (state III of figure
2). For every read subscription request from a subtask, the
temporary directory is the one consulted and not the main
directory. This ensures that no data is transferred again
during the lifetime of the task. Note that this mechanism

also conforms to the transactional semantics guaranteed by
our runtime. It further allows several nodes to be simul-
taneously designated temporary owners of a data region
without the need of an explicit handshake (or ownership
update message) for data sharing.

At the end of the task, the data fetched for reading (and
recorded in temporary directory) may become stale as data
ownerships could have changed and the new data owner
could have written new data in that region. Thus, at task
boundaries, the temporary directories are simply discarded.
However, if a task does not write to an address space (and
subscribes to it read-only), as an optimization its temporary
directory entries are retained for the subsequent task.

To analyze the overhead of our ownership update pro-
tocol, we consider a task executing on an N node cluster
and using K address spaces, K > N. Our master selection
mechanism ensures that every node is master of at least one
address space. Let’s assume that subtasks on node j make
Wij write subscriptions for address space i. Thus the total
number of write subscriptions in the cluster is equal to

M =
K∑
i=1

N∑
j=1

Wij

Updating ownerships at the first instance would mean
sending (or perhaps broadcasting) at least M ownership
update messages in the cluster. However, by delaying these
messages to task boundaries and by sending only one
ownership update message per master node, we reduce the
number of ownership update messages generated in the
cluster. In this example, every node being master of at least
one address space receives N-1 ownership update messages
and every master sends out a similar number of messages
(in the worst case) to non-masters. Thus, the maximum
number of ownership update messages possible with our
protocol is 2N(N-1), which is significantly fewer than M.

Besides transactional semantics, the protocol ensures
efficiency as no explicit ownership update messages are
required during task execution. Only at the end of the task,
a few messages are exchanged on the change of ownership
of any data region. To further limit the number of such
messages, we aggressively reduce address space fragmen-
tation by combining adjacent directory records. Specifying
subscriptions in terms of block regions further reduces the
number of directory entries. Note that we do not employ
the usual MSI coherence protocol (where cache lines are
explicitly tagged to be Modified, Shared or Invalid) as it has
the potential to generate too many cache invalidations.

4 RUNTIME SYSTEM

This section describes the design of Unicorn’s runtime along
with the motivation for design choices and trade-offs. We
also discuss optimizations that enable our runtime.

4.1 Runtime Components

On initialization, Unicorn starts one MPI process per node
in the cluster. This process begins by creating an instance of
the controller (Figure 3). The controller manages the creation,
destruction and lifetime of all other runtime components.
These include the Profiling Manager and two subsystems of
the runtime – network subsystem and scheduling subsystem.
The controller is also the interface between the application
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Fig. 3: Unicorn runtime – Light orange region represents the
instance of the runtime on each node in the cluster

and rest of the runtime. All application requests like creation
and submission of tasks, creation and destruction of address
spaces, etc. pass through the controller. User space callbacks
are also executed through the controller.

Once the controller initializes other runtime components,
they directly talk to each other without the controller’s
involvement. All modules store diagnostic information with
the Profiling Manager. The information collected by the Pro-
filing Manager on all nodes is accumulated on MPI master
node at application shutdown. This data may be dumped to
stdout/stderr or may be sent to Profiling and Analysis Engine
for further processing. The engine also converts the data
into readily consumable graphical and tabular formats for
performance debugging and diagnosis. More details on this
are beyond the scope of this paper.

The network and scheduling subsystems comprise threads
that manage cluster-wide operations like subtask schedul-
ing and data exchange between nodes. All control messages
(generated by the runtime) and all data transfers (requested
by executing subtasks) destined for remote nodes are routed
through the Communication Manager, which filters duplicate
requests made by various subtasks and also combines mul-
tiple requests targeted for same destination node, when-
ever possible. The network subsystem is a collection of three
threads and uses MPI THREAD MULTIPLE. One of these
threads is dedicated to subtask data transfers across nodes
which are classified as heavy operations. The other two are de-
signed for relatively light operations and respectively handle
fixed size requests and variable size requests. Fixed size requests
are the ones whose data size is pre-known and special MPI
optimizations that re-use the same data buffers repeatedly
are employed. Variable size data requests have varying
lengths and buffers are not pre-allocated for those. Rather
they are handled using MPI Probe in a separate thread.
Segregating heavy and light operations also allows critical
control messages in the runtime to be transferred quickly.
This indirectly helps asynchrony by keeping most runtime
threads active rather than waiting on a few commands.

The scheduling subsystem is a two-level hierarchy of
threads with “scheduler thread” employing a “compute
thread” for every device (i.e., CPU core and GPU) on the
node. The Device Manager manages these compute threads,
each of which have an exclusive priority queue. All com-
mands that are targeted for execution on a device are
enqueued in the corresponding priority queue. Each com-

pute thread has a helper Memory Module. For CPU compute
threads the module manages sharing of read-only address
space data and creation/destruction of virtual memory for
local working copies of the address space subscriptions of
the subtasks. For GPU compute threads, the module employs
a software cache for efficient sharing of scarce GPU memory
between subtasks. It also manages the creation and destruc-
tion of pinned memory buffers used for bidirectional Direct
Memory Access (DMA) transfers between CPU and GPU.

The Task Manager enqueues each task submitted by the
application and submits them for execution (to the Schedul-
ing Manager) when all its dependencies are fulfilled. This is
accompanied by creation of a Subtask Manager, Task Scheduler
and Steal Agent. The Subtask Manager keeps track of the
subscriptions and data transfers of each subtask executing
on the node. It also tracks the subtask execution times,
which helps estimate the relative execution rates at different
cluster devices. This also helps in determining if a subtask
is straggling and if it should be multi-assigned to some
other device. The Task Scheduler co-operates with the Subtask
Manager and the Scheduling Manager for executing a subtask
and collecting its acknowledgement. The Steal Agent’s role is
limited to directing an incoming steal request to the device
with the highest load, thereby reducing the number of steal
attempts in the cluster (section 4.3.2).

The Scheduling Manager handles scheduling of all tasks
submitted by the application. Like compute threads, it has
a dedicated thread backed by an exclusive priority queue.
The Task Scheduler of every task enqueues subtasks in the
Scheduling Manager’s queue and it schedules them for local
or remote devices (using the Communication Manager). When
a device finishes execution of its subtasks, an acknowledge-
ment is sent to the corresponding Task Scheduler through the
Scheduling Managers on various nodes communicating via
their respective Communication Managers.

The default Unicorn scheduler (section 4.3) is locality-
oblivious and based upon two-level work stealing assisted
by Steal Agents. However, a task may opt for locality aware
scheduling (section 4.3.4), in which case data locality (on
cluster nodes) is incorporated into scheduling decisions.
Having a different system-wide Scheduling Manager and a
Task scheduler per task allows Unicorn to employ different
scheduling policies for different tasks running at the same
time. However, the common functionality is abstracted out
into the system-wide Scheduling Manager.

4.2 Network Subsystem
Distributed systems are often bottlenecked by communi-
cation. Efficiently transferring data across the network is
critical for sustained performance in a cluster computing
environment. Our network subsystem is optimized for per-
formance and works closely with compute threads and address
spaces, merging duplicate and overlapping requests, reduc-
ing both request and returned data message counts and
sizes. Besides, subtask data fetch requests are given high
priority while the prefetch requests for subtasks anticipated
to run in the future are given lower priority. The subsystem
supports lossless compression of transferred data (section
4.6). This is particularly important for large data transfers.

Recall that concurrently executing Unicorn subtasks may
share part of their input data by subscribing to overlapping
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regions of input address spaces. For each subtask subscrip-
tion (specified as (offset, length) pairs or quad tuples (offset,
length, step, count)), our network subsystem queries the
address space directory for the corresponding data location
in the cluster. The query response may point to a local data
location if the data is resident locally on the node. In case
the data is not locally resident, it may already be enroute
due to an earlier request or a new request must be initiated.
In either case the memory module returns a unique handle
(internally implemented like pthread signal-wait) on which
the calling compute thread can wait till the data arrives.

The network subsystem initiates a remote data fetch
against this handle if the request does not fully overlap
with previous requests. An R-tree [10] is used for overlap
detection. When the data fetch completes, the handle is
notified and the waiting thread is signaled. Address space
query and handle creation happen atomically, ensuring that
any other compute thread requiring the same data is returned
the same handle to wait on. In a typical scenario, a compute
thread may wait on several such handles and a handle may
be waited on by several compute threads.

In our implementation, a subtask first issues all sub-
scription requests and collects all the remote handles it
depends on and then an aggregate handle is created which
it actually waits on. The aggregate handle is unique to a
compute thread while the internal handles may be shared
by several compute threads. Handles created for remote data
fetch for a subtask may be destined for one or more nodes.
Our network subsystem combines them into a single request
to the data owner. The response, however, is separate for
different handles, as this helps earlier awakening of compute
threads waiting upon a subset of handles.

In addition, message count is also reduced by piggy-
backing non-urgent control messages on other messages.
For example, address space ownership update messages
(section 3) are combined with subtask completion acknowl-
edgements. This reduces network congestion making way
for higher priority messages.

Often subtasks access data in patterns. This is especially
true of regular coarse-grained experiments where a subtask
may access multiple contiguous ranges of data with uni-
form separation. In such cases, our runtime detects access
patterns (like block or strided) using the R-tree and instead
of issuing multiple remote data transfer requests for each
subtask, one unified request is issued. At the remote end, the
data is packed before being sent to the requestor where it is
unpacked and mapped into the requesting subtask’s local
view. This optimization helps scalability (by preventing
flooding of the network with too many small data transfer
requests) and simplifies application programs (which do not
need to consider data and communication granularity).

4.3 Scheduling Subsystem

Unicorn’s scheduling subsystem is both proactive and re-
active. It factors current load when scheduling each sub-
task. With substantial variance in system loads and coarse
grained subtasks’ loads however, even one job can impede
the entire application. Hence our scheduler adapts, re-
assigning lagging jobs.

Unicorn employs a work stealing scheduler [11], [12] to
balance load on various cluster devices. In work stealing,

a device (called stealer) that has exhausted all its work
selects another device (called victim) with potentially out-
standing work, requesting a share of its work so that both
can together achieve faster completion. Although work
stealing (with random victim selection) has proven to be
quite effective in several parallel systems, it poses several
challenges in our context of hybrid CPU-GPU clusters. First,
care is needed to limit the overhead and latency of stealing.
Secondly, the effectiveness of work-stealing tends to reduce
as computational disparity and heterogeneity (memory hier-
archy, device architecture (x86 64/Fermi/Kepler), program-
ming styles (OpenCL/CUDA/C++)) between devices grow.
CPUs allow threads to be scheduled on a single core, but
GPUs do not allow per-core scheduling and kernels can
occupy the entire GPU2. Subtasks large enough to effectively
use the GPU can be too slow on the CPU. Shorter ones
may improve CPU performance, but GPUs remain under-
utilized. In our tests, a BLAS [13] based sequential imple-
mentation of multiplication of two dense square matrices
with 8K elements each (on Intel Xeon X5650) was outper-
formed by a CUBLAS [14] based implementation (on Tesla
M2070) by a factor of 33x+. Similarly, a BLAS based block
LU-Decomposition on the GPU reported 10x+ speedup over
the sequential implementation. This wide disparity between
CPUs and GPUs poses scheduling challenges.

Our scheduler makes subtask assignments in groups.
Subtasks in the group are sequentially executed starting
with the first one. While a device is executing the first
subtask in the assigned group, the next subtask over-
laps its communication with the ongoing computation of
the first subtask. Similarly, the third subtask overlaps its
communication with the second subtask’s computation.
This continues for all subsequent subtasks in the group.
This mechanism is especially useful for GPUs capable
of compute-communication overlap and multiple kernel
launches, where we create a pipeline of subtasks. At any
given time, one subtask may be transferring its data to
the GPU, one or more subtasks may be executing and one
subtask may be copying its data out of the GPU.

4.3.1 Handling CPU-GPU Performance Disparity
The CPU-GPU performance disparity can lead an applica-
tion programmer to design work-units differently for dif-
ferent devices. But this would compromise abstraction and
simplicity of programming. In our framework, applications
logically partition tasks and remain unaware of where each
subtask is scheduled. Dynamically adapting subtask sizes to
each execution environment can be tedious for an applica-
tion. An option is to group, say, multiple CPU cores together
into a single device, but this can become complicated with
a large number of device types with diverse capabilities.
Additionally, this would also compromise the simplicity of
the programming model as each kernel must execute on a
specific “set of devices.” This also eliminates the liberty to
use existing sequential CPU functions as subtask kernels,
an important design goal for us. Another alternative is to
envision a subtask as a set of work-items and schedule
a single work-item per CPU core. This is analogous to
OpenCL’s [15] work-group and work-item.

2. We do not consider kernel fusion, allowing the user to devise the
most efficient kernel.
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Each work-item is intended to run on one CPU core of

the work-group and the maximum size of the work-group
created for a subtask is equal to the number of CPU cores
on a node. The final size of a work-group (for subtasks of
a task) is, however, computed using binary search over the
range [1, number of CPU cores]. Our algorithm requires at
least two subtasks to bootstrap the binary search. For the
first subtask, the size of work-group is set to the number of
CPU cores on the node and for the second subtask the size
of work-group is set to half the number of CPU cores. Next,
we compare the execution times of both these subtasks. If
the former one’s execution time is shorter, the size of work-
group for the third subtask is set to three-fourth the number
of CPU cores. On the other hand, if the latter execution time
is longer, then the size of work-group created for the third
subtask is one-fourth the total number of CPU cores. This
dynamic adjustment continues until the end of the task.

This dynamic calibration ensures that changing system
load is effectively dealt with and CPU cores do not over-
execute subtasks. Over-executing can be detrimental not
only to the subtasks executed by CPUs but to the ones exe-
cuted by GPUs as well. First, because several CPU cycles are
required to complete GPU’s work. If CPUs remain busy with
other work, they won’t be able to sufficiently keep the GPU
pipeline busy by moving data to/from pinned memory
(and GPUs) and by launching GPU kernels. Further, large
work on these slower cores also unnecessarily overload the
memory and network throughputs at these nodes.

By resizing subtasks at runtime, Unicorn is able to sup-
port a wide disparity among devices’ computation powers.
For example, on a node with, say, 16 cores, a CPU subtask
may be decomposed into up to 16 smaller units, each sched-
uled on one core. On the other hand, GPU subtasks may be
logically grouped into bigger units. Multiple GPU subtasks
run concurrently using CUDA streams [16]. With, say, 16
streams a disparity of 1:256 in the load of subtasks can
be supported. Results in section 5.5.2 show our runtime’s
effectiveness in handling such skew on a variety of subtasks.

4.3.2 Work Stealing in Unicorn
The benefit of dynamic scheduling is that it responds not
only to varying subtask load and compute unit capacity but
also to varying network throughput. Unicorn scheduler be-
gins a task by assigning an equal number of subtasks to each
available device. Once a device nears completion, it steals
subtasks from another device. We employ two-level random
stealing, where a stealer first tries to steal from a busy device
on the same node. On failure, it requests the steal-agent on
a randomly selected remote node, which in turn attempts
to steal from its local devices. Although one might extend
shared-memory algorithms to stealing over shared address
spaces or one sided MPI communication [12], we find the
overheads too high for that. On the other hand our runtime
is already based on multiple asynchronous threads on each
node and it is easier to use that runtime infrastructure for
load stealing without incurring loss in compute threads. Our
pipelined schedule implies that the subtasks may be

1) idle,
2) waiting for data,
3) ready for execution, or
4) executing.

Our lock-free steal algorithm allows steal from any stage
from idle to ready for execution. (Steals from stage 4 is al-
lowed as a special case discussed in section 4.3.3). The steal-
agent on each node helps accomplish this as it maintains
the count of outstanding subtasks in each stage for all local
devices on its node and also monitors their execution rates.
(Since we do not model subtask heterogeneity, we simplify
by using the past rate as a predictor for future rate).

We limit the stealer’s capability to steal from any stage
of the pipeline by associating an aggression level (a measure
of the stealer’s execution speed and idle time while waiting
for steal) with every device. We keep GPUs at the maximum
aggression level (3) while the aggression of CPUs increases
with the number of consecutive failed steal attempts. CPUs
start with aggression 1 and gradually increase to 3 after
N/2 consecutive steal failures, where N is the number of
nodes executing the task. Note that each device records the
number of steal requests made by them and their outcomes
(success or failure). Thus, our two-level victim selection
technique proceeds as follows for device dij on node i:

1) In first attempt set victim v = i, otherwise, choose
random victim v, different from victims selected in
this round. (Round resets when a victim is found or
no potential agents remain.)

2) Send steal request to the steal agent of node v.
The steal request includes the measured subtask
execution rate, Rij of dij and its aggression level
aij , a value in range [1,3].

3) Agent v selects device dvw that is expected to com-
plete its queue the last among all devices of node
v. (i.e., the highest value of Qvw

Rvw
, where Q stands

for the length of the queue at the given device). A
subtask in stage k is counted in Q only if aij >= k.

To further reduce the number of steal attempts in the
cluster, a range of subtasks is stolen. We compare the de-
vices’ execution rates to decide the quantum of the final
steal: dQvw × Rij

Rij+Rvw
e. If this is less than 1, steal fails.

In contrast, a one level stealing algorithm, where a de-
vice directly steals from another randomly selected device,
generates too many steal requests and is not scalable. For ex-
ample, if we assume N nodes and D devices per node, and
that at a time t, every device has a probability pt of having
an empty queue. The probability of a one level random steal
attempt being successful is 1 – pt

N×D , while that of steal from a

random steal agent is 1 – pD
t

N . Our experiments described in
chapter 5 also demonstrate this improvement. We do not see
the benefit of a deeper hierarchy (e.g. multiple steal-groups
on a node [17]) due to its management overheads. However,
for larger clusters it is possible that organizing nodes into
hierarchical steal-groups will be useful.

Work stealing in Unicorn is light weight, as only the
subtask ID is ‘stolen’ and not the associated data. Further,
Unicorn uses two techniques to limit the overhead of steal-
ing. First, it employs a steal-agent per node in the cluster.
Due to shared memory usage, the agent is able to easily
monitor local load and track the ability of each local device
to service an incoming steal request. This guided victim
selection helps making more targeted steal requests, thereby
reducing the number of unsuccessful steal attempts in the
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cluster (section 5.3). The selection of a victim node for a
steal request remains random.

Secondly, Unicorn employs a proactive stealing tech-
nique called ProSteal [18]. When a device runs out of work
(i.e., subtasks), its task pipeline stalls. It can no longer
overlap communication of subtasks with computation of
others. It needs to prime its task pipeline afresh after it steals
a new subtask. Unicorn prevents this performance loss in
the system by stealing early (especially for GPU devices)
with one or more subtasks still pending with the device.
The exact number of subtasks pending with a device at the
time of steal is computed dynamically based on the device’s
rate of subtask execution and the observed latency to prime
the pipeline after a stall.

4.3.3 Multi-Assign: Handling Stragglers

Unicorn scheduling is non-preemptive, i.e., there is no mi-
gration of a running subtask, along with its running state,
from one device to another. If a subtask takes much longer
than others to finish, Unicorn may multi-assign that subtask,
i.e., assign the same subtask to another device [19], [20].
At this stage, multiple instances of the same subtask may
be running in the cluster; there is little benefit of killing it
at the straggler. By this stage, all remaining subtasks have
been stolen away from that device. Hence, the instance that
finishes first commits its results to the global address space.
Other running instances of the subtask are cancelled and
their output (in their private views) is discarded.

We employ a simple protocol to determine the subtask
instances to be cancelled. The list of all subsequent assignees
is maintained at the original assignee and each subsequent
assignee records the ID of the original. When a device
finishes, it informs the original assignee, which in turn
sends cancellation messages to all others. The commit is
performed by the finisher if it receives the cancellation
message with its ID.

Multi-assign is implemented as a part of stealing. In
particular, we allow a subtask in ‘executing’ stage to also
be stolen, while it is allowed to continue executing. Such
steals are only allowed when the steal request specifically
includes a multi-assign flag (i.e., the stealing device is at
maximum aggression level (section 4.3.2)) and the victim is
not a multi-assignee. In this case, the victim is marked as
the original assignee and the stealer as a multi-assignee.

We multi-assign only if the stealing device’s estimated
completion time is less than the victim’s remaining estimated
completion time. The estimated completion time of a device
is based on its observed execution rate and observed av-
erage data fetch time per subtask. We use the remaining
time for victim because it has already executed a part of
the subtask at the time of multi-assign. Thus, the time it has
already spent in execution of the subtask is subtracted from
its total estimated time. As an additional heuristic, a subtask
is only multi-assigned to a device on a different node or to
a different device type on the same node (CPU subtasks
are multi-assigned to GPU and vice versa). This reduces
the chance of similarly slow execution on the re-assigned
device. Experiments show significantly faster completion
times due to multi-assignment. This is especially useful in
networked environments, where the effective data transfer
bandwidths may be variable and a device on a node with

slow link may not receive its input fast enough, delaying the
entire task (and its dependents).

4.3.4 Locality Aware Scheduling
Often a coarse-grained computation is decomposed such
that adjacent subtasks exhibit spatial locality and access
adjacent regions of input address spaces. However, this is
sometimes infeasible or it is overly complicated to write
programs in this fashion. To help such application pro-
grams, our runtime maintains a distributed map of data
resident on various nodes (section 3) and uses it to estimate
the affinity of work to different nodes to guide scheduling.
Traditionally, locality-aware scheduling has mostly focused
on maximizing reuse of resident data. In contrast, Unicorn
also focuses on scheduling subtasks such that the cost of
fetching the non-resident data is minimized. This is because
significant time can be lost in fetching remote data and
different devices are able to consume data at different rates.
More information on this can be found in [21].

4.4 Software GPU Cache
Moving data between CPUs and GPUs is a relatively ex-
pensive operation. For performance reasons, it is important
to reduce the frequency and volume of such data copies.
Subtasks of a Unicorn task are allowed to have overlapping
subscriptions. In such situation, it is beneficial to transfer
data from CPU to GPU only once and use it for as many
subtasks as possible. Similarly, output produced by a Uni-
corn task may serve as input to a subsequent task. In this
case, data can be retained on GPUs at the end of the task
in anticipation that a subtask (of a future task) may be
scheduled on the same GPU.

Our runtime maintains an on-GPU software cache to
optimize DMA transfers to the device. The cache allows
a GPU to skip a data transfer in case the data is already
resident. This scheme is suitable for both the scenarios
described above, i.e., multiple subtasks of a task share read-
only data and data written by a subtask of a task is later
read by a subtask of another task. An exclusive instance of
GPU cache is created for every GPU in the cluster.

Unicorn’s runtime supports five GPU cache eviction
policies – LRU (least recently used), MRU (most recently
used), LFU (least frequently used), MFU (most frequently
used) and Random. The eviction policies come into play
when GPU has low memory, which needs to be freed up
by evicting one or more cache entries. By default, our
current implementation employs LRU cache eviction policy.
Depending on the nature of the application, other cache
eviction policies may be requested. A study of performance
implications of these policies is presented in section 5.

Unlike hardware caches, we do not have a concept of
cache lines that get invalidated. Rather, we invalidate entire
subtask subscription. A study on a true cache implemen-
tation versus ours may provide pointers for a better cache
design. This is beyond the scope of this paper.

4.5 Conflict Resolution
Unicorn subtasks may subscribe to overlapping regions in
a writable address space. This is treated as a write conflict
among subtasks and the application must explicitly specify
a reduction mechanism to resolve the conflict. Otherwise,
the output is undefined. Unicorn runtime provides a set of
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built-in reduction operators. Applications are also free to
define custom reductions.

Unicorn treats reduction as a first-class citizen and the
outputs of subtasks are aggressively reduced as soon as
they are ready. Thus, at any given time, a few subtasks
may be in the execution stage while a few others may be in
reduction stage. Aggressively performing reductions helps
in reducing overall execution time as these are executed
during the time subtasks await their remote subscriptions
to be fetched. Secondly, this reduces memory pressure on
the system. As soon as two subtasks reduce, the memory of
one of these is freed. Steal attempts are made only if there is
no reduction to perform. GPU kernels are by design multi-
threaded. To efficiently perform reduction, Unicorn employs
OpenMP’s parallel for construct to speedup execution of
built-in reduction operators. Further, before transmitting
data to remote nodes for reduction, it is compressed by our
network subsystem. We also compress data before transmit-
ting from GPUs to CPUs (section 4.6). Unicorn provides a
few built-in compression algorithms but applications may
also provide their own.

4.6 MapReduce Extension and Data Compression

The MapReduce [7] programming model visualizes a task
in two stages. The first stage (called map stage) marshals
the input data into different groups while the second stage
(called reduce stage) consumes these groups and produces
a reduction (or summarization) of each. Both stages are
individually parallelizable and can be run distributedly over
a cluster. The reduce stage, however, must start after the
map stage is complete.

In this paper, we explore Unicorn’s suitability to realize
this high level programming abstraction. For the map stage,
we deploy Unicorn’s subtask execution callback while the
reduce stage is executed by data reduction callback. Note
that these two callbacks are already executed sequentially
by Unicorn’s runtime. In the former callback, subtasks con-
currently process disjoint data (subscribed by of data sub-
scription callback) from input address space(s) and produce a
logical grouping in output address space(s). For example, in
PageRank experiment (section 5), the callback results in each
subtask producing an array whose indices represent web
page IDs and values are real numbers that represent page
rank contributions from the data (or web pages) processed
by this subtask. For the reduce stage, our runtime takes two
subtasks at a time and logically sums them up (i.e., adds
the page rank values at every index of the output of both
subtasks). Note that Unicorn provides built-in functions for
mostly used reductions operations like summation.

In such experiments, however, the data produced by
map stage is sparse because a subtask contributes page
ranks to only a small fraction of the web. Thus, most indices
in a subtask’s output array (in the address space) are zero. In
a cluster environment like Unicorn, data reduction requires
movement of a lot of data. This includes both inter-node
data transfers and GPU to CPU transfers. Our runtime
provides a few simple compression routines like Run Length
Encoding (RLE) where a sequence of frequently occurring
values (like zero) in a sparse array are replaced by their run
lengths. Results in section 5 provide more insight into the
performance benefits of this scheme.

5 EXPERIMENTS

We have implemented several coarse-grained scientific com-
putation benchmarks over Unicorn. These include image
convolution, matrix multiplication, LU matrix decomposi-
tion, two-dimensional fast Fourier transform (2D-FFT) and
PageRank. These benchmarks have well known paralleliza-
tions and are diverse enough for studying different kinds of
complexities. Image convolution is embarrassingly parallel,
but each subtask needs a fringe around its tile, which
is produced by another subtask. Matrix multiplication is
computationally intensive with heavy data transfer require-
ments. LU decomposition has a nested task hierarchy, 2D-
FFT involves a parallelization-unfriendly matrix transpose
operation and finally PageRank is a MapReduce based
computation. The goal of these experiments is to assess
conditions under which our runtime responds well.

Our experimental cluster has fourteen nodes, each
equipped with two 6-core Intel Xeon X5650 2.67 GHz pro-
cessors and two Tesla M2070 GPUs. The nodes run CentOS
6.2 with CUDA 5.5. For communication, we use Open MPI
[22] 1.4.5 over an InfiniBand [23] network with 32Gbps peak
bandwidth.

Our runtime allows restricting applications to only cer-
tain cores, e.g., only CPU cores, only GPUs, or both, How-
ever, CPU cores, being main OS vehicles, are not used purely
for computation but also other support functions like CPU-
GPU data transfers, GPU kernel launches, network data
transfers, etc. When subtask data usage is high (e.g., in
several hundred MBs per subtask), significant CPU load
is incurred for CPU↔GPU data transfers. Based on our
empirical analysis, we withhold up to two CPU cores (per
node) from subtask execution when both CPUs and GPUs
are requested by an application. In section 5.7.1, we study
the performance impact of varying the number of CPU cores
employed in computations. This also provides an insight
into the library’s runtime overheads.

Many of our experiments use subtasks of size 2048 ×
2048. This empirically determined size works well for both
CPUs and GPUs. The size is not too large for CPUs (to
cause frequent cache misses) and not too small for GPUs (to
cause their under-utilization). In section 5.5.2, we present
the impact of varying subtask size on performance.

We first discuss the implementation of the selected
benchmarks over Unicorn and then present how these scale
with an increasing number of nodes. We also evaluate
Unicorn’s work-stealing, runtime optimizations like multi-
assign, pipelining and GPU caches, and overheads. Unless
stated otherwise, the input address spaces are randomly
distributed (as 2048 × 2048 blocks) over the cluster nodes
and our runtime transparently moves data on-demand to
other nodes, as the program executes. Note that all pre-
sented measurements are minimum of at least three trials.

5.1 Unicorn Parallelization of Benchmarks

In our image convolution experiment all color channels of
a 216 × 216 24-bit RGB image are convolved with a 31 × 31
filter. The input image is stored in a read-only address space
(initially distributed randomly across the cluster), logically
divided into 1024 blocks of size 2048 × 2048. Each subtask
convolves one block. Because convolution at boundaries
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requires data from adjoining blocks, the input memory sub-
scription of a subtask overlaps with other subtasks’, usually
at all four boundaries. The output image is generated in a
write-only address space.

In the matrix multiplication experiment two dense
square matrices of size 216 × 216 each are multiplied to
produce the result matrix. Each input matrix is stored in
a read-only address space and the result matrix is stored in
a write-only address space of the task. The output matrix is
logically divided into 2048 × 2048 blocks and computation
of each block is assigned to a different subtask (which
subscribes to all blocks in the corresponding row of the first
input matrix and all blocks in the corresponding column
of the second input matrix). The CPU and GPU subtask
callbacks are implemented using single-precision BLAS [13]
and CUBLAS [14] functions respectively.

For the in-place block LU Decomposition [24] experi-
ment, the input matrix (216 × 216) is kept in a read-write
address space and is logically divided again into 2048×2048
sized blocks. The matrix is solved top-down for each diago-
nal block. For a matrix divided into n ∗ n blocks, solving
for each diagonal block (i, j) involves three tasks – LU
decomposition of the diagonal block (i, j), propagation of
its results to other blocks in its row (i, j+1...n) and column
(i+1...n, j), and propagation of these results to other blocks
underneath (i+1...n, j+1...n). The first of these three tasks
is executed sequentially while the other two are executed in
parallel. One task is spawned per diagonal block, which in
turn, executes 3 tasks within, making a total of 3n – 2 tasks
(where n is the number of diagonal blocks). The parallelism
in tasks (i.e., the number of subtasks) reduces as we move
down the matrix because the number of blocks to be solved
in parallel decreases. The CPU subtask implementation uses
single-precision BLAS functions while the GPU implemen-
tation employs the corresponding CUBLAS routines.

The 2D-FFT experiment performs two single-precision
one dimensional complex-to-complex FFTs (one along ma-
trix rows and the other along matrix columns) over a
matrix with 61440 × 61440 elements. The input matrix is
initially randomly distributed over the cluster nodes in
blocks of 512 consecutive matrix rows. We use two Unicorn
tasks for the experiment (each with 120 subtasks). The first
task performs 1D-FFT along matrix rows while the second
performs 1D-FFT along matrix columns. Note that we do
not need to perform an explicit transpose in between the
two and instead transpose the subscription and rely on the
network subsystem. For the first 1D-FFT, the subtask size is
512 rows while it is 512 columns for the second. The CPU
subtask callback uses the FFTW [25] library, whereas the
GPU subtask uses calls the CUFFT [26] library functions.

The PageRank experiment computes the search rank of
a webpage based on the web’s hyperlink structure. The
search rank of a webpage is the probability of a random
surfer visiting it. The algorithm works by first uniformly
initializing the ranks of each page to a constant value, and
then iteratively transferring the ranks of all web pages to
their outlinks till the ranks of all pages converge (or up to a
maximum number of iterations).

For our experiment, we use a randomly generated web
graph of 500 million web pages and a maximum of 20 out-
links per web page. With 90% probability, a page’s outlinks

point to nearby pages (within an imaginary circle centered
at this web page and having a diameter of 0.1% of total
web pages), with 9% probability, a page’s outlinks point
within a diameter of 1%, and with 1% probability they are
linked to farther off pages. The data for the web (along
with its outlinks) is stored on NFS in multiple files, with
each file storing the data of one million web pages. Unicorn
memory maps these files on each cluster node, from where
all subtasks subscribe.

Our PageRank implementation performs 25 iterations
and each iteration executes 250 subtasks. Each subtask pro-
cesses 2 million distinct web pages and transfers each web
page’s rank to all its outlinks equally. Note that a web page
may point to any other page in the web. Thus, the corre-
sponding subtask may produce output page rank for any
web page. For this reason, all subtasks write-subscribe to the
entire output address space and the output of all subtasks
are summed up (using Unicorn’s data reduction callback) to
produce the final output. The output of subtasks is written
to an address space in every iteration and after reduction
it becomes the input for the next iteration. We allocate two
address spaces and alternate them as input or output every
iteration. After the last iteration, the output address space
contains the final page ranks. The CUDA kernel code for this
experiment uses the GPU’s global memory to accumulate
page ranks produced by the GPU threads employed by the
subtask and synchronization between them is done using
global memory atomic add instructions.

5.2 Performance Scaling
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Fig. 4: Performance analysis of various benchmarks

Results in Figure 4 show strong scaling achieved by our
implementations of Image convolution, Matrix multiplica-
tion, LU decomposition and 2D FFT. Of the four exper-
iments, Image convolution exhibits the maximum scaling
and peaks at 11.83 when run on 14 nodes. Matrix mul-
tiplication, being relatively expensive on communication,
achieves a maximum scaling of 7.34. In contrast to image
convolution, which spends 50.05% of the total experimental
time in communication (of 11.4 GB), matrix multiplication
transfers a much larger 248.50 GB data in the cluster and
this takes 43.81% of the total experimental time. Although
for matrix multiplication both input matrices are 16 GB each,
every input block is required by all subtasks in its row and
all in its column. Thus about 250 GB data is transferred in
659 pipelined events (each of the 1024 subtasks subscribe to
1 GB data from both the input matrices).
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Fig. 5: Image Convolution – GPU vs. CPU+GPU
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Fig. 6: Matrix Multiplication – GPU vs. CPU+GPU
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Fig. 7: 2D FFT – GPU vs. CPU+GPU

The other two experiments, block LU decomposition
and 2D-FFT, exhibit relatively inferior scaling (4.8 and 5.36
respectively) as these experiments have limited parallelism.
The former is an iterative experiment with 32 iterations and
3 tasks per iteration (one out of these three is sequential).
The experiment has an average of 121.7 subtasks per task.
The 2D-FFT experiment (with an implicit matrix transpose
operation) has two tasks each with 120 subtasks.

The results in Figure 4 indicate a similar amount of data
transfer for matrix multiplication and LU decomposition.
However, the former is implemented as a single task with
time complexity O(n3) and the latter has many iterations
with three tasks using BLAS calls of varying time complexi-
ties (O(n), O(n2) and O(n3)). This increases communication
latency, which is evident from fifty times more data transfer
events (36654 versus 659). This, coupled with the fact that the
first of these three tasks is sequential, leads to lower scalabil-
ity for the experiment. In contrast, both image convolution
and 2D FFT have lower time complexities – O(nm) for the
former (m being the filter size) and O(n log n) for the latter,
but the latter has around 4.5x more data transfer, resulting
in its lower scaling. These results collectively indicate that
applications with high compute to communication ratio
should perform well with our runtime.

Figures 5, 6 and 7 plot GPUs-only performances for im-
age convolution, matrix multiplication and 2D FFT respec-
tively and compare those to the corresponding CPU+GPU
performances. For the computation in these benchmarks
there is a significant performance disparity between CPUs
and GPUs, with GPUs being an order of magnitude faster
than CPUs. Due to this, employing both together generally
results in nearly all CPU subtasks getting multi-assigned to
GPUs. Also, running some subtasks on slower CPUs takes
away the opportunity to pipeline those in case the GPUs
had executed them. For these reasons, the experiments’
performances when using CPU+GPU do not show much
throughput gain over their GPUs-only versions. For image
convolution and matrix multiplication, results show that
nearly 98% subtasks were executed by GPUs and CPUs were
only able to complete fewer than 2% of the subtasks. For 2D
FFT, this ratio is a little better with around 15% subtasks
completed by CPUs.
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Fig. 8: PageRank
Figure 8 presents results of the PageRank experiment.

In the map stage, 250 subtasks process an equal share of

input web pages and distribute their page ranks equally
among all their outlinks. In the reduce stage, the page
rank contributions from each subtask are summed up to
compute the final page ranks of all web pages. Reductions
are performed in parallel on all cluster nodes. Once the
intra-node reductions complete, nodes perform inter-node
reductions to compute the final result.

Results show that CPUs perform better than GPUs for
this experiment. This is because of the large overhead of
atomic-add operations on GPUs. Further, there is an addi-
tional overhead of large GPU↔CPU data transfers. Along
with performance results, Figure 8 also indicates that the
average time spent in the reduction stage decreases with
an increasing number of nodes. This is because more nodes
allow more reductions to be simultaneously executed.

5.3 Work Stealing
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Fig. 9: One-level versus two-level work stealing

Next, we present a comparison of one-level work steal-
ing with Unicorn’s two-level scheme with a steal agent run-
ning per node (section 4.3.2). Results in Figure 9 show
comparable performance numbers for one-level and two-
level scheduling schemes for matrix multiplication and LU
decomposition. However, image convolution reports 6.92%
average performance improvement with two-level stealing
as compared to the one-level stealing scheme. This is be-
cause the small memory footprint of an image convolution
subtask allows GPUs (which are the stealers in most cases)
to co-execute more subtasks as compared to other experi-
ments where despite stealing a set of subtasks large memory
footprint prohibits their co-execution.

Despite moderate performance gains, two-level stealing
reports significant reduction (over one-level) in the total
number of steal attempts generated in the cluster. The
bottom half of Figure 9 plots total steal attempts in the
cluster with bars while the successful steals are plotted
with lines. The average reduction (in the number of total
steal attempts) for image convolution, matrix multiplica-
tion and LU decomposition respectively is 65.88%, 64.9%
and 67.03%. Due to this, the average number of successful
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steals in the cluster increase in two-level scheme (over one-
level) by 44.24%, 54.25% and 60.08% for these experiments
respectively. The same is not translated into performance
gains because our steals are extremely light weight. The only
information transferred as a result of steal is the subtask ID
and there is no associated direct data transfer.

5.4 Load Balancing
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Fig. 10: Load Balancing (Top: Image Convolution, Bottom:
PageRank) – W is a CPU work group and G is a GPU device

In this section, we study the effectiveness of our sched-
uler in achieving a balanced load on all cluster devices.
Figure 10 plots the finishing times of all cluster devices for
the image convolution benchmark and for one iteration of
the PageRank experiment. The figure also plots the number
of subtasks executed by each of these devices. Note that all
the CPU devices on a node are represented as work-groups
numbered from W1 to W14. Similarly, GPU devices in the
cluster are labelled G1 to G28.

Recall that for the matrix multiplication experiment, the
entire input data is initially equally distributed randomly
among all cluster nodes. For this reason, all GPUs execute
roughly the same number of subtasks (as they face similar
data transfer overheads and subtasks are homogeneous).
The same is true for CPU work-groups. For the PageRank
experiment, however, the input data is resident on NFS. The
graph plots 10th iteration of the experiment which means
that the input data for the iteration additionally comes from
different cluster nodes (as it is computed in last iteration). As
such, variable input data latency is incurred by various CPU
work-groups, causing them to execute different number of
subtasks. Despite the disparity in subtask execution rate of
GPUs and CPU work-groups, the finishing times of each of
them is quite close to each other (for both experiments). This
shows that our scheduler is able to balance the cluster load
despite this device heterogeneity.
5.5 Stress Tests
In this section, we put our runtime under non-favorable
conditions and study its response to various experiments.
5.5.1 Heterogeneous Subtasks
Figure 11 shows load balancing achieved by Unicorn when
subtasks in Image Convolution experiment perform differ-
ent amount of work. The top half of the image is convolved
using 512 subtasks of size 2048 × 2048 while the bottom
half is convolved using 128 subtasks of size 4096 × 4096.
The experiment is executed on 10 nodes. Despite, the four
fold execution disparity in subtasks, our runtime maintains
a decent load balance in the cluster.
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Fig. 11: Load Balancing (Heterogeneous Subtasks) – W de-
notes a CPU work group and G denotes a GPU device

5.5.2 Varying Subtask Size
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Figure 12 shows the response of our runtime to choices
of the user in sizing subtasks. Within a reasonable range
– (2048-8192) for matrix multiplication and (1024-4096) for
image convolution – our system is able to maintain a
throughput within 20% of the peak performance. On either
side, system overheads begin to dominate. For extreme
sizes, the throughput degrades as on one extreme there are
too few subtasks to generate enough parallelism and on the
other there are too many subtasks resulting in data transfers
dominating the exploitable parallelism.

5.5.3 Input Data Distributions
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Fig. 13: Impact of initial data distribution pattern

Figure 13 evaluates image convolution and matrix mul-
tiplication for various initial input data placement schemes
(in the address spaces) like centralized (entire address space
on one cluster node), row random (rows of 2048×2048 blocks
spread randomly on all nodes), column random (columns
of 2048 × 2048 blocks placed randomly on all nodes) and
block random (2048 × 2048 blocks placed randomly on all
nodes). Additionally, a fifth scheme is plotted for matrix
multiplication where rows of 2048 × 2048 blocks for the
first input matrix and columns of 2048× 2048 blocks for the
second input matrix are placed randomly in the cluster. Re-
sults show that our runtime maintains performance across
the various data availability pattern. Only the centralized
scheme behaves poorly as the network interface of the node
containing the entire data becomes a bottleneck.

5.6 Unicorn Optimizations

In this section, we study the impact of a few Unicorn
optimizations.
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5.6.1 Multi-Assign
We study two cases to understand the implications of multi-
assign. First, in the absence of any external load we compare
the performance of image convolution and matrix multi-
plication experiments with multi-assign enabled to the case
with multi-assign disabled. Second, we create an external
load and study how image convolution behaves with and
without multi-assign.

For the first case, results in Figure 14 show that there is
no performance penalty in enabling multi-assign, in general.
The observed average performance gain (with multi-assign)
for image convolution and matrix multiplication respec-
tively are 9.19% and 2.23% respectively (in comparison to no
multi-assign). In fact, the performance gains increase with an
increasing number of nodes – for image convolution, multi-
assign reports a maximum gain of 38.26% (over no multi-
assign) in the fourteen node case. Similarly, the maximum
performance gain of 10.62% is observed in the fourteen node
case for matrix multiplication.

Next, we study multi-assign over four nodes with the
image convolution benchmark. We artificially overload one
of the nodes with one process per core computing trigono-
metric functions indefinitely. In this case, we expect subtasks
assigned to the overloaded node to be moved away from it.
Our scheduler does this through stealing and multi-assign.
In the absence of multi-assign a subtask may start running
on a slow device and take a long time to finish, thereby
delaying the task. We run this test twice: once allowing
multi-assign and once preventing it. Results in Figure 15
show that with multi-assign, subtasks of the overloaded
cores get re-assigned and the task completes faster. Without
it, the task remains bottlenecked by the ‘slow’ cores. Our
heuristics generally only multi-assign fewer than 1% of the
subtasks, but the later-assigned unit finishes first about 50%
of the time. Of course, when one finishes, the other is
aborted, leading to a faster overall time. The cancellation
protocol itself has insignificant overhead.

5.6.2 Pipelining
Figure 16 shows the impact of pipelining with the help of the
image convolution experiment. With pipelining, our run-
time overlaps computation of one subtask with the commu-
nication of the next. Further, on GPUs this makes multiple
simultaneous kernel executions possible. Results show that
our runtime achieves 3-4x speed-up with pipelining.

5.6.3 Software cache for GPUs
Unicorn employs a software cache to reduce DMA (Direct
Memory Access by GPU without involving CPU) data trans-
fers to all GPUs in the cluster. The cache prevents read-only
data shared by two or more subtasks (of a task) executing
on a GPU from being DMA’ed more than once. In this
section, we study five cache eviction policies and compare
their performances. The five policies are LRU: least recently
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Fig. 17: Cache Eviction Strategies (Matrix Multiplication)

used, MRU: most recently used, LFU: least frequently used,
MFU: most frequently used and Random. Figure 17 plots the
performances of these policies for the matrix multiplication
experiment along with the scenario when no GPU cache is
used. Results show that both LRU and LFU perform better
than others. This result can also be inferred from fewer cache
evictions per allocation and fewer average cache misses in
LRU and LFU, compared to MRU, MFU and Random.

5.6.4 Data Compression
Network reduction statistics GPU→CPU reduction statistics

Nodes Uncompressed Compression Performance Uncompressed Compression Performance
Data Size (GB) Ratio Gain (%) Data Size (GB) Ratio Gain (%)

8 162.98 3.63 6.44 27.01 44.63 0.31
10 209.55 4.72 16.10 25.15 44.64 0.83
12 256.11 5.29 21.00 23.28 44.66 0.64
14 302.68 5.78 23.81 31.67 44.61 2.45

Fig. 18: PageRank data compression (250 million web pages)

To ameliorate high data transfer latency in PageRank
reduction, we compress data computed by subtasks be-
fore transferring over the network or from GPU to CPU.
The employed compression algorithm is based on Run
Length Encoding (section 4.6) and is executed on GPUs for
GPU→CPU data transfers and on CPUs for inter-node data
transfers. Figure 18 presents the cluster-wide size of uncom-
pressed data for reduction, compression ratio and perfor-
mance boost with compression (over the non-compression
case). Results show that performance gains increase with
increasing number of nodes and reach a peak of 23.81% for
network compression and a peak of 2.45% for GPU→CPU
compression (for the 14 node case). Note that because of
lower latency of GPU→CPU transfers, the gain observed
with GPU compression is moderate as compared to inter-
node compression. Also, note that the amount of data trans-
ferred in the cluster increases with the number of nodes.
However, this reduces the number of subtasks processed
per node, which means that inter-node reductions take place
with more sparsity in data (leading to higher compression).

5.7 Overhead Analysis

We evaluate Unicorn’s runtime overhead by varying the
number of CPU cores used in experiments and by studying
the amount of time experiments spend inside runtime’s
code versus benchmark application code. We also study the
number of times each byte is transferred in the cluster when
subtasks have overlapping subscriptions.
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5.7.1 Varying CPU cores
CPU cores are not only used for subtask computations
but for many other critical operations like CPU-GPU data
transfers, network data transfers, scheduling and Unicorn
runtime’s control operations. For all our experiments, we
have reserved two CPU cores (out of 12 available) per node
for these support functions and presented results by using
the rest for subtask computations. Figure 19 varies the num-
ber of CPU cores allowed for the application subtasks per
node from 7 to 12 and compares their performances. Results
show that the performance of all these cases remain close to
each other. The average difference between the maximum
and minimum performing cases (at all data points) for both
experiments is less than 10%.

This narrow performance difference is an indication of
our runtime’s low overhead. Thus, we currently do not
dynamically vary the number of CPU cores reserved for
control operations. An exploration of this is desired in the
future. Currently, we only allow applications to statically
specify the number of CPU cores to be reserved.

We also study the impact of binding our compute threads
(section 4.1) to CPU cores. In all the experiments presented
thus far, we have not explicitly bound compute threads to
processing cores, allowing the operating system to manage
them. In the rightmost graph of Figure 19, we compare
this scenario to the case when all our compute threads are
explicitly bound to CPU cores (which leaves a few cores for
other critical operations like data transfers). The figure plots
the performance of the matrix multiplication experiment for
two cases - when 10 cores and 8 cores are employed in
subtask computation. For each case, we report performance
when there is no explicit core for these critical operations
(plotted as [0:0]). Relative to this, we plot performances
of cases where [n:m] cores are designated for non-subtask
computations (i.e. n cores are explicitly freed from first CPU
while m cores are explicitly freed from the second one).
Results show that explicit binding of compute threads (to
cores) does not have a significant performance impact. How-
ever, not explicitly binding threads and letting the operating
system to freely migrate them yields best performance.

5.7.2 Unicorn Time versus Application Time
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Fig. 20: Library time versus application time

Figure 20 compares the time spent (by image convolu-
tion and matrix multiplication experiments) in runtime’s
code to the time spent in application execution. The latter

includes the time taken for data transfers (both network
and CPU-GPU) and callback executions. The rest of the
experimental time is considered as our runtime’s overhead.
Results show that the average overhead for image convolu-
tion is 3.6% while it is 0.91% for matrix multiplication. In
absolute value, the average overhead is 0.43 seconds for im-
age convolution and 0.82 seconds for matrix multiplication.

5.7.3 Data Transfer Frequency
Image Convolution Matrix Multiplication

Avg. unique Avg. total Avg. transfer Avg. unique Avg. total Avg. transfer Avg. first matrix
Nodes data sent per data sent per freq. per byte data sent per data sent per freq. per byte transfer freq. per

node (GB) node (GB) per node node (GB) node (GB) per node byte per node

2 3.05 3.05 1.00 8.50 8.50 1.00 1.00
4 2.26 2.27 1.00 7.38 15.88 2.15 1.18
8 1.31 1.32 1.01 5.63 18.19 3.23 1.86

10 1.07 1.07 1.01 4.50 18.20 4.04 2.17
12 0.91 0.92 1.01 4.00 18.83 4.71 2.78
14 0.87 0.88 1.01 3.18 18.36 5.78 2.88

Fig. 21: Data Transfer Frequency

In this section, we study the number of times each
byte in the address space gets transferred in the cluster
(between nodes). Two examples are considered – on one end
is the image convolution experiment which has very little
subscription overlap (fringe) among subtasks. At the other
end is matrix multiplication where entire input data of every
subtask overlaps with that of other subtasks. Figure 21 lists
the average number of unique and total bytes transferred
by every node in the cluster along with the average data
transfer frequency (i.e., the ratio of total bytes transferred
to unique bytes transferred per node). Results show that
the data transfer frequency stays close to 1 for the image
convolution experiment, whereas it grows with increasing
number of nodes for the matrix multiplication experiment.
This is because one of the input matrices is required on all
cluster nodes and because of the initial random placement
of data, (n−1) transfers are required (where n is the number
of nodes). The other matrix, however, exhibits relatively
moderate transfer frequency (the last column in the table).
However, most of the data transferred is only because it
resides at a node different from the subtask that requires it.
For matrix multiplication, e.g., there is only 3.88% additional
transfer due to re-sending of data to the new destination
after stealing or multi-assignment.

5.8 Unicorn versus others
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Fig. 22: Unicorn versus StarPU and SUMMA

In this section, we compare our runtime to two other
parallel computing systems – StarPU [27] (a single node
framework) and SUMMA [28] (a hand tuned multi-node
benchmark for matrix multiplication). The left and middle
graphs in figure 22 compare the performance of our matrix
multiplication implementation to StarPU. The three bars
for StarPU plot, respectively, its default eager scheduler,
the first run of its advanced dmdas scheduler (i.e., without
calibration; this scheduler requires calibration runs for better
performance), and the best run out of three successive runs
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of dmdas after calibration. This best run performs better than
Unicorn until a matrix size of 16384 × 16384. For larger
matrices, it starts to lag Unicorn and eventually fails at
65536 × 65536 reporting it ran out of memory. Yet, Unicorn
runs at this and even higher sizes. The rightmost graph in
the figure compares Unicorn to SUMMA for multiplication
of two square matrices (on CPUs only) of size 32768×32768.
Results show that Unicorn performs quite close to SUMMA
for this double precision computation. Note that SUMMA
incurs a bit of overhead in the sense that it requires a
different MPI process per CPU core whereas Unicorn works
with one MPI process per node. For this experiment, we
have used different block sizes for both implementations
(1024 × 1024 for Unicorn and 128 × 128 for SUMMA) in
order to compare their best CPU performances.

6 RELATED WORK

Among others, StarPU [27], XKappi [29] and MAPS-Multi
[30] are a few notable examples of comprehensive paral-
lel programming frameworks that provide some form of
scheduling and load balancing on single node systems.
While the first two support both CPUs and GPUs, MAPS-
Multi [30] targets only multiple GPUs on a node and studies
workload distribution on the basis of data access patterns.
Existing cluster programming systems can be broadly clas-
sified into two categories. The first comprises language
based approaches like UPC [31], Split-C [32], Cilk [33] and
Co-array Fortran [34]. These usually extend a sequential
language like C or Fortran. The second category includes
library based approaches like Globus [35], MPI-ACC [36],
PVM [37] and BSPlib [38]. The former ones focus variously
on functional, loop or data parallelism and generally use
shared address spaces (built on top of DSM or more specif-
ically PGAS [39]) with fine grained synchronization. Their
focus is to mainly allow the user to express parallelism at
a high level and most do not support GPUs. In contrast,
library based approaches employ some MPI-like communi-
cation, where machine specific details are not completely
abstracted from the programmer. Instead of focusing on
program logic, the programmer has to directly handle issues
like synchronization, scalability and latency. Hence, usual
problems like race conditions and deadlocks remain.

Our system Unicorn is built on top of pthreads, MPI,
CUDA and OpenCL. Its novelty is in its general and
intuitive interface, yet efficient implementation. It unifies
computation on local and remote computing units (CPUs
and GPUs) using bulk synchrony. Its runtime environment
autonomously performs data distribution, dynamic load-
balanced scheduling and synchronization. The closest exist-
ing works targeting CPU and GPU clusters are StarPU-MPI
[2], G-Charm [3] and Legion [4]. StarPU-MPI is an extension
of StarPU but it does not fully abstract the existence of
multiple machines: the programmer must either explicitly
manage communication with an MPI-like interface or ex-
plicitly submit independent tasks to each node of the cluster.
Rather than a unified cluster programming framework, it is
an MPI based aggregation of independent StarPU instances
running on each node. It lacks a cluster wide scheduler. It
only provides independent schedulers on each node, with
inter-node schedule managed by the user. StarPU maintains
data replicas for potential use in upcoming tasks. However,

if a task modifies data in one of the replicas, all others are
invalidated. For good performance, it recommends applica-
tions to advise when and where not to keep data replicas.
In contrast to this, Unicorn adopts a light weight memory
consistency protocol where the invalidation messages are
deferred to task boundaries (where they are piggy-backed
on other regular message exchange between nodes) and
no overhead is incurred during task execution. StarPU also
supports a notion of data filters which allows data to be
viewed in parts (or hierarchy) by associated codelets. These
filters are usually synchronous. Asynchronous filters can
also be created with some limitations on data usage by the
application. Unicorn, on the other hand, is an entirely asyn-
chronous system and achieves data partitioning through an
application callback.

G-Charm, based on Charm++ [40], is a framework
specially optimized for GPUs. It particularly focuses on
reducing GPU data transfers by employing a software-
cache over GPUs and grouping multiple Charm++ chares
together to reduce the number of GPU kernel invocations.
Each processor in the system runs an independent instance
of Charm++ runtime and they communicate via message-
passing (messages are buffered in a message queue). Even
the input data for chares is received by this mechanism.
In contrast, Unicorn has a dedicated thread (on each node)
to efficiently manage data transfers and segregate them
from control messages. This approach guarantees progress
of the entire asynchronous system. Also, unlike Unicorn’s
multi-assign, G-Charm lacks a mechanism to reconsider and
correct poorly made scheduling decisions.

Legion is a powerful system that uses a software out-
of-order processor to schedule application-created tasks.
Legion runtime requires programmers to select where tasks
run and how data regions are placed. The runtime follows
a deferred execution model where events (may be program-
mer specified) define task graphs and control task execution.
Unicorn runtime, on the other hand, leaves lesser controls
with applications and manages data placement and task
graphs by itself.

7 CONCLUSIONS AND FUTURE WORK

We present a practical bulk synchronous programming
model that allows distribution of computation across multi-
ple CPU cores within a node, multiple GPUs, and multiple
nodes connected over a network, all in a unified manner.
Our model maps efficiently to modern devices like GPUs, as
they are already bulk synchronous in nature. Our runtime
undertakes all local and networked data transfers, schedul-
ing, and synchronization in an efficient and robust manner.
By design, we eliminate races and deadlocks as all devices
operate in a private view of the address space.

Unicorn exposes a distributed shared memory system
with transactional semantics. Experiments show that our
runtime overcomes the traditional performance limitations
of the approach and achieves good performance gains. This
is enabled by a number of critical optimizations working
in concert. These include prefetching, pipelining, maximiz-
ing overlap between computation and communication, and
scheduling/re-scheduling efficiently across heterogeneous
devices of vastly different capacities. Unicorn also employs
special optimizations for GPUs like a software LRU cache



16
to reduce DMA transfers and a proactive work-stealer to re-
duce pipeline stalls. Our framework can realize any task that
may be optionally decomposed into a set of concurrently
executable subtasks with checkout/checkin memory seman-
tics and a synchronized reduction step to resolve conflicting
checkins. However, tasks having non-deterministic access
pattern (like graph traversal) or fine-grained/frequent com-
munication or complex conflict resolution may not perform
efficiently in our system.

In the future, there is potential to optimize data trans-
fers for a set of tasks rather than one task at a time.
Except for data dependency or an explicitly specified user
dependency, Unicorn tasks are independent of each other.
However, wiser scheduling decisions can be made with à
priori knowledge of tasks to come. Unicorn’s locality aware
scheduler produces a schedule optimized for the task at
hand. By evaluating the data requirements of dependent
tasks, it is possible to produce a globally optimal schedule.
Of course, the time it takes to generate such a schedule must
be weighed against the time saved in data transfers while
executing the global schedule.
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