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Abstract

Power Architectur® processors are popular and widespread on
embedded systems, and such platforms are increasinglyg bein
used to run virtual machines [11, 22]. While the Power Aretyt
ture meets the Popek-and-Goldberg virtualization requénas for
traditional trap-and-emulate style virtualization, therformance
overhead of virtualization remains high. For example, Waalls
exhibiting a large amount of kernel activity typically sh@bx
slowdowns over bare-metal.

Recent additions to the Linux kernel contain guest and hidst s
paravirtual extensions for Power Architecture platforrdghile
these extensions improve performance significantly, thegaest-
specific, guest-intrusive, and cover only a subset of alkibbs
virtualization optimizations.

We present a set of host-side optimizations that achieve com
parable performance to the aforementioned paravirtuahsins,
on an unmodified guest. Our optimizations are based on adapti
in-place binary translation. Unlike the paravirtual agaro, our
solution is guest neutral. We implement our ideas in a pyptot
based on Qemu/KVM. After our modifications, KVM can boot an
unmodified Linux guest around 2.5x faster. We contrast otir op
mization approach with previous similar binary translatlmased
approaches for the x86 architecture [4]; in our experieeeeh
architecture presents a unique set of challenges and aptiim
opportunities.

Categoriesand Subject Descriptors  C.0 [Genera]: Hardware/soft-
ware interface; C.4Herformance of systefasPerformance at-
tributes; D.4.7 Qperating SystenisOrganization and Design

General Terms Performance, Design

Keywords Virtualization, Virtual Machine Monitor, Dynamic Bi-
nary Translation, Power Architecture Platforms, Architee De-
sign, Code Patching, TLB, In-place Binary Translation, iReaite
Tracing, Adaptive Page Resizing, Adaptive Data Mirroring
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Virtualization on these platforms is compelling for sevexaplica-
tions including high availability (active/standby configtion with-
out additional hardware), in-service upgrade, resouroktisn,
and many more [11, 22]. While newer Power Architecture plat-
forms have explicit support for efficient virtualization, [2], a ma-
jority of prevalent embedded devices run on older Power iech
ture platforms that use traditional trap-and-emulateestitualiza-
tion [19]. These older platforms have power and cost adgasta
and are expected to remain relevant for at least many morms.yea
Several systems based on these platforms are being aatiaely
ufactured (e.g., P1020 and P2020 series [16, 17], BSC9181 an
BSC9132 [1], etc.) with applications in wireless (e.g., Fecell
solutions for LTE), high-speed networking, and more. Eintivir-
tualization is highly desirable on these platforms.

The current virtualization approach on Power Architecpled-
forms uses traditional trap-and-emulate. The guest dperat/s-
tem is run unprivileged, causing each execution of a pgeiteop-
eration to exit into the hypervisor. For guest workloadscetiag a
large number of privileged instructions, these VM exits anma-
jor source of performance overhead. Table 1 lists the padoce
of vanilla Linux/KVM on a few common workloads, comparing
them with bare-metal performance. For example, a guestxLinu
boot takes almost 5x longer when run virtualized.

The poor performance of simple trap-and-emulate styleivirt
alization has led to the inclusion of paravirtual extensiamthe
Linux kernel on both guest and host sides for Power Architect
platform [18]. The paravirtual extension in the guest résgithe
guest (binary) kernel code at startup time to replace mosteged
instructions with hypervisor-aware unprivileged coupsats. At
guest startup, the guest creates a shared address spatieavitst
through ahypercall This shared address space is used by the hy-
pervisor to store guest state information, which is acbés$o the
guest without incurring a trap. Table 1 lists KVM performaraf-
ter enabling paravirtual extensions in the guest and the Wdsile
paravirtual extensions improve performance significaotigr un-
modified KVM, this approach has obvious shortcomings relabe
requirements of being able to access and modify guest soace
inability to optimize dynamically loaded code (e.g., loaamod-

Embedded devices based on Power Architecture processers ar ules), etc. These constraints make this approach ineféeatid/or

dominant for their favourable power/performance charésties.
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impractical in many real-world and commercial settings.

We propose a host-side adaptive in-place binary translatio
mechanism to optimize guest privileged instructions atinue,
and improve the performance of unmodified (and untrustee$tgu
Our approach is more general than the paravirtualizatipnogeh;
we can optimize dynamically generated/loaded code, and can
gracefully handle self-referential and self-modifyingdeocin the
guest. The second-last column in Table 1 summarizes therperf
mance results of our host-side binary translation approach



S.No| Benchmark Description Bare-metal KVM KVM-PV KVM-BT Speedup
Running Time insec (lower is better)

1 linux-boot Boots a Linux 3.0 guest 6.5 30.03 11.79 12.39 2.4x

2 echo-spawn Spawns 1000 echo processes 1.4 21.34 6.5 6.85 3.1

3 find Executes ’find / -name 0.39 1.89 0.67 0.83 2.3
temp’

4 lame MP3 encoder 0.44 0.56 0.49 0.50 1.1

1mbench microbenchmarks Latency inmsec (lower is better)

5 syscall Writes one word to /dev/null 0.0002 0.020 0.003 0.003 6.7x

6 stat Invokes the stat system call 0.003 0.033 0.006 0.007 4.7x

7 fstat Invokes fstat system call on ah 0.001 0.021 0.004 0.004 5.3x
open file

8 open/close Opens a temporary file fof 0.006 0.067 0.013 0.023 2.9x
reading and closes it immedi-
ately

9 sig-hndl Installs a signal handler 0.001 0.024 0.004 0.004 6K

10 | pipe Passes a word from process|A 0.003 0.066 0.033 0.041 1.6
to process B and back to A
and measures round-trip time

11 fork Callsfork andexit 1.084 6.641 1.640 1.679 3.9x

12 exec Callsfork, exec andexit 3.065 20.543 6.254 6.681 3.1x

13 sh Callsfork, exec sh -c and 6.645 45.164 13.842 14.719 3.1x
exit

Unixbench microbenchmarks Raw Score in 10 seconds (higher is better)

15 dhrystone?2 Focuses on string handling 49697211 48110141 49014236 48957180 1.02x

16 syscall Calls the getpid system call 7863359 124854 818940 652829 5.2x

17 cswitch Spawns a child process with 420968 60746 307136 240653 4.0x
which it carries on a bi-
directional pipe conversation

18 | proc-create Forks and reaps a child that 44667 2470 9432 8714 3.5k
immediately exits.

19 | pipe Writes 512 bytes to a pipe and 3324145 188208 1111797 923218 4.9x
read them back

20 | hanoi Calls compute-intensive handi 8853023 8689401 8846663 8836219 1.02x
program

Unixbench Filesystem microbenchmarks Throughput in KBps with 256 bufsize and 2000 max blocks
(higher is better)

21 | file-read Read from a file 182340 11524 58647 49830 4.3x

22 | file-write Write to a file 99850 10500 39500 38200 3.6x

23 file-copy Transfers data from one file tp 59612 5432 22225 20070 3.7x
another

Table 1. Performance comparison of bare-metal, unmodified KVM, Kgitavirtual, and our (KVM-BT) approach. The details of the
benchmarks, our test system, and the various KVM variants@issed in Section 5. The last column computes the sped®@VM-BT over

KVM.

Our host-side virtualization optimizations are based apéde
in-place binary translation. On observing a large numbeY gf
exits by a guest instruction, we translate that instructioplace
to directly execute the corresponding VMM logic (thus awaid
an exit). In doing so, we directly modify the guest’s addrgsace.
This is in contrast to dull binary translation approach that trans-
lates the entire guest code (e.g., VMware’s x86-based yinans-
lator [4]). We compare the two approaches in more detail late
this section and also in Section 6.1.

Modifying the guest’s address space has obvious pitfalistli;
we must ensure correctness in presence of arbitrary braiciiee
code. For example, it would be incorrect if the guest coulpo
tially jump to the middle of our translated code. To ensunee-
ness, we replace a privileged guest instruction by at mastrams-
lated instruction in the guest's address space. Becausedtiens
are fixed length and word aligned on Power Architecture piatf
this ensures that there can never be a branch to the middlerof o

translated code. Any branch could only reach either theripéag
or the end of our replacement instruction.

Not all guest privileged instructions can be emulated bygage
replacement instruction. Such instructions are insteldced with
a branch to a code fragment in a host-managed translatidrecac
This branch is implemented as a single instruction in thestgie
address space, and the translation cache is allocated & gue
tual address space such that it always remains accessiliésto
instruction. Finding, allocating, and protecting appiaf@ space
for the translation cache was our second challenge. Bransttuc-
tions using direct-addressing on Power Architecture ptatf can
only addresst32MB relative/absolute offsets in the guest virtual
address space, and this places constraints on the placefribet
translation cache. It is possible for the guest to be alraesiyg
all such virtual address space that satisfies the requisszplent
constraints. We present a schemestealdata pages from guest's
address space to place the translation cache. To proteirtsaga



guest accesses, we mark the pages in the stolen sp@ceite-
only. This causes the hardware to trap into the VMM on any guest
read/write access to this space. We call this mechargsaywrite
tracing. Read/write tracing is also used to maintain safety against
in-place guest modification, in presence of self-refeegiatnd self-
modifying code.

Finally, read/write tracing can cause a large number of page
faults, especially due to false sharing. The problem is ested
on embedded Power Architecture platform, where OS typicall
uses huge pages to reduce TLB pressure. We found that sueh pag
faults can significantly reduce performance. We implemarnt t
important optimizations to address this problem, nanaelgptive
page resizingandadaptive data mirroring

Our work differs from previous x86-based binary transla-
tion work by VMware [4] in many ways, with most differences
stemming from differences in the two architectures. Fusijke
VMware's binary translator, our approach translates acel As
we discuss later, this approach requires certain archit@ctea-
tures but has advantages in design simplicity and perfocman
Second, VMware’s translator places its translation cacloeogher
data structures at the top of the guest virtual address spatelies
on x86 segmentation hardware to protect them from guessacce
As we discuss later, these design choices are not suitedwerPo
Architecture platforms, due to Power Architecture ISA axding
constraints and lack of segmentation hardware. We createesp
for our translation cache by stealing data pages from gueiseas
space and protect it using read/write tracing. Furthenesfdspace
manipulation on embedded Power Architecture platformsegme
unique challenges due to constraints on page sizes, aligsme

and TLB cache sizes. These challenges are unique to embedded

architectures, and have not been observed in previous woxB®
virtualization. We address these challenges using ourteéggage
resizing algorithm. Finally, we present and evaluate anoirigmt
optimization to reduce read/write tracing overhead, ngraebp-
tive data mirroring. In this optimization, we make a copy lbét
traced pages in another unused part of the guest addressapac
adaptively translate read/write accesses to this datathattihey
do not trap.

In summary, this paper presents an efficient host-side dgaim
tion solution for Power Architecture virtualization. Oyps@oach,
based on in-place binary translation (also called in-pBi€én the
rest of the paper), significantly improves the performarfa@nain-
modified guest. We present novel solutions to deal with ehglts
like address space allocation for the translation cacheoptichiz-
ing read/write tracing overhead for small software-madageB
caches. We study an interesting three-way tradeoff on theedm
ded platform between the number of VM exits due to privileged
instructions, the number of tracing page faults, and thebmrmof
TLB misses due to TLB pressure, and offer an optimization so-
lution. The paper is organized as follows. Section 2 charas
the performance of KVM on Power Architecture platform anstdi
cusses the typical sources of overhead. Section 3 discoas@s-
place binary translation approach. We discuss read/widigirng
and the associated optimizations in Section 4. Section Septs
our experiments and results, and finally Sections 6-7 coleclu

2. Performance Characterization of KVM on

Power Architecture Platforms

We first characterize KVM’s performance on embedded Power Ar
chitecture platforms. We perform our experiments on LiK
running on Freescale P2020 embedded Power Architectute pla
form. On our test platform, the virtualization overheadsap-and-
emulate style virtualization can be up to 15x for computetisive
workloads executing a large number of privileged instari(Ta-

Opcode Description

mfmsr Move from machine state register

mtmsr Move to machine state register

mfspr Move from special purpose register

mtspr Move to special purpose register

wrtee (i) Write MSR External Enable

rfi Return from Interrupt

tlbwe Writes a TLB entry in hardware

Exception Description

dtlbmiss Page fault on data due to TLB ngt
present

itlbmiss Page fault on instruction due to TLB not
present

dsi Page fault due to insufficient privilege

Table 2. Sources of VM Exits: Opcodes and Exceptions
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Figure 1. Main sources of VM exits

ble 1). The primary source of overhead are VM-exits due tesgue
privileged instructions. Table 2 lists the most executadilpged
opcodes and briefly explains their semantics. Figure 1 shbe/s
percentage of exits caused due to each opcode. Only fivadisti
opcodes result in more than 80% of exits on all four benchmark
Table 3 presents the frequency profile of VM exits on the Linux
boot benchmark in more detail (similar profiles are seen berot
benchmarks too).

We next profile the number of distinct program counter (PC)
values that cause exits. Figure 2 shows a histogram on thberum
of distinct PC values and the frequency of exits on them.&dbl
presents the exit profile of different PCs in more detail figr tinux
boot benchmark. For example, around 92% of all exits areethus
by only 93 distinct PCs for guest Linux boot. Other benchraark
also show similar locality for VM exits. These measuremeots-

Instruction class Exitcount % of total exits
mfspr 4484245 33.8
wrtee 2792109 21.1
mtspr 2307647 17.4
mfmsr 575302 9.5

rfi 413847 4.3

mtmsr 391813 3.1
dtlbmiss 198239 1.5
itlbmiss 192046 1.4

Table 3. Main sources of VM exits and their frequency on guest
Linux boot (refer Table 2 for semantics of these opcodes)
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Figure 2. Histograms representing the number of distinct exit-
causing PCs and their corresponding exit frequency. Fanpla
93 distinct PCs result in-20,000 exits each during Linux boot.

Exitcount PCcount % of total exits
>20000 93 91.9
>10000 23 3.1
>5000 68 4.2
>2000 12 0.3
>1000 17 0.2
<1000 420 0.2

Table 4. Exit frequency information for distinct PC values. For
example, 93 distinct PCS result in20,000 exits each, accounting
for 91.9% of total VM exits.

firm that binary translating only the most frequently execubp-
codes/PCs is likely to produce large improvements.
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Figure 3. Figure showing patching of multiple instructions with
branch instruction.
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Figure 4. Figure showing patching of multiple instructions using
bl instruction. This approach fails in presence of arbitramgsy
jumps.

3. In-place Binary Translation

We monitor PCs causing a large number of VM exits and binary
translate them to avoid these exits. We translate guesuatigins

in-place. Some privileged instructions can be emulatedimyles-
instruction translations. For exampiemsr is translated to aoad
instruction to the address of the emulated- register. Other op-
codes which can be translated to single instructionsmasgr and
mtspr (refer Table 2 for semantics of these opcodes). These op-
codes requiring single-instruction translations cause kblk of
privileged exits in common workloads (refer Figure 1). Wé tee
privileged instruction that was patched, thetch-site

Other privileged opcodes require translation to multipkriuc-
tions. For such opcodes, we store the emulation code in &ng-tr
lation cache, and patch the original instruction withranch in-
struction to jump to its emulation code. The emulation codthe
translation cache is terminated with another brabekk to the
instruction following the patch-site (see Figure 3). Bemeach
patch-site requires a different terminating branch ircttom, a new
translation is generated for each patch-site.

The translated code needs to access either the emulated gues
state or the translation cache. Both these data structees to
be allocated in the guest virtual address (VA) space foriefftc
virtualization. We now discuss the resulting placementst@ints
on these data structures.

Single-instruction translations access the emulatee stsing
load and store instructions. To avoid any register overwrites,
these memory access instructions must encode the addrtss wi
the opcode. Power Architecture ISA allows the specificatba
signed 16-bit displacement. This implies that the emulastade
must lie either in the top or bottom 32KB of the guest address
space. For many present-day operating systems, the top 82KB
virtual address (VA) space is often unused and can be usédrto s
the emulated state. If such address space is not availahige-s
instruction translations can be converted to multipleringion
translations to allow more placement flexibility, as we dissnext.

For multiple-instruction translations, we replace thevipeged
instruction with a branch to the translation cache. Bramsitriic-
tions are of two types: direct and indirect. On Power Ardiite
ture, direct branches specify a signed 26-bit absolute erdPative
(relative to current program counter) offsétrénch <addr> or
branch <pc+addr>), while indirect branches specify a 32-bit reg-
ister operand (e.gblr). Further, a branch instruction could choose
to save the PC in the link register (e.pl, <addr>). For example,
bl (branch and save return address in link register) is tylyicaled
for function calls, anad1r (branch to the address saved in link reg-
ister) for function returns.

Hence, for multiple-instruction translations, the addrexf
the translated code (in the translation cache) must be sibbes
through the 26-bit offset specified in the instruction. The 26-bit
offset could either be PC-relative or absolute. A PC-retafi6-bit
offset constrains the translated code to lie withi82MB of the
patch-site. This is usually not possible because such sslémace
is already occupied by the guest and/or its applicationsadgo-
lute 26-bit offset constrains the translated code to lieegiin the
top 32MB (0xfe000000-0xffffffff) or in the bottom 32MB (0x0
0x2000000) of the virtual address (VA) space. Most presiat-
operating systems reserve the top VA space for the kernsludh
systems, it is possible to use the top 32MB for storing thestes
tion cache, provided the kernel is not already using thodessges.
However, a branch back to the instruction following the pagite
will still require a 32-bit offset specification. We discus® of the
many approaches we tried to solve this problem:

1. Usingbl andblr: We placed the translation cache in the top
32MB of the VA space and replaced the patch-site withla
instruction (with absolute addressing) that saves theesddof
the following instruction in the link register. The transgd code
is then terminated with Blr.



2. Usingbranch: We placed the translation cache withitf32MB
of the patch-site and used teanch instruction to jump to
it. The translated code is terminated withbaanch back to
the address following the patch-site. Because the pateh-si
is within £32MB of the patch-site, the branch back can be
implemented using thieranch opcode.

The first approach (usingl andblr) clobbers the link register,
and there is no way to save and restore the link register witho
replacing multiple guest instructions. As we discussediezait

is dangerous to replace multiple guest instructions forralsi
patch-site as a guest could potentially jump to the middlewf

replacement code (as shown in Figure 4). Hence, we abandone

this approach.

We used the second approach of placing the translation cache

within £32MB of the patch-site and using ti@anch opcode to
jump to it and back. Finding unused space for the translaizmme
within +32MB of the patch-site is usually not possible because
the guest is typically already using these addresses. $nctse,

we steala contiguous address space from the data sections of the

guest. The data sections of the guest are identified by patisen
kernel header (embedded system bootloaders typically Wwgrk
having access to guest kernel images in standard formats, e.
ELF). The original data at the stolen guest addresses isdapio
hypervisor space, and is replaced by our translation cauhteats.
All instructions accessing the stolen address space are todchp
(using read/write tracing) and the hypervisor suppliesdabhieect
value. If no space in any of the guest’s data sections satisfie
+32MB placement constraints, we simply forego that optirtiiza
opportunity.

To store the emulated guest register state (which will be ac-
cessed by our translated code), we searchufursedguest VA
space. We assume that the guest maps its kernel at the tepvaf it
space (e.g., Linux maps the kernel starting&t0000000), and
that if a page table mapping does not exist there, the carnetipg
VA space is unused. We allocate this unused VA space fomstori
the emulated guest state. If the guest later uses this VAes{igc
creating a mapping for it in the TLB), we move our guest enadat
state to another location after invalidating all curreanslations.
We assume that the guest kernel will not access a kernebabati+
dress without a priori mapping it in its VA space (e.g., ithmibt use
demand paging for the kernel pages). Violation of this aggtion
by a guest could cause incorrect guest behaviour. Aimosbat-
mercial and open operating systems available today for dddak
Power Architecture platforms conform with this assumptidve
expect the user to disable our host-side optimizations§usiflag
to the Qemu/KVM command line invocation for example) if he ex
pects the guest to behave in a non-conforming manner. Hel coul
also choose to install a kernel module in the guest (similahé
“tools” mechanism used in popular virtualization softwaie al-
locate unused guest virtual address space for the host. [Eota
guest, we simply use the top 64 KB of the VA space to store our
emulated guest registers; this space is never used by \ieixcall
this theshared spaceas it is shared between the guest and the host.
As we discuss later, we also use the shared space for sttweng t
data cache for adaptive data mirroring.

Compared to full binary translation, in-place binary tiatisn
is simpler and results in higher performance. Full binaansta-
tion incurs an overhead of a potentially extra terminatingp af-
ter every basic block because typically, code layout in thesia-
tion cache is different from guest’s code layout. More intaotly,
full binary translation approaches incur significant owexth for in-
direct jumps (e.g., theall/ret microbenchmark in [4] incurs a
400% overhead). VMware hides this overhead by only traimgjat
kernel code and running user applicatiatigectly on hardware,
by observing that translation is not required for safe etienwf

most user code on most guest operating systems. A fully secur
BT implementation, however, will require translation of aser
code, and will show significant overhead due to indirect bhas

for user-level compute-intensive workloads (like SPELIAtso,
VMware's full binary translator will always show significaover-
head for compute-intensive kernel-level workload invotyiin-
direct branches. Our in-place binary translation appraaahids
these overheads.

On the other hand, in-place BT requires certain architattur
features. In our implementation, we rely on Power Archiieet
ISA's fixed-length aligned nature of instructions and itppsort for

eparate user and kernsix page protection bits to safely imple-

ent in-place BT. These features are not available on x86aps
making in-place BT a misfit for x86. Our work highlights thaibs
tle architectural variations result in widely differenttopization
solutions. Further, in-place BT has its own challenges nidigg
translation cache placement, dealing with self-refeatatind self-
modifying code, and optimizing TLB utilization. Our work gr
vides solutions to these challenges.

4. Read/Write Tracing and Associated
Optimizations

Read/write tracing is required to emulate access to spat@ngor
the translation cache and to protect against read/writesazes to
the privileged instructions that were translated in-pl&mbedded
Power Architecture platforms use software-managed TLB zél
TLB manipulation instructions are privileged. Hence, tlypérvi-
sor traps all guest TLB accesses and has full control on dHemss
space manipulation activity by the guest. We use hardwage-pa
protection bits to implement read/write tracing. EmbedBedver
Architecture platforms provide orthogonebx protection bits per
page for both user/supervisor privilege levels. UsingeHgts, we
can mark a guest page containing a patch-site execute-fonlyer
mode. This allows the execution of an instruction on thiseptm
proceed uninterrupted (necessary for execution of botthpdtin-
struction and translation code), but any read or write a&ccaesses
a page fault (and a VM exit). On a page fault, the hypervisoun-em
lates the faulting instruction in software. We call this hut mem-
ory read/write tracing (similar to VMware’s memory writ@ting
on x86 [4]).

We implement software emulations of memory instructions in
KVM to handle the resulting page faults. There are 36 difiere
memory opcodes in Power Architecture ISA that need to be em-
ulated. For read instructions, we simply return the origiten-
tents of the memory address in the appropriate destinatieraad.
The original contents may be obtained either from the ptesen
guest page (if the address does not intersect with a pateh-sr
from a hypervisor table storing the original contents (& #udress
matches a patch-site or if the address belongs to the staes-t
lation cache address space), or both. A similar strategged tor
write instructions.

Read/write tracing results in extra traps (tracing pagkgainto
the hypervisor. Most of these traps are either due to acedese
stolen space for translation cache or due to false sharmgdtcess
to unpatched guest data lying on the same page as the ptgh-si
The false sharing problem is aggravated by the huge page size
used on embedded architectures to reduce TLB pressure.st/e al
observe a number of traps due to read/write accesses tofitte pa
sites themselves, especially at guest boot time (for Linuest).
We found that Linux scans (and potentially modifies) its owde
sections at boot time on Power Architecture platforms, amdc:
get confused if it observes an incorrect value (due to icgRT).
Also, the kernel (or modules) could potentially read/wiiteown



code even after booting. These extra traps could degradst gue
performance.

We implement two optimizations to reduce tracing page $ault
Our first optimization adaptively resizes guest pages tagedalse
sharing. Our second optimization adaptively mirrors gudzta
(which is causing a large number of faults) to reduce the rarmab
tracing page faults. For the second optimization, we abesiate
the faulting instruction to access the mirrored data. We discuss
both these optimizations.

4.1 Adaptive Page Resizing

Most embedded operating systems use huge pages (Linux uses
256MB page) for the kernel on Power Architecture platformeet
duce TLB pressure. Typical TLB sizes on embedded Power Archi
tecture processors are small. For example, the softwaregeal
TLB on our test system is a combination of a 16-entry fully-
associative cache of variable-sized page table entriesadbitR-
entry 4-way set-associative fixed-size (4KB) page tablgemniThe
latter is used mostly for user pages. A faster L1 TLB lookughea

is implemented in hardware, and all invalidations to mamtan-
sistency with the software-programmed L2 TLB are done aatem
ically. The variable-pagesize TLB cache supports 11 difiepage
sizes: 4K, 16K, 64K, 256K, 1M, 4M, 16M, 64M, 256M, 1G, and
4G. Further a page of siz€ must beS-byte aligned in physical
and virtual address spaces.

The hypervisor traps guest accesses to the TLB, and create
appropriatesshadow TLB entriethat are loaded into hardware while
the guest is running (similar to the hardware-managed shadge
tables used in x86 [4]). The guest cannot directly accessitadow
TLB entries, as guest's accesses to the TLB entries areddapp
and emulated by the hypervisor. This allows the hypervisdir f
flexibility in choosing the size and privileges of its shad®wB
entries. For example, the hypervisor can setup multiplel@a
TLB entries, to shadow a single guest TLB entry represerging
larger page. To minimize TLB pressure, the hypervisor @ihyc
uses one shadow TLB entry per guest TLB entry. For example, if
the guest uses 4MB pages, then the shadow TLB will also have
corresponding entries for 4AMB pages. We implement reatBwri
tracing by disabling read/write privileges in the shadowBTéntry.
Disabling read/write privileges on a TLB entry represegtiarge
page predictably causes an unacceptably large numberaifigra
page faults (every kernel data access becomes a page féuii.on
if we disable read/write privileges on the 256MB kernel page
Similarly, always using 4KB pages for the shadow TLB causes a
unacceptably large number of TLB misses. We evaluate befeth
schemes in our experiments.

A more intelligent strategy is required to size the guestisha
TLB entries to balance the tradeoff between tracing pagésfdue
to false sharing and TLB misses. The adaptive page resizing a
gorithm resizes shadow TLB entries dynamically and adeftiv
After patching a privileged guest instruction, if we notiaehigh
number of tracing page faults on that page,weakthe page into
smaller fragments (and the corresponding TLB entry intollkema
TLB entries). After breaking, we only mark the TLB entry caint-
ing the patch-site execute-only, and leave the remainimgaaii
fied. To minimize false sharing, we keep the size of the page co
taining the patch-site as small as possible, without aéleedfect-
ing performance. All other pages created by this fragmemtatre
sized as large as possible, to minimize the overall numb@&iL8f
entries. While smaller pages reduce false sharing, theyrakult
in increased TLB pressure.

After fragmentation of a large page, if we still notice a high
number of page faults on the smaller page (which we do not want
to break further to avoid TLB pressure), we remove all paiths
on that page and re-instate read/write privileges on it. ddwsion

on whether to remove the patch-sites on a page, depends on the
tradeoff between the number of privileged-instructiorteand the
number of tracing page faults on that page.

Breaking a large page potentially creates many smallerpage
due to alignment restrictions. For example, if the kernslhapped
itself using a 256MB page at virtual address (0xcO0000GHffdk),
and a patch is to be applied at address 0xc0801234, and we have
decided to break the patch-site page into a 4MB page, the eew s
of TLB entries will be for addresses
(Oxc0000000,0xc03fffff);(0xc0400000,0xcO7fffff);
(0xc0800000,0xcO0bfffff);(0xcOc00000,0xcOffffff);

0xc1000000,0xc1ffffff); (0xc2000000,0xc 2ffffff);
%0x03000000,0x03ffffff);(0xc4000000,0xc7ffffff);

(Oxc8000000, 0xcbffffff);(0xcc000000, 0xcfffffff). Nate that each
page of sizeS is S-byte aligned and is always one of the values
supported by the architecture.

We use two policies to determine the size of the smaller pages
depending on the nature of the page faults. We found thatailpi
tracing page faults occur either in bursts (a large numbéawfs
occur on a small set of closely-located addresses on a dargie
page) or in scans (faults are spread over a large region \gitinedi
number of faults per address). For bursts, the ideal cordfigur is
to resize the pages such that all faulting addresses betonget
small page (which can be untraced). Hence, on observingst, bur
we try and break that page such that all patch-sites on tlg pa
belong to the “shortest” page. We discuss the tradeoffsivedo

Sn choosing the size of the shortest page in our experiménie

observe that the number of faults on the shortest pageligr&tdter
than threshold”, we untrace it by removing all its patch-sites. For
scans, where the tracing page faults are distributed aertsge
address range, the page is broken into two halves and thevitialf
larger number of tracing page faults is untraced. We do thii ib
the number of tracing page faults is greater than thresho(this
threshold is the same as that used for bursts).

For both bursts and scans, if we find that neighbouring pages
have identicalrwx privileges as a result of untracing, we oppor-
tunistically merge them into a larger page to reduce TLB pres
sure. These checks for opportunistic merging are perforenedy
100ms.

The thresholdl" is determined dynamically, as it depends on
the tradeoff between the number of privileged instructiitseand
tracing page faults on that page. On tracing a page, we reherd
number of privileged instruction exits that this page wasesienc-
ing, before it got patched and traced. This serves as oushble
T for that page. If in future, the number of tracing page faulés
are experiencing on this page is greater tiigrwe untrace it by
removing all its patches. On each tracing or untracing evard
page, the threshol@ is updated and is used to determine whether
to again trace or untrace the page during future executience,
after a page is untraced;, is also used to determine whether to re-
trace it or not (we retrace if the number of privileged instion
exits > T). Our dynamic thresholding mechanism relies on the as-
sumption that the expected number of privileged instrucgégits
(or page faults) after untracing (or after retracing) wil imilar
to what had been observed previously. To avoid long-termcesf
of transient guest behaviour, we implement graceful aginglds
creasingl’ linearly with time.

The adaptive page resizing algorithm automatically sizesl (
resizes) the pages containing both the stolen address &pabe
translation cache and the patch-sites. The algorithm als@aces
and retraces pages dynamically to minimize VM exits. Oupalg
rithm aims to effectively handle the tradeoff between peiyed-
instruction exits, tracing page faults, and TLB misses. Wadate
the effectiveness of our algorithm in our experiments.



4.2 Adaptive Data Mirroring

After implementing adaptive page resizing, we still obserup to
50% performance overhead due to tracing page faults. Orreesou
for this overhead are the tracing page faults on the datamesgolen
for the translation cache. We found that another major soofc
this overhead were tracing page faults due to accessesdbdun
dispatch tables and exception handler tables which wetecaded
with kernel code. Often these tables share the same 4KBrregio
the privileged kernel code accessing them, rendering captac
page resizing algorithm ineffective on these accesses.

We avoid these faults by dynamically monitoring such page
faults, adaptively copying the data being accessed to theegh
space (mirroring), and translating the instructions asiogsthis
data to read/write from the new location. This optimizatjme-
vents future page faults on this data. The mirrored data i®-ma

workloads because they are limited by the performance oéie
ulated device. In this work, we focus on CPU virtualizatiowl alo
not study optimizations for I/O virtualization.

We implement the following optimizations in Linux/KVM:

¢ In-place binary translation, stealing address space éorsta-
tion cache, and read/write tracinfn-place-BT)
e Adaptive page resizing\lapt-PR)

e Adaptive data mirroring and translation of faulting ingtiions
(Adapt-DVM). Adapt-DM includesAdapt-PR.

Table 5 summarizes our performance results before andthése
optimizations. Different workloads show different impements.
The improvement primarily depends on the three-way trddssof

tained as a cache of word-sized values in the shared spaee. Th tween the number of VM exits due to privileged instructiotiig

translation code for the faulting instruction checks theheato
see if the data has been mirrored. If the check succeedsua val
is returned-from/updated-in (for read/write respectiy¢he cache,
else the read/write operation is executed on the origindtess
(potentially resulting in a trap and emulate). These tiaimts of
memory access instructions are also stored in the tramislagiche.

To maintain guest correctness, the pages containing gatohe
faulting instructions (due to tracing) need to be readaviiticed
too. This can potentially result in a chain-effect: tracofgthese
new pages can cause more tracing page faults, resulting i@ mo
pages to be patched and traced, resulting in more tracing pag
faults, and so on.... Fortunately, we do not see this chdectef
in practice. The faulting instructions that are patchedicsity
reside on a page that is already being traced, causing tblis ty
converge on the first iteration. Intuitively, kernel codeiethcauses
privileged VM-exits or tracing page faults is likely to beasially
close, and will eventually lead to a small set of traced padés
observed this behaviour in all our experiments with Linuesgfs.
Even if the read/write tracing chain becomes long, we relypon
adaptive page resizing algorithm to break this chain by réngp
the trace on a page (and all the associated patch-sitestipdge
experiences a large number of page faults.

5. Experimental Results

We implemented our optimizations in Linux/KVM version 3.0,
which has paravirtual extensions for Power. To measureoperf
mance ofunmodifiedKkVM and KVM with our optimizations, we
disabled the paravirtual extensions. We perform our erpants
on Freescale QorlQ P2020 platform, which is optimized fogkd-
threaded performance per watt for networking and telecopti-ap

number of tracing page faults, and the number of page fauks d
to increased TLB pressure (TLB misses). Figures 5 and 6 shew t
reduction in VM exits and page faults due to all these thrasaps
for each workload, before and after our optimizations (theraw
data is also available on the last page). The exits due teacte-
lation faults fcc. Viol.) are primarily due to tracing page faults,
but may also include certain access violations due to thetgtie
self. We call exits due to execution of privileged instroos in user
mode privileged exits. We do not report exit statisticsfabench
microbenchmarks because ttwbench suite is configured to run a
variable number of iterations in each run, making it diffi¢alcom-
pare the number of exits across different optimizationsil&rly,
we do not report exit statistics f@ilnixbench Filesystem mi-
crobenchmarks because the number of exits on these berichmar
depends on the throughput achieved in that run, which makes i
difficult to compare them across different optimizationse ¥so
show the reduction in exits for the paravirtual soluti®vM-PV)
for comparison. The number of exitsKWM-PV can be considered
as a lower-bound on the number of exits achievable by a ldst-s
binary translation solution.

Just usingIn-place-BT does not improve performance for
a Linux guest. In fact, we find that read/write tracing selyere
impairs performance because the guest uses a huge 256MB page
to map the kernel's code and data. If we trace the entire 256MB
page, a Linux guest does not boot even after hours. Even if we
break the guest kernel page uniformly into large fragmehtize
16MB each (and trace only those fragments which containhpatc
sites), it takes multiple hours to boot a Linux guest. On ttieeo
hand, if we uniformly break all guest kernel pages into srEIB
fragments, we observe a slowdown of 370% (over base KVM) for
linux-boot, due to increased TLB pressure resulting in a large

cations. Our system has a 1.2GHz processor with 32KB L1 cache number of TLB misses. Similar performance degradation é&nse

and 512 KB L2 cache. We use RAMdisk for our experiments to
eliminate I/O overheads.

Our benchmarks are described in Table 1. We use four mac-

robenchmarks, namelylinux-boot, echo-spawn, find and

on other benchmarks too (e.g., 300%eatho-spawn).

The second column in Table 5 shows the performance of
KVM with Optimizations In-place-BT + Adapt-PR. Because
Adapt-PR localizes the trace to a small page and adaptively un-

lame. These benchmarks have also been used in a previous periraces and retraces pages, we observe a significant runtme i

formance study [13]. The others are microbenchmarks froen th
widely-usedlmbench [14] and Unixbench [10] toolsets. These
toolsets are routinely used for system benchmarkingux-boot
and echo-spawn execute a large number of privileged instruc-
tions, whilefind executes relatively fewer privileged instructions.
lame is largely computation-bound with mostly user-level uapri
ileged computation and some I/O. Hendeme seldom exits to
the hypervisor and shows virtualized performance closeare-b
metal. We do not report performance comparisons on purely us
level compute-intensive workloads because they exhilzit bare-
metal performance for all cases. We also do not report pedoce
comparisons on device-bound (e.g., network-bound or bigskad)

provement on all benchmarks. We first discuss the microbench
marks. The average improvement in running timelitbench,
Unixbench, and Unixbench Filesystem microbenchmarks is
263%, 217%, and 160% respectively. The correlation betwieen
performance improvement and reduction in the total numifer o
VM exits (Figures 5, 6) is evident. Different microbenchksaex-
ecute different number of privileged instructions and stuliffer-

ent corresponding reductions. On macrobenchmarks, wena@bse
an average runtime improvement of 168%, with the maximum im-
provement seen iacho-spawn, which also shows a corresponding
reduction (89%) in total number of VM exits. For both micrabb-
marks and macrobenchmarks, we notice an increase in theamumb



Benchmark KVM Adapt-PR  Adapt-DM
Running Time insec (lower is better)
linux-boot 30.03 14.39 12.39
echo-spawn 21.34 8.9 6.85
find 1.89 1.67 0.83
lame 0.56 0.51 0.50
Imbench Latency inmsec (lower is better)
syscall 0.020 0.003 0.003
stat 0.033 0.023 0.007
fstat 0.021 0.006 0.004
open/close 0.067 0.040 0.023
sig-hndl 0.024 0.004 0.004
pipe 0.066 0.068 0.041
fork 6.641 2.221 1.679
exec 20.543 8.971 6.681
sh 45.164 19.265 14.719
Unixbench Raw Score (higher is better)

dhrystone?2 48110141 48988135 48957180
syscall 124854 748931 652829
cswitch 60746 148344 240653
proc-create 2470 6378 8714
pipe 188208 411186 923218
hanoi 8689401 8839987 883621P
Unixbench Filesystem | Throughputin KBps (higher is better)
file-read 11524 26286 49830
file-write 10500 16400 38200
file-copy 5432 9783 20070

Table 5. Performance Improvements obtained by Adaptive Page Regsizdapt-PR) and Adaptive Data MirroringAdapt-DM) optimiza-

tions.
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Figure 5. Percentage reduction in VM exits for macrobenchmarks.

crobenchmarks.

of TLB misses and access violations (due to tracing pagésfeah

average. The net effect however remains largely positive.

We analyzeAdapt-PR in more detail. We use three algorithm
parameters for our implementation: a burst is detected dheerve
more than 5000 faults in a 100ms interval; the dynamic ttolesh
T (to decide whether to untrace/retrace a page) decreasesllin
with time at the rate of 500 exits per 100ms; and on a split due
to a burst of tracing page faults, the shortest page sizetitose
64KB. We found through experimentation that the perforneanc
of our algorithm is largely insensitive to the first two paeters,
i.e., differences in performance are seen only at large gd¢mto
these parameters. For the last parameter dictating theeshpage

Figure 6. Percentage reduction in VM exits for Unixbench mi-

size on a TLB split due to bursty tracing page faults, we taed

few different values. Figure 7 shows our results. We fourat th
the shortest page is configured to 4KB (the shortest po3sihie
number of TLB misses increases significantly due to incrass
pressure. If the shortest page is too large (e.g., 256KB)timber

of privileged exits remains high (large number of tracingyga
faults due to false sharing causes the page to get untraseitimg

in a large number of privileged exits). We found a shortesiep
limit of 64KB to work best, and hence use that for our algarith
Figure 8 also shows the TLB configuration over time (as detide
by ourAdapt-PR algorithm) forlinux-boot.
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Figure 8. TLB configurations over time (as dictated gapt-PR algorithm) duringlinux-boot. The numbers in brackets represent
address ranges in MB. KVM starts with one 256MB TLB entry, efhis broken into thirteen different TLB entries (1). Stepk (3), (4), (5)
are page splits due to scan pattern of tracing page faups$6) and (7) merge small fragments into larger ones oppistically. Steps (1)
through (7) finish in the first 1-2 seconds of bootup time. Ttwfiguration then shuttles between the last two configunat{@®), (9), (10),
(11), ..., splitting on observing bursty tracing page fauaihd merging opportunistically. Most of the time duringstiorkload is spent in the

second last configuration (thirteen different TLB entries)
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Our next optimization,Adapt-DM, further reduces tracing
page faults, resulting in further average runtime improsenof
157%, 112%, and 209% imbench, Unixbench, andUnixbench
Filesystem microbenchmarks respectively, and 137% in mac-
robenchmarks. For this optimization, we allocated a 512Bheaf
mirrored values (mirror cache) in the shared space. We atghar
allocated 60KB of space to mirror the contents of the spaulerst
for the translation cache. We allocated the latter sepgr&i@m
the mirror cache to reduce checking overhead in Ahept-DM
translation code for accesses to the translation cache gpduich

microbenchmark and incidentally shows an exceptionallgda
number of accesses to the last 4KB of the 64KB space stolen for
the translation cache. Because this 4KB region is mirronetthé
mirror cache, this causes cache pressure and evictionso\Wetd
expect such behavior in real workloads. There is a cleaetaiion
between the runtime improvement and the reduction in thebeum

of tracing page faults (Figures 5,6). The average redudtiche
number of tracing page faults is greater than 99%Jnixbench
microbenchmarks and 96% on macrobenchmarks.
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Figure 9. Address space layout before and aftéapt-DM

Adapt-DM optimization also reduces the number of privileged-
instruction exits and TLB misses on many of our benchmarkgs T
happens due to an interesting indirect effect. Withiddpt-DU,
certain guest code pages are adaptively broken into snisltps
and privileged-instruction patches on some of these snadiges
are removed to reduce tracing page faults. Wigtapt-DV, the
number of tracing page faults decreases. This allédesspt-PR

is the common case). The value 60KB was chosen (instead of theto not have to kick in, allowing pages to remain unbroken and

full 64KB of the stolen space) to allow this space to residéhim

privileged-instructions to remain patched. This reduceth TLB

64KB page already reserved for the shared space, hence-reducmisses and number of privileged instruction exits. We oleser

ing the number of extra TLB entries (see Figure 9). Improveisme
due toAdapt-DM are seen in almost all our benchmarks with the
highest improvement of 201% recorded Bind among the mac-
robenchmarks. The only exceptiontisixbench syscall where
Adapt-DM surprisingly causes a 12% slowdown ovetapt-PR.

On further analysis, we found that this happened becausadja
number of evictions in the mirror cacheyscall is a synthetic

this effect in almost all our benchmarks. We notice up to 33%
decrease in the number of TLB misses (fatixbench cswitch),

and up to 52% decrease in the number of privileged-instocti
exits (forunixbench pipe). Finally, we note that bothdapt-PR
and Adapt-DM work together for our optimization solution. As
we have already seeidapt-PR alone is unable to provide the
best achievable performance. Similadlgapt-DM alone (without



Adapt-PR) causes mirroring of data in large pages causing high
pressure on our mirror cache resulting in significant pentorce
degradation.

Overall, the three optimizations together provide perfamoe
comparable to paravirtualization, without having to mugdihe
Linux guest. When compared to bare-metal, the virtualizativer-
head is still significant. Much of this overhead is due to @kinst-
side processing required for memory management. For exampl
all TLB access instructions in the guest need to exit to hyiper
sor. Similarly, all instructions that switch supervis@eu privilege
levels in guest need to also switch their shadow TLB enttlass
requiring an exit to the hypervisor. Because almost all andh-
marks focus intensely on virtualization-sensitive operst, they
all execute many such privileged instructions that requik ex-
its, resulting in low performance relative to bare-metdle3e over-
heads also existed in VMware’s software and hardware \iraa
tion approaches before the introduction of hardware nesaeg
tables [8]. For example, theorkwait benchmark in [4] is similar
to ourecho-spawn and takes 36.9 seconds on VMware’s software
virtualization platform and 106.4 seconds on VMware’s kak
virtualization platform, compared to 6.0 seconds on baetain
i.e., 6x and 18x slowdowns on software and hardware vizaali
tion platforms respectively. The 6x slowdown fyrkwait on x86
software virtualization platform is comparable to the Sovaiown
seen on our system fecho-spawn. The introduction of hardware
nested page tables on newer x86 platforms allows workld&ds |
forkwait to execute with very few VM exits, thus eliminating
these large overheads. These qualitative comparisonsc@#thrir-
tualization lead us to believe that our optimizations aghielose
to the best possible performance for Power Architecturdgstas
achievable with software-only techniques. Newer Poweh#ec-
ture processors optimize memory management for virtudiza
[20] and could potentially further bridge this gap betweérnuv
alized and bare-metal performance. Our optimizationsetattge
older Power Architecture processors, which are also egpettt
remain highly relevant for many more years for their poptyar
due to power and cost advantages.

We next measure the overhead and effectiveness of our adap-

tive page resizing algorithm. We statically configured thadow
TLB to the best observed configuration for Linux boot benctkma
In this configuration, we loaded the shadow TLB with 13 eistrie
one entry of size 4AMBQxc0000000-0xc03f£££f), four entries of
size 1MB each (coveringxc0400000-0xc07f£££f), two entries

of size 4MB each (coveringxc0800000-0xcOffffff), three en-
tries of size 16MB each (coveringxc1000000-0xc3ffffff),
and three entries of size 64MB each (covering
0xc4000000-0xcfff£££f). Of these 13 entries, the first two en-
tries were marked execute-only (kernel code is nearly 5MigjJo
and the rest remained unmodified. We compared the perfoenanc
of this configuration with our adaptive page resizing altjon. We
disabledadapt-DM optimization for this experiment. Also, to avoid
effects due to the placement of the translation cach&dapt-PR
algorithm, we allocated the translation cache in the guesfice

itly (using our custom “tools” module installed in the guefdr
this experiment. To distinguish this configuration fromtthaed

in previous experiments akdapt-PR, we call it Adapt-PR+. Ta-

ble 6 summarizes our results. Figures 10 and 11 show the-corre
sponding reduction in VM exits and page faults. Identicaifigp
urations were used for botftatic-TLB and Adapt-PR in this
experiment. For Linux boot benchmark, we observe that our re
sizing algorithm performs within 1-2% of the statically opal
solution. For other benchmarks, our resizing algorithnmfqrers
within 18% of the static configuration, sometimes outperiiog it

by up to 15%. In all cases whetgapt-PR+ shows overhead over
Static-TLB, we notice that our adaptive algorithm first breaks the

guest into a large number of smaller pages, and then merges th
back. This overhead of splitting and merging and the reswkix-

tra VM exits is reflected in the runtime comparison. These pro
grams (esp. microbenchmarks) run for a short time; the @aatlof
Adapt-PR+ becomes smaller as the programs run longer. We also
studied the programs wheséapt-PR+ outperformsStatic-TLB
(e.g.,1mbench sh). In these cases, the static TLB configuration
was not the optimal choice and our page resizing algorittsulted

in better performance.
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6. Discussion
6.1 Comparison with Full Binary Translation

We call a binary translator which translates all guest utdtons
afull binary translator. VMware’s x86-based binary translatjr [
is an example of such a system. A full binary translator tetas
all guest code, and not just the privileged instructionsd@se in
our system). The advantage of our approach is its simplaity
often higher performance (e.g., indirect branches perfpoorly
on a full binary translator). The disadvantage of our apghoa
that we change the guest’s address space directly and h#vesto
monitor guest's accesses to our modified regions (which we do
using read/write tracing). As we demonstrate in this wotksi
possible to do this correctly and efficiently using our preg
optimizations for embedded Power Architecture platforms.

Our in-place binary translation approach relies on the fixed
length word-aligned nature of Power Architecture instiarts. We



Benchmark Static-TLB Adapt-PR+
Running Time insec (lower is better)
linux-boot 12.98 13.02
echo-spawn 8.0 7.80
find 0.90 0.98
lame 0.51 0.51
1lmbench Latency inmsec (lower is better)
syscall 0.007 0.009
stat 0.011 0.012
fstat 0.008 0.009
open/close 0.022 0.026
sig-hndl 0.008 0.009
pipe 0.053 0.062
fork 2.068 2.020
exec 7.792 7.457
sh 17.076 16.565
Unixbench Raw Score (higher is better)
dhrystone2 48833854 4890494
syscall 344877 286057
cswitch 160575 159256
proc-create 7101 7679
pipe 557045 469538
hanoi 8835343 8690019
Unixbench Filesystem | Throughputin KBps (higher is better)
file-read 28346 24151
file-write 22450 19050
file-copy 12201 10408

Table 6. Measuring the overhead and performance of adaptive pagege@dapt-PR+) algorithm, in comparison to a statically configured
TLB (Static-TLB). The static TLB configuration was setup such that it provithe best performance for the Linux boot benchmark. We
disableAdapt-DM optimization and allocate translation cache explicitynfrthe guest (using guest tools) for this experiment.

ensure that a guest cannot possibly jump to the middle ofransi
lation by relying on this property. Because the x86 architechas
variable-sized non-aligned instructions, in-place hjrtaanslation
is much harder (or perhaps impossible) to implement cdyrect
x86.

We also rely on the ability to read/write trace guest pages
by marking themexecute-only. This is possible on embed-
ded Power Architecture platform due to the availability eps
arate read-write-execute page protection bits. In contrast,
the x86 architecture provides onkead-only andno-execute
(NX) bits, which are less powerful, and insufficient to implent
execute-only privileges at page granularity.

Subtle differences in architectures greatly impact VMMiges
We believe that our approach is perhaps a misfit for the x86i-arc
tecture for reasons outlined above. Similarly, a full bynaanslator
is perhaps an overkill for embedded Power Architecturaisiiza-
tion, given that our lightweight adaptive in-place binargrislator
can achieve the same (or better) effect with less engingeffort.
The interplay of full binary translation with small TLB siz&lso
remains to be studied.

6.2 Fidelity Limitations

While our virtualization solution providesear-completarchitec-
tural fidelity to the guest, there remain two corner-casdifidém-
itations:

2. The second fidelity violation is due to storage of emulated
guest register state in unused guest VA space. As discussed i
Section 3, fidelity could get violated if the guest acceshés t
unused VA spacevithout first creating a corresponding TLB
mapping.

Despite these corner-case fidelity limitations, we gua®obrrect-
ness by relying on known behaviour of the guest OS. Simitar li
itations also exist in VMware’s x86-based virtualizatiovluion
which combines direct execution with binary translatioh [4

6.3 Relevance to Other Architectures

Our work provides an interesting contrast to previous wonk o
x86 virtualization [4], and brings forth interesting imgditions of
seemingly innocuous architectural differences. Theskereifices
are: x86 platforms have segmentation, embedded Power -Archi
tecture platforms have software-loaded TLB, variable psiges,
and orthogonatwx protection bits; Power Architecture platforms
have fixed length aligned instructions, x86 platforms hasg-v
able length instructions. Embedded Power Architecturéqaias
share some of these features with other architectures (4lBS,
SPARC, ARM) and some of our techniques are relevant in these
contexts. However, in our experience, reaching the “ogtiswu-
tion for any architecture typically requires a separateittd study
of its features and limitations.

Our techniques are also relevant to the newer generation of

1. We steal space from the guest OS’s data section to store ourPower Architecture processors which have hardware viratibn
translation cache. As we protect the translation cache only support. A combination of software and hardware technigqaes
against read/write access (and not execute access), ¥fidelit provide better performance than plain hardware virtuéitmna[5].
could get violated if the guest OS branches to an address in Although our implementation and experiments are based di a 3

its data section. Such behaviour is not expected of a “well-
behaved” OS.

bit Power Architecture processor, our solution is alsovaié to
64-bit Power Architecture platforms.



6.4 Other Related Work

Binary translation has been previously used in various ecast
namely cross-ISA portability [7, 21], hardware-based penfance
acceleration [12], dynamic runtime compiler optimizatofé],
program shepherding [9], testing and debugging [15]. Bit@ns-
lation was first used for efficient virtualization on the x8@la-
tecture by VMware [4], and our work is perhaps closest torthei
approach. The difference is in the translator's designyeggusly
discussed in Section 6.1.

The recent extension to the Linux kernel for Power Architec-
ture paravirtualization contrasts with our approach. Wlhiile par-
avirtual modifications require extensive changes to theniker-
nel, our approach can achieve comparable performance with o
host-side optimizations. Unlike the paravirtual approagh can
optimize dynamically generated/loaded code and ensuneator
behaviour in presence of self-referential and self-madgyguest
code. We also do not require a trusted guest. The host-duasds
spaces are guest-specific and do not grant a guest any mere pri
ileges than it already has. An untrusted guest can at moshcra
itself.

We present our experiments and results on a uniprocesssr gue
but our ideas are equally relevant to a multiprocessor géesta
multiprocessor guest, these optimizations must be imphéeadeor
each virtual CPU (VCPU). To reduce synchronization ovedkga
separate translation and data caches need to be maintaireath
VCPU. This minimizes synchronization overheads at thenittke
cost of marginally higher space overheads. We expect oimizat-
tions to show equivalent performance improvements on aipnodt
cessor.

7. Conclusion

We discuss the design and implementation of an efficientsidst
virtualization solution for embedded Power Architectureqes-
sors. We propose and validate a set of host-side optimiratio
namelyin-place binary translation(including stealing of address
space for translation cache and read/write traciadgptive page
resizing and adaptive data mirroring Of these, in-place binary
translation and adaptive page resizing are new techniquas,
previously used for x86-based software virtualizatiorghtight-
ing that different architectures offer different oppoitigs and
challenges, and thus require different optimization sohgt The
Linux/KVM-based prototype system developed on our ideasvsh
significant performance improvements on common workloads,
and compares favourably to previously-proposed paralirdyp-
proaches. We hope our techniques add to the “optimizatiaset’
for efficient virtualization on other (newer) instructioetarchitec-
tures in future.
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Raw Data on Exit Count

Unmodified KVM

linux-boot
echo-spawn

find

lame
unix-dhrystone2
unix-syscall
unix-cswitch
unix-proc-create
unix-pipe
unix-hanoi

Priv. Exits

11509859
9829128
802777
60312
154460
22541901
26459239
41882
28714485
4005414

In-place-BT + Adapt-PR

linux-boot
echo-spawn

find

lame
unix-dhrystone2
unix-syscall
unix-cswitch
unix-proc-create
unix-pipe
unix-hanoi

Priv. Exits

616643
102315
19102

224709

TLB misses

402274
419191
2486
1932
973
953
1102
621658
979
914

334458
503341
2889
2085
1186
1140
8288
845228
1221
1158

In-place-BT + Adapt-PR + Adapt-DM

linux-boot
echo-spawn

find

lame
unix-dhrystone2
unix-syscall
unix-cswitch
unix-proc-create
unix-pipe
unix-hanoi

linux-boot
echo-spawn

find

lame
unix-dhrystone2
unix-syscall
unix-cswitch
unix-proc-create
unix-pipe
unix-hanoi

Priv. Exits

610986
99081
9185
224970

608549
98569
7648
224660

TLB misses

345035
506295
2782
2114
1140
1159
5567
846053
1165
1169

295672
427351
2392
1916
1001
948
1059
652042
968
943

1062541
536993
650758
3126
1224
1158
6020365
640888
10012062
2032

Static-TLB

linux-boot
echo-spawn

find

lame
unix-dhrystone2
unix-syscall
unix-cswitch
unix-proc-create
unix-pipe
unix-hanoi

linux-boot
echo-spawn

find

lame
unix-dhrystone2
unix-syscall
unix-cswitch
unix-proc-create
unix-pipe
unix-hanoi

Priv. Exits

614104
101427
15742

224929

616684
100796
18762

225211

TLB misses

320941
485870
2676
2052
1197
1135
1260
815074
1144
1116

326825
492129
2655
2085
1127
1130
7702
835408
1113
1088

452482
513294
98113
3124
6158
6006963
3608524
897920
6008821
151104

460001
518255
98145
3126
6132
6008149
3609690
897302
6010468
151308



