
Automatic Verification of Intermittent Systems

Manjeet Dahiya and Sorav Bansal

Indian Institute of Technology Delhi
{dahiya, sbansal}@cse.iitd.ac.in

Abstract. Transiently powered devices have given rise to a new model
of computation called intermittent computation. Intermittent programs
keep checkpointing the program state to a persistent memory, and on
power failures, the programs resume from the last executed checkpoint.
An intermittent program is usually automatically generated by instru-
menting a given continuous program (continuously powered). The be-
haviour of the continuous program should be equivalent to that of the
intermittent program under all possible power failures.
This paper presents a technique to automatically verify the correctness of
an intermittent program with respect to its continuous counterpart. We
present a model of intermittence to capture all possible scenarios of power
failures and an algorithm to automatically find a proof of equivalence
between a continuous and an intermittent program.

1 Introduction

Energy harvesting devices, that harvest energy from their surroundings, such
as sunlight or RF radio signals, are increasingly getting popular. Because the
size reduction of batteries has not kept pace with the size reduction of transistor
technology, energy harvesting allows such devices to be much smaller in size, e.g.,
insect-scale wildlife tracking devices [19] and implantable medical devices [17].
Such devices are already commonplace for small dedicated computations, e.g.,
challenge-response in passive RFID cards, and are now being imagined for more
general-purpose computational tasks [15,19].

The harvested energy is unpredictable and usually not adequate for contin-
uous operation of a device. Power failures are spontaneous, and may occur after
every 100 milliseconds, for example [19]. Thus, computation needs to be split
into small chunks that can finish in these small intervals of operation, and inter-
mediate results need to be saved to a persistent memory device at the end of each
interval. A power reboot should then be able to resume from the results of the
last saved computational state. This model of computation has also been termed,
intermittent computation [15]. Typically, the intermittent programs involve in-
strumentation of the continuous programs (that are supposed to be continuously
powered) with periodic checkpoints. The checkpoints need to be close enough, so
that the computation across two checkpoints can finish within one power cycle.
On the other hand, frequent checkpoints degrade efficiency during continuous
operation. Further, a checkpoint need not save all program state, but can save



only the necessary program state elements, required for an acceptable computa-
tional state at reboot. The presence of volatile and non-volatile program state
simultaneously, makes the problem more interesting.

An intermittent program may be written by hand, through manual reason-
ing. Alternatively, semi-automatic [15] and automatic [19, 26] tools can be used
to instrument continuous programs with checkpoints, to allow them to execute
correctly in the intermittent environments. The goal of these automated tools
is to generate an intermittent program that is equivalent to the continuous pro-
gram under all possible power failures. In addition to correctness, these tools try
to generate intermittent programs with smaller checkpoints for efficiency. These
tools reason over high-level programs (C or LLVM IR), and it has been reported
that it is a challenge [26] to work at a higher level. Given that the failures hap-
pen at the architecture instruction granularity (and possibly at microinstruc-
tion granularity) and it is the machine state that needs to be checkpointed; the
reasoning at a higher level is error-prone and could go wrong because of the
transformations (e.g., instruction reordering) performed by the compiler. More-
over, the bugs in intermittent programs could be very hard to detect because the
number of states involved is very large due to spontaneous and recurring power
failures.

Verifying the correctness of an intermittent program with respect to a contin-
uous program is important from two aspects: First, we will be able to verify the
correctness of the output of existing automatic instrumentation tools. Second,
a verification tool will enable us to model automatic-instrumentation as a syn-
thesis problem to optimize for the efficiency of generated intermittent programs,
with the added confidence of verified output.

We present an automatic technique to verify the correctness of an intermit-
tent program with respect to a continuous program. Towards this goal, we make
the following contributions: (a) A formal model of intermittence that correctly
and exhaustively captures the behaviour of intermittent programs for all possi-
ble power failures. Additionally, the model of intermittent programs is amenable
to checking equivalence with its continuous counterpart. (b) Due to recurring
executions in an intermittent program, an intermediate observable event (not
occurring at exit) may occur multiple times, causing an equivalence failure. We
show that if the observables are idempotent and commutative, then we can claim
equivalence between the two programs. (c) A robust algorithm to infer a prov-
able bisimulation relation to establish equivalence across a continuous and an
intermittent program. The problem is undecidable in general. The algorithm
is robust in the sense of its generality in handling even minimal checkpointing
states, i.e, a more robust algorithm can verify an intermittent program with
smaller checkpoints. In other words, we perform translation validation of the
translation from continuous to intermittent programs. However, in our case, in
addition to program transformation, the program execution environment also
changes. The continuous program is supplied with continuous power whereas
the intermittent program is powered with transient power.



We have implemented our algorithm in a tool and evaluated it for verifica-
tion runtime and robustness. For measuring the robustness, we implemented a
synthesis loop to greedily minimize the checkpointed state elements at a given
set of checkpoint locations. The synthesis loop proposes smaller checkpoints,
and relies on our equivalence procedure for checking equivalence between the
continuous and the intermittent program, under the proposed checkpoints. The
synthesis loop can result in a smaller checkpoint if our equivalence procedure
can verify the same, i.e., optimization is dependent on the robustness of our
verification algorithm. We tested our tool on the benchmarks from the previous
work and compared our results with DINO [15]. The synthesis loop is able to
produce checkpoints whose size is on average 4 times smaller than that of the
checkpoints produced by DINO. The synthesis time ranges from 42 secs to 7
hours, and the average verification time is 73 secs.

2 Example

We briefly discuss, with the help of an example, the working of intermittent
programs and issues associated with it. Fig. 1a shows an x86 program that in-
crements a non-volatile global variable nv and returns 0 on success. The program
terminates after returning from this procedure. We call it a continuous program
as it is not meant to work in an environment with power failures. Fig. 1b shows
an intermittent program, generated by instrumenting the continuous program.
This program can tolerate power failures, and it is equivalent to the continuous
program, under all possible power failures. The equivalence is computed with
respect to the observable behaviour, which in this case is the output, i.e., the
value of return register eax and the value of the global variable nv.

The intermittent program has been generated from the continuous program
by inserting checkpointing logic at the checkpoint locations CP1 and CP2. During
checkpointing, the specified CPelems and the location of the current executing
checkpoint get saved to CPdata in persistent memory. In case of a power failure,
the program runs from the entry again, i.e., the restoration logic, it restores the
CPelems, and then jumps to the location stored in CPdata.eip. For the first run
of the intermittent program, the checkpoint data is initialized to ((), Entry),
i.e., CPdata.CPelems=() and CPdata.eip=Entry. This ensures that on the first
run, the restoration logic takes the program control flow to the original entry of
the program. More details on instrumentation are discussed in Sec. 4.1.

In case of power failures, the periodic checkpointing allows the intermittent
programs to not lose the computation and instead, start from the last executed
checkpoint. For example, if a failure occurs at location I5, the intermittent pro-
gram will resume its computation correctly from CP2, on power reboot. This is
so because the checkpoint CP2 gets executed while coming to I5, and the restora-
tion logic, on the next run, restores the saved state and jumps to CP2. Moreover,
under all possible scenarios of power failures, the output of the intermittent
program remains equal to that of the continuous program.



Entry:

CP1: I1: push ebp

I2: mov esp ebp

I3: inc (nv)

CP2: I4: xor eax eax

I5: pop ebp

I6: ret

CP1: I1

CP2: I4

CPelems1:

esp, (esp), nv

CPelems2:

esp, (esp+4)

(a) Continuous program

Restoration: # new entry

restore CPdata.CPelems CPelems

jmp CPdata.eip # init to Entry:

Entry: # original entry

CP1’: # checkpointing logic

save (CPelems1, CP1) CPdata

CP1: I1: push ebp

I2: mov esp ebp

I3: inc (nv)

CP2’: # checkpointing logic

save (CPelems2, CP2) CPdata

CP2: I4: xor eax eax

I5: pop ebp

I6: ret

(b) Intermittent program

Fig. 1: The first assembly program increments a global non-volatile variable nv and
returns 0. It also shows the checkpoint locations CP1 and CP2 and respective checkpoint
elements (CPelems1 and CPelems2) that need to checkpointed at these locations. The
second program is an intermittent program, which is generated by instrumenting the
first program at the given checkpoint locations.

Notice, that we need not checkpoint the whole state of the machine, and only
a small number of checkpoint elements is sufficient to ensure the equivalence with
the continuous program. A smaller checkpoint is important as it directly impacts
the performance of the intermittent program; a smaller checkpoint results in less
time spent on saving and restoring it. Fig. 1a shows the smallest set of CPelems
that need to be saved at CP1 and CP2. The first two elements of CPelems1

and the only two elements of CPelems2 ensure that the address where return-
address is stored and the contents at this address, i.e., the return-address (both
of which are used by the ret instruction to go back to the call site) are saved
by the checkpoint. As per the semantics of ret instruction, ret jumps to the
address stored at the address esp, i.e., it jumps to (esp)1. At CP1 and CP2,
the return address is computed as (esp) and (esp+4) respectively. Note that
the expressions are different because of an intervening push instruction. Further,
checkpointing of non-volatile data is usually not required; however, (nv) needs
to be saved at CP1 because it is being read and then written before the next
checkpoint. If we do not save (nv) at CP1, failures immediately after I3 would
keep incrementing it.

Tools [15, 19, 26] that generate intermittent programs by automatically in-
strumenting the given continuous programs usually work at a higher level (C or
LLVM IR). These tools perform live variable analysis for volatile state and write-
after-read (WAR) analysis for non-volatile state to determine the checkpoint el-
ements. However, they end up making conservative assumptions because of the

1 (addr) represents 4 bytes of data in memory at address addr.



lack of knowledge of compiler transformations (e.g., unavailability of mapping be-
tween machine registers and program variables) and the proposed checkpointed
elements contain unnecessary elements. For example, a tool, like DINO, without
the knowledge of compiler transformations would checkpoint all the registers
and all the data on the stack for our running example. Even if these analyses
are ported at the machine level, the proposed checkpoint elements would be
conservative as these analyses are syntactic in nature. For example, a live vari-
able analysis for the example program would additionally propose the following
unnecessary elements: ebp at CP1 and eax, (esp) at CP2.

The observable of the example program is produced only at the exit. Let
us consider a case, when the observable events are produced before reaching
the exit (called intermediate observables). In case of intermediate observables,
the observables may get produced multiple times due to the power failures.
For example, assume that there is an atomic instruction I5’: print("Hello,

World!") (which produces an observable event) in between I4 and I5. Due to the
power failures at I5 and I6, the program will again execute the code at I5’ and
the observable event will get produced again, resulting in an equivalence failure.
Interestingly however, it is possible that the observer cannot distinguish, whether
the observable has been repeated or not. This depends upon the semantics of
print, e.g., if it prints to the next blank location on the console, then the observer
may see multiple ”Hello, World!” on the console. However, if it prints at a fixed
location (line and column), then the multiple calls to print would just overwrite
the first ”Hello, World!”, and this would be indistinguishable to the observer.
We discuss this in detail in Sec. 5.3.

Rest of the paper is organized as: Sec. 3 presents the representation we use for
abstracting programs. The modeling of intermittent program behaviour is dis-
cussed in Sec. 4. Sec. 5 describes the procedure to establish equivalence between
the continuous and the intermittent program.

3 Program Representation

We represent programs as transfer function graphs (TFG). A TFG is a graph
with nodes and edges. Nodes represent program locations and edges encode
the effect of instructions and the condition under which the edges are taken.
The effect of an instruction is encoded through its transfer function. A transfer
function takes a machine state as input and returns a new machine state with
the effect of the instruction on the input state. The machine state consists of
bitvectors and byte-addressable arrays representing registers and memory states
respectively.

A simplified TFG grammar is presented in Fig. 2. A node is named either
by its program location (pc(int), i.e., program counter), or by an exit location
(exit(int)). An edge is a tuple with from-node and to-node (first two fields), its
edge condition edgecond (third field) (represented as a function from state to
expression), and its transfer function τ (fourth field). An expression ε could be
a boolean, bitvector, or byte-addressable array. The expressions are similar to



T ::= (G([node], [edge]))
node ::= (pc(int) | exit(int), [CPelem])
edge ::= (node, node, edgecond, τ)
edgecond ::= state→ ε
τ ::= state→ state
state ::= [(string, type, ε)]
ε ::= const(string) | nry op([ε]) | select(ε, ε, int) | store(ε, ε, int, ε)
CPelem ::= (string) | (string, ε, int)
type ::= Volatile | NonVolatile

Fig. 2: Grammar of transfer function graph (T).

the standard SMT expressions, with a few modifications for better analysis and
optimization (e.g., unlike SMT, select and store operators have an additional
third integer argument representing the number of bytes being read/written). An
edge’s transfer function represents the effect of taking that edge on the machine
state, as a function of the state at the from-node. A state is represented as a
set of (string, type, ε) tuples, where the string names the state-element (e.g.,
register name) and the type represents whether the state-element is volatile or
non-volatile.

For intermittent execution, checkpoints can be inserted at arbitrary program
locations. A checkpoint saves the required state elements to a persistent store.
The saved state would allow the restoration logic to resume from the last exe-
cuted checkpoint. We model checkpoints by annotating the TFG nodes corre-
sponding to the checkpoint locations as checkpoint nodes with their correspond-
ing checkpointed state (specified as a list [CPelem] of checkpoint elements).
The semantics of CPelems are such that on reaching a node with CPelems, the
projections of CPelems on the state are saved. A CPelem can either specify
a named register (first field) or it can specify an address with the number of
bytes of a named memory (second field). The first type of CPelem allows to
checkpoint a register or the complete memory state, whereas the second type
allows flexibility to checkpoint a memory partially or in ranges.

Fig. 3 shows the TFGs of the continuous and the intermittent programs of
Fig. 1. The edgecond of every edge is true and the instructions are shown next
to the edges representing the mapping between the edges and the instructions.
For brevity, the transfer functions of the edges are not shown in the diagram.
An example transfer function, for the instruction “push ebp”, looks like the
following: τpush ebp(S) = {S′ = S; S′.M = store(S.M, S.esp, 4, S.ebp); S′.esp =
S.esp − 4; return S′; } The new state S′ has its memory and esp modified as
per the semantics of the instruction.



push ebp

inc (nv)

xor eax eax

pop ebp

ret

mov esp ebp

1

2

3

4

5

6

7

restore CPdata.CPelems CPelems
jmp CPdata.eip

4’

4

save (CPelems2, 4) CPdata

1

2

3

4

5

6

7

R

Entry

Failure edge

Restore edge

R Restoration entry node

4 Checkpoint node

7 Exit

4

Fig. 3: TFGs of the continuous and the intermittent program of Fig. 1.

4 Modeling Intermittence

4.1 Instrumentation Model

Instrumenting a continuous program to generate an intermittent program in-
volves: adding the checkpointing logic at the given checkpoint nodes, adding the
restoration logic, changing the entry of the program to the restoration logic, and
setting the initial checkpoint data in the persistent memory.

The checkpointing and the restoration logic work with data called checkpoint
data (CPdata). The checkpoint data is read/written from/to a fixed location in
a persistent memory. The checkpoint data consists of CPelems of the machine
state and the checkpoint location. The checkpointing logic saves the checkpoint
data from the machine state, and the restoration logic updates the machine state
from the checkpoint data. Additionally, after updating the machine state, the
restoration logic changes the program control flow (jmp) to the stored check-
point location (CPdata.eip). The checkpointing logic is added for all the given
checkpoint nodes. The restoration logic, however, is added once, and the entry
of the program is changed from the original entry to the entry of the restora-
tion logic. The checkpoint data is initialized with the empty CPelem list and
the stored checkpoint location is set to the original entry. This ensures that the
intermittent program starts from the correct entry, i.e., the original entry, in its
very first execution. Further, it is assumed that the location where CPdata is
stored cannot alias with the addresses of the programs. In other words, the pro-
gram, except for checkpointing and restoration logic, should not read or write
CPdata.

The checkpointing logic is made atomic by using a double-buffer to save
the checkpoint data. The checkpointing logic works with two checkpoint data:
current CPdata and unused CPdata, and a pointer CPdataLocation points to
the current CPdata. While checkpointing, it writes to the unused checkpoint
data and once complete, it updates CPdataLocation to the address of unused
checkpoint data, making it the current CPdata. This technique ensures that a



failure while executing the checkpointing logic does not corrupt the checkpoint
data. For brevity, we do not show the implementation of double buffering.

Fig. 3 shows the TFGs of the continuous and the intermittent program.
Nodes 1 and 7 are the entry and the exit locations of the continuous program
respectively. In the intermittent program, the checkpointing logic has been in-
serted at nodes 1 and 4, and the restoration logic has been appropriately added
at program entry. The CPelems at node 1 (CPelems1) and 4 (CPelems2) are
listed in Fig. 1a. A checkpoint node in the intermittent program is shown as a
single node in the program graphs; actually, it consists of multiple nodes and
edges representing the TFG of the checkpointing logic. Fig. 3 also shows the
TFG of the checkpointing logic of node 4. It saves the CPelems2 and sets the
stored program location (CPdata.eip) to the location of the checkpoint node 4
in this example. The intermittent program always starts in the restoration logic.
It restores the state from the saved CPdata.CPelems and then jumps to the
stored program location (CPdata.eip).

4.2 Modeling Power Failures

Power failures in an intermittent environment are spontaneous and can occur
at any moment. We assume that a power failure can occur before and after ev-
ery instruction of the assembly program, which is analogous to the properties
of precise-exceptions, and is guaranteed by most architectures. On architectures
where this assumption cannot be made, one can model power failures at the
microinstruction level, i.e., before and after every microinstruction of that archi-
tecture, and rest of the technique would remain the same.

At the TFG level, nodes precisely represent the instruction boundaries, i.e.,
a power failure can occur at any of the nodes of the TFG. On a power failure:
the volatile data is lost and the program, on reboot, starts from the entry,
i.e, the restoration logic. We model power failures at each node by adding a
non-deterministic failure edge from each node of the TFG to the entry of the
restoration logic.

Definition 1 (Failure edge). A failure edge is an edge of a TFG from node
n to the entry node R of the restoration logic. The edgecond and the transfer
function τ of a failure edge are defined as:

edgecond = δ

τ(S) = ∀(s,t,ε)∈S

{
(s, t, randomε) if t is Volatile

(s, t, ε) if t is NonVolatile

Where δ is a random boolean value, S is the state at the node n, (s, t, ε)
represents an element of the state S, and randomε is a random value of the type
of the expression ε.

A failure edge of a TFG models the non-determinism and the effect of a power
failure; the condition under which the edge is taken is random, i.e., spontaneous
power failure, and the effect is modeled by the transfer function and the program



control flow change. The transfer function of a failure edge preserves the non-
volatile data and garbles the volatile data (overwritten with arbitrary/random
values) and the failure edge goes to the entry, encoding the fact the program
starts from the entry on reboot.

The failure edges are added for all the nodes of the instrumented TFG, even
for the nodes of the checkpointing and the restoration logic. The failure edges
for the nodes of checkpointing and restoration logic capture the fact that power
failures are possible even while executing the checkpointing and the restoration
logic. This failure model is exhaustive and complete, and it precisely models the
semantics of power failures. The failure edges are shown as the dashed edges in
Fig. 3.

4.3 Resolving Indirect Branches of Restoration Logic

The restoration logic changes the control flow of the program based on the
contents of stored program location. It is implemented as an indirect jump (i.e.,
jmp CPdata.eip) at the assembly level. In general, an indirect jump may point
to any program location; however, in our case we can statically determine the
set of locations the indirect jump can point to. Since the indirect jump depends
on the value stored in CPdata.eip, we determine all the values that may get
stored in CPdata.eip.

At the beginning, CPdata.eip is initialized to the original entry of the inter-
mittent program. And later, it is only modified by the checkpointing logic and
set to the locations of the checkpoint nodes. Thus, the indirect jump can either
point to the original entry or any of the checkpoint nodes. Using this informa-
tion, we resolve the indirect jump of the restoration logic and add restore edges
to the intermittent TFG to reflect the same.

Definition 2 (Restore edge). A restore edge is an edge of a TFG from the
node R, i.e., the restoration logic, to the original entry or a checkpoint node n
of the TFG. The edgecond and the transfer function τ of the restore edge are
defined as:

edgecond = (CPdata.eip == n)

τ(S) = ∀(s,t,ε)∈S


(s, t, ε) (s) /∈ CPdata.CPelems
(s, t, ε) (s, , ) /∈ CPdata.CPelems
(s, t,D) ((s) : D) ∈ CPdata.CPelems
(s, t, store(ε, a, b,D)) ((s, a, b) : D) ∈ CPdata.CPelems

Where S is the state at the node R, (s, t, ε) is an element of the state S, (s)
and (s, a, b) are checkpoint elements, CPdata.CPelems has the stored check-
point elements as a map from CPelems to the stored data (D), and s, t, ε, a
and b correspond to name, type, expression, address and size (number of bytes)
respectively.

The edge condition represents that the edge is taken to a checkpoint node n
if the stored program location CPdata.eip is equal to n. The transfer function



restores the state by updating the state with all the CPelems available in the
CPdata.CPelems. The restore edges are added to the intermittent TFG from
the restoration logic to all the checkpoint nodes and the original entry. The
restore edges are shown as the dash-dot edges in Fig. 3.

5 Equivalence

Our goal is to establish equivalence between the continuous and the intermit-
tent program, which translates to checking equivalence between the TFGs cor-
responding to the respective programs. Significant prior work exists for sound
equivalence checking of programs in the space of translation validation and ver-
ification [4, 7, 9–14, 16, 18, 21, 23–25]. Most of these techniques try to infer a
bisimulation relation (also called simulation relation in some papers) between
the two programs. A bisimulation relation between two programs consists of
correlation and invariants. The correlation is a mapping between the nodes and
edges (or moves) of the two programs; the correlation sets the rules, which the
two programs follow to move together in a lock-step fashion. The invariants re-
late the variables across the two programs, at the correlated node pairs. The
invariants always hold when the two programs are at the respective correlated
nodes. Further, the invariants should prove the above-mentioned correlation and
equivalence of the observables of the two programs on the correlated edge pairs.

Prior work on equivalence checking has proposed different algorithms to infer
the correlation and invariants, that work in different settings and with different
goals. Because our equivalence problem is unique, we cannot just offload it to any
existing equivalence checker. The important differences that make this problem
unique are: (1) The intermittent program, which runs in an environment with
power failures, has non-determinism whereas the continuous program is deter-
ministic. Previous techniques work in a setting where both the programs are
deterministic, unlike ours, where one of the programs (the intermittent pro-
gram) has edges that can be taken non-deterministically, i.e., the failure edges.
Consequently, the correlation is different as power failures would be now mod-
eled as internal moves, and hence we instead need to infer a weak bisimulation
relation [20]. (2) Due to recurring executions in the intermittent program (be-
cause of the power failures), an intermediate observable event in the intermit-
tent program can be produced more times than in the continuous program. To
reason about the same, we describe two properties of the observables, namely
idempotence and commutativity and we use them to establish equivalence under
repeated occurrences of the observables.

As we have seen in Fig. 1, the amount of instrumentation code added to
intermittent program is quite small and most of the code of the intermittent
program remains the same. However, even in this setting, the problem of check-
ing equivalence between the continuous and the intermittent program is unde-
cidable in general. In other words, determining whether a certain checkpoint
element (CPelem) needs to be checkpointed is undecidable. We define equiv-
alence between a continuous and an intermittent program, i.e., across the in-
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(b) Correlation graph

Node: (1,1)
MC

nv = MI
nv, nvC = nvI ,

espC = espI ,
select(MC , espC , 4) =
select(MI , espI , 4)
Node: (4,4)
MC

nv = MI
nv, nvC = nvI ,

espC = espI ,
select(MC , (espC + 4), 4)
= select(MI , (espI +4), 4)
Node: (7,7)
eaxC = eaxI ,
MC

nv = MI
nv

(c) Invariants

Fig. 4: The first figure shows a simplified intermittent TFG, the edges and the nodes
have been duplicated for exposition and non-reachable failure paths have been removed.
Checkpoint-to-checkpoint paths formed by dashed edges are failure paths and that
formed by solid edges are progress paths. The second figure shows the correlation
graph; single-edges show correlations of no-moves with failure paths. The third figure
shows the invariants at the checkpoint nodes and exit.

strumentation, and we prove the theorem that determining this equivalence is
undecidable.

Definition 3 (Equivalence). A continuous TFG (C) is equivalent to an inter-
mittent TFG (I), where I has been generated by instrumenting C, if starting from
identical input state S, the two TFGs produce equivalent observable behaviour,
for all values of S.

Theorem 1. Given a continuous TFG (C) and an intermittent TFG (I), where
I has been generated by instrumenting C, determining equivalence between C and
I is undecidable.

Proof. Determining whether any function f halts can be reduced to this problem.
Consider the following construction of a continuous (C) and an intermittent (I)
program: C(a)={f(); print(a);} I(a)={CP(); f(); print(a);}, such that
CP() checkpoints the complete state except the volatile variable a. The two
functions can only be equivalent if f() does not halt. Checking whether f halts
can be written in terms of determining whether the two functions are equiva-
lent: f Halts = (C 6= I). However, the halting problem is undecidable, hence,
checking equivalence between a continuous and an intermittent program is also
undecidable.

5.1 Correlation

The correlation across two TFGs defines a mapping between the nodes and the
paths (also called moves) of the two TFGs. It tells the path taken by one program,



if the other program takes a certain path, and vice versa. In our case, we reason
in terms of the paths from one checkpoint to another checkpoint (checkpoint-to-
checkpoint paths, defined next) and define the correlation in terms of the same.

Definition 4 (Checkpoint-to-checkpoint path). Given a continuous TFG
C and an intermittent TFG I, where I has been generated by instrumenting C:
a path from node n to node m in the intermittent TFG I is a checkpoint-to-
checkpoint path if the nodes n and m belong to the set N = {entry, exit}∪CPs,
and none of its intervening nodes between n and m belongs to N . Here entry,
exit and CPs are the original entry, the exit and the set of checkpoint nodes
respectively.

A checkpoint-to-checkpoint path in the continuous program C is defined in
the same manner, however, assuming the checkpoint nodes of the corresponding
intermittent TFG (i.e., I); this is because C has no notion of checkpoint nodes.

The checkpoint-to-checkpoint paths are further classified depending upon
whether a power failure occurs or not, on a checkpoint-to-checkpoint path.

Definition 5 (Failure path). A checkpoint-to-checkpoint path is a failure path
if a power failure occurs in it.

Theorem 2. A failure path starts and terminates on the same checkpoint. In
other words, a failure path starting and terminating on different checkpoint is
not reachable.

Proof. Since there are no intervening checkpoints on a failure path, the stored
checkpoint location (CPdata.eip) is the starting checkpoint (n), implying that
on a failure, only one restore edge, which goes from the restoration logic to the
starting checkpoint, will have its edgecond true.

Definition 6 (Progress path). A checkpoint-to-checkpoint path is a progress
path if there are no power failures in it.

A checkpoint-to-checkpoint path starting from a checkpoint can either reach
a successive checkpoint if no power failure occurs in between, or it reaches back
to the starting checkpoint (via a failure and then the restore edge to it) if there
is a power failure. A checkpoint-to-checkpoint path in the intermittent TFG is
either a failure path or a progress path. However, all the checkpoint-to-checkpoint
paths in the continuous program are progress paths as there are no failures in it.
Fig. 4a shows the failure and the progress paths of the intermittent TFG. Note
that we have not shown the edges of the TFG of checkpointing logic, we get rid
of them by composing these edges with the incoming edges of the start node of
a checkpoint, e.g., path 3→ 4′ → 4 is collapsed into an edge 3→ 4.

We use the notion of a weak bisimulation relation [20] to establish equiva-
lence between the continuous and the intermittent TFGs. The non-deterministic
failure paths of the intermittent TFG are modeled as the internal moves and
progress paths of the two TFGs are treated as the usual moves. We propose the
following correlation between the two TFGs:



Definition 7 (Correlation). Given a continuous TFG C and an intermittent
TFG I, where I has been generated by instrumenting C, both starting from the
original entry or the same checkpoint node (nCP ):

1. If I takes a progress path p, then C takes the corresponding progress path p
in it, and vice versa. Additionally, the individual edges of the progress paths
are also taken together. That is, if C takes the edge (n → m) ∈ p, then I
takes the same edge (n → m), and vice versa. That is, for all nodes n ∈ p
and edges (n → m) ∈ p: node n and edge n → m of C are correlated with
node n and edge n→ m of I, respectively.

2. If I takes a failure path p, then C takes a no-move, i.e., C does not move
at all and stays at the same node (nCP ), and vice versa. Further, every
individual edge of the failure path of I is taken with a no-move of C. That
is, for all nodes n ∈ p: node n of I is correlated with node nCP of C.

Intuitively, the above correlation of moves states that for TFGs starting from
the entry or the same checkpoint: if there is no power failure, and the intermit-
tent program moves to a successive checkpoint, then the continuous program also
moves to the same next checkpoint, and vice versa. However, if the intermittent
program undergoes a failure, hence, returning to the starting checkpoint, then
the continuous program does not move at all, and stays at the starting check-
point, and vice versa.

Correlation between two TFGs forms a graph, whose nodes and edges are
pairs of nodes and edges of the two TFGs. That is, if (nC , nI) is a node and
(eC , eI) is an edge of the correlation graph, then nC and nI are the nodes of the
continuous and the intermittent TFG respectively, similarly, eC and eI are the
edges of the continuous and the intermittent TFG respectively. Fig. 4b shows
the correlation graph for the running example.

5.2 Inferring Invariants

Once we have fixed the correlation between the two TFGs, we need to check
if the correlation is indeed correct as it is not necessary that the two TFGs
take the same progress path starting from the same checkpoint. Furthermore,
we need to check that the two TFGs produce the same observable behaviour.
This involves inferring invariants at the nodes of the correlation graph. These
invariants are also called coupling predicates [7] as they relate the variables of
the two programs. The invariants at some node (nC , nI) of the correlation graph
should always hold if the continuous TFG is at node nC and the intermittent
TFG is at node nI .

The inferred invariants should be strong enough to prove that the correlated
edges are taken together and the observables at the correlated edges are identical.
Formally:

∀
(nC,nI )→(mC,mI )

invariants(nC,nI ) ⇒(nC,nI )→(mC,mI ) (o(nC→mC ) = o(nI→mI ))∧

(edgecond(nC→mC ) = edgecond(nI→mI ))



Here (nC , nI) → (mC ,mI) is an edge in the correlation graph, nC → mC and
nI → mI are edges in the continuous and the intermittent TFG respectively,
invariants(nC,nI ) represents the conjunction of the invariants at the correlation
node (nC , nI), edgeconde represents the edge condition of an edge e, oe represents
the observable on an edge e, and⇒(nC,nI )→(mC,mI ) represents the implication over
the edge (nC , nI)→ (mC ,mI).

We employ a Houdini like [8] guess-and-check technique to infer invariants
of the correlation graph. Candidate invariants are generated on each node of
the correlation graph, based on certain rules, and a checking procedure then
eliminates the invalid candidate invariants. At the end, we are left with valid
invariants and use them to verify the correctness of the correlation graph and
the equivalence of observables.

We generate candidate invariants based on the following simple rule: For
every node (nC , nI) of the correlation graph, all possible predicates of the form
sC = sI are generated for every sC and sI that are read or written in the
corresponding TFGs, where sC and sI are state elements in states SnC

and SnI

respectively. Intuitively, the partial states (only the state that is read or written)
of the two programs are equated at the correlated nodes.

The checking procedure is a fixed-point computation that keeps eliminating
the incorrect invariants until all the incorrect invariants are eliminated. On every
edge of the correlation graph, the checking procedure tries to prove an invariant
at the to-node, using the invariants at the from-node, and if the invariant is not
provable, then it is eliminated. The procedure terminates if no more invariants
can be eliminated. Further, the invariants at the entry node are proven using
the condition that the states of the two TFGs are equivalent at entry, i.e., equal
inputs. Formally, we apply the following check:

(SentryC
= SentryI

)⇔ invariants(entryC,entryI )

∀
(nC,nI )→(mC,mI )

invariants(nC,nI ) ⇒(nC,nI )→(mC,mI ) invariant(mC,mI )

Here invariant(mC,mI ) is a candidate invariant at node (mC ,mI), SentryC
is the

state at the entry node of the TFG C, and invariants(nC,nI ) is the conjunction
of the current set of (not eliminated) candidate invariants at node (nC , nI).

Fig. 4c shows the inferred invariants for some nodes, which can prove the
required conditions and equivalence for the running example, under the CPelems
of Fig. 1a.

On final notes, our equivalence checking algorithm is general and handles
loops seamlessly; in fact, we are already handling the loops which get introduced
due to the failure edges. Had there been a loop in the example program, say there
is a backedge from node 3 to 2, it would reflect in the failure and progress paths
too, e.g., Fig. 4a will contain a solid as well as a dash edge from node 3 to
2. Similarly, the correlation graph too will have edges from node (3,3) to (2,2)
and node (1,3) to (1,2). Also, all the benchmarks that we used for evaluation
contain one or more loops. Finally, our technique is not without limitations, it
is possible that a correlation other than the proposed one, or an invariant of



different shape/template (other than the one used) is required for proving the
equivalence. Though we did not encounter this in practice.

5.3 Intermediate Observables

We now discuss the issue with observables occurring at the intermediate nodes,
i.e., the nodes other than the exit node. We call these the intermediate ob-
servables. In an intermittent program, an intermediate observable event can be
produced more times than is produced in the continuous program. It happens
because of the recurring executions of an intermediate observable due to power
failures. Given a sequence λC = o1o2...oi...ox (written as a string) of observable
events on a progress path (from checkpoint node n1 to checkpoint node nx+1)
of the continuous TFG, the event oi is produced on the edge ni → ni+1, for
i ∈ [1, x+ 1). The possible sequences of observable events for the corresponding
intermittent TFG, during the moves from checkpoint node n1 to checkpoint node
nx+1 (by taking one or more failure paths followed by a progress path) are:

λI = λIn1
λC such that λIn1

= (o1|o1o2|o1o2o3|...|o1o2...ox−1)∗

The sequence is written as a regular expression, where ∗ represents Kleene start,
i.e., zero or more repetitions and | represents alternation. The first part of the
expression λIn1

represents all sequences of observables produced at node n1. The
alternation operator encodes that a failure may happen at any node ni and may
produce a sequence o1o2...oi−1 for i ∈ [1, x] (a failure at nx+1 will not take back
to n1); the ∗ operator encodes that failures may occur zero or more times. The
second part (λC) represents the case when there is no power failure and the
execution reaches the successive checkpoint nx+1.

The sequence of observables produced in the intermittent program could be
different from that produced in the continuous TFG. However, if the effects of
the two sequences, i.e., λC and λI are same, and the observer cannot differentiate
between the two, we will be able to claim the equivalence of the two programs.
To this end, we define a notion of idempotence and commutativity of observables,
and we use these properties to prove that the sequences of observables produced
by the continuous and the intermittent TFG are equivalent if the observables
are idempotent and commutative.

Definition 8 (Idempotence). On observable event o is idempotent if its re-
curring occurrences are undetectable to the observer. That is, the sequence oo
produces the same effect as o.

Definition 9 (Commutativity). The observable events o1 and o2 are com-
mutative if the order of occurrences of the two events is not important to the
observer. That is, the sequences o1o2 and o2o1 are both equivalent to the ob-
server.

Intuitively, an observable is idempotent if the observer cannot detect if the ob-
servable occurred once or multiple times. For example, the observable print(line,



column, text), which prints text at the given line and column, is idempo-
tent. The user cannot distinguish if multiple calls to this function have been
made. Observables setpin(pin, voltage) (sets the voltage of the given pin)
and sendpkt() (send network packet) are more examples of idempotent ob-
servables. The observer cannot tell if the function setpin() is called multiple
times, as it will not change the voltage of the pin on repeated executions. In case
of sendpkt(), if the network communication is designed to tolerate the loss of
packets, and consequently, the observer/receiver is programmed to discard the
duplicate packets, then the observable is idempotent with respect to the receiver.
Two observables are commutative if it does not matter to the observer, which
one occurred first. For example, if a program lights an LED and sends a packet,
and if these two events are independent to the observer, e.g., the packet is meant
for some other process and the LED notification is meant for the user, then their
order is unimportant to the observer.

Theorem 3. λI = λC , if for all oi and oj in λC , oi is idempotent, and oi and
oj are commutative.

Proof. In sequence λI , we move an event oi to position i (by applying commu-
tativity) and if the same event is present at i + 1, we remove it (by applying
idempotence), we keep applying these steps until only one oi remains. Perform-
ing these steps in increasing order of i, will transform λI into λC . If the length
of λI is finite, termination is guaranteed.

With all the pieces, we state the final theorem now:

Theorem 4. A continuous TFG C and an intermittent TFG I, where I is
generated by instrumenting C, are equivalent if:

1. Invariants can prove the correlation and the equivalence of observables at
each correlated edge of the progress paths (Sec. 5.2).

2. On every progress path: each observable is idempotent, and every pair of
observables is commutative (Sec. 5.3).

3. Both the TFGs, i.e., C and I, terminate.

Proof. Proof by induction on the structure of programs:
Hypothesis: Both programs C and I produce the same observable behaviour on
execution till a node n, for n ∈ N = {entry, exit} ∪ CPs, where CPs is the set
of checkpoint nodes.
Base: At entry, the two C and I have same observable behaviour.
Induction: Assuming the hypothesis at all the immediate predecessor checkpoints
(m) of node (n), we prove that the observable behaviour of the two programs
are equivalent at n, where m,n ∈ N .
Observable sequence at node n for program I can be written in terms of the
observable sequence at the predecessor node m and the observable sequence pro-
duced during the moves from m to n: λIn = λImλ

I
m→n. From Condition#1, we

can prove that the two programs move together from m to n and the individual
observables of the two programs are same. Using the same along with Condi-
tion#2, Condition#3 and Theorem 3, we claim that λIm→n = λCm→n. Finally,
using the hypothesis λIm = λCm, we prove that λIn = λCn .



6 Evaluation

We evaluate our technique in terms of the runtime of verification, and the robust-
ness and capability of our algorithm. We are not aware of any previous verifier
for this problem, and so we do not have a comparison point for the verification
runtimes of our tool. However, we do compare the robustness and capability of
our technique by using our verifier in a simple synthesis loop, whose goal is to
minimize the size of checkpoints at a given set of checkpoint nodes. Moreover, the
capability of this synthesis loop is dependent on the capability of our verifier. If
our verifier can prove the equivalence between the continuous and the intermit-
tent programs, with smaller checkpoints, then the synthesis loop can generate an
intermittent program with smaller checkpoints. This also enables us to compare
our work with DINO [15]. With similar goals, DINO automatically generates an
intermittent program from a given continuous program by instrumenting it at a
given set of checkpoint locations. It works with mixed-volatility programs and
performs a syntactic analysis to determine the checkpoint elements that need
to be checkpointed. However, unlike our tool, DINO’s output is unverified. A
detailed comparison with DINO is available in Sec. 7.

We implemented our equivalence checking technique in a verifier for the x86
architecture. Our technique is independent of the architecture, the reason why
the x86 architecture was chosen is that we had access to a disassembler and
semantic modeling of x86 ISA. Constructing a TFG from an executable required
us to resolve other indirect jumps (other than that of the restoration logic)
occurring in the program, in particular, the indirect jumps due to the function
returns, i.e., the ret instructions. A ret instruction takes back the program
control to the return-address stored in a designated location in the stack. The
return-address is set by the caller using the call instruction. We perform a
static analysis to determine the call sites of every function and hence determine
the return-addresses of every ret instruction. We appropriately add the return
edges (similar to restore edge) from the return instruction to the determined call
sites. The transfer function of the return edge is identity and its edgecond =
(return address == call site address).

While testing our verifier on some handwritten pairs of continuous and inter-
mittent programs, we found that it is very easy for a human to make mistakes
in suggesting the checkpoint elements and checkpoint locations, especially for
mixed-volatility programs. For example, in the example program, the user ought
to specify a checkpoint before I3. If a checkpoint location is not specified be-
fore I3, the intermittent program cannot be made equivalent to the continuous
program no matter what the checkpoint elements are. Our verifier gets used
by the synthesis loop, and the average runtime of our verification procedure
ranges between 1s to 332s for benchmarks taken from previous work on inter-
mittent computation [15,19]. Tab. 1 describes our benchmarks and results, and
the seventh column shows the individual average runtimes for different bench-
marks. Almost all the verification time is spent on checking satisfiability of SMT
queries. We discharge our satisfiability queries through the Yices SMT solver [6].



Benchmark # CP
nodes

Avg. CP
size DINO

Avg. CP size
synthesis loop

Improvement
over DINO

Synthesis
time (s)

Avg. verifica-
tion runtime

DS 5 120.8 42.4 2.8x 3500 16.5

MIDI 4 80 19 4.2x 2154 11.9

AR 2 128 22 5.8x 26290 332.8

CRC 2 96 24 4x 42 1.1

Sense 3 96 25.3 3.8x 331 3.2

Table 1: For each benchmark, the second column gives the number of checkpoint
nodes, the third and the fourth column give the average checkpoint size (bytes) deter-
mined by DINO and synthesis loop respectively, the fifth column gives improvement
by synthesis loop over DINO, and the sixth and the last column give the total time
taken by the synthesis loop and the average runtime of the verifier respectively.

We implemented a synthesis loop to optimize the checkpoint size. Given a set
of checkpoint locations, the synthesis loop tries to greedily minimize the check-
point elements that need to be checkpointed. It keeps proposing smaller check-
points (with fewer CPelems), and it relies on our verifier to know the equivalence
between the continuous and the intermittent program, with the current check-
point elements. The synthesis loop starts by initializing each checkpoint node
with all possible checkpoint elements (the most conservative solution). It then
iterates over each checkpoint element of all the checkpoint nodes, and considers
each checkpoint element for elimination. It greedily removes the current check-
point element if the remaining checkpoint elements preserve equivalence. The
loop terminates after considering all the checkpoint elements and returns the
last solution. Clearly, the capability of this synthesis loop is dependent on the
robustness and capability of the verifier. If the verifier can verify intermittent
programs with fewer checkpoint elements, only then can the synthesis loop can
result in a better solution.

We took benchmarks from previous work [15,19] (all the DINO benchmarks
are included) and used the synthesis loop and DINO to generate checkpoint
elements at a given set of checkpoint nodes. For each benchmark, Tab. 1 shows
the size of checkpoints generated by the synthesis loop and DINO for the same set
of checkpoint nodes. The synthesis loop is able to generate checkpoints with 4x
improvement over DINO, i.e., the data (in bytes) that needs to be checkpointed
is on average 4 times less than that determined by DINO. The synthesis loop
is able to perform better than DINO because of the precision in the model
of the intermittent programs and the precision that we get while working at
the assembly level (Sec. 7). Additionally, the synthesis loop benefits from the
semantic reasoning over the syntactic reasoning done by DINO (Sec. 2).

7 Related Work

We compare our work with the previous work on automatic instrumentation
tools that generate intermittent programs, namely DINO [15], Ratchet [26] and



Mementos [19]. These tools work in different settings and employ different strate-
gies for checkpointing. In contrast, our work is complementary to these tools,
and our verifier can be employed to validate their output.

DINO works with mixed-volatility programs, and given the checkpoint loca-
tions, it generates the intermittent programs automatically. It proposed a control
flow based model of intermittence, where the control flow is extended with failure
edges, going from all the nodes to the last executed checkpoints. This modeling
is conservative and incomplete as it lacks semantics and does not model the ef-
fect of the power failures, unlike ours, where the failure edge is defined formally,
in terms of the edge condition and the transfer function of a failure edge. Con-
sequently, the model is not suitable for an application like equivalence checking.
It then performs a syntactic WAR analysis (write-after-read without an inter-
vening checkpoint) of non-volatile data on this extended control flow graph to
determine the non-volatile data that needs to be checkpointed. Since it works
at a higher level and does not have a mapping between the machine registers
and the program variables, it ends up checkpointing all the registers and all the
stack slots resulting in unnecessary checkpoint elements. Further, DINO does
not work with intermediate observables and the output is not verified. Our work
is complementary to DINO, in that our verifier can be used to validate DINO’s
output.

Ratchet is a fully-automatic instrumentation tool to generate intermittent
programs from continuous programs. However, it takes a radically different ap-
proach of assuming that the whole memory is non-volatile, i.e., all program data
including the stack and heap are deemed non-volatile. Only the machine registers
are assumed to be volatile. Ratchet works by adding a checkpoint between every
WAR occurrence on non-volatile data, i.e., it breaks every WAR occurrence. By
breaking every WAR occurrence, correctness of non-volatile data across power
reboots is ensured; for the machine registers, Ratchet simply saves the live ma-
chine registers at every checkpoint. These simplifications involve a performance
cost, as it results in frequent checkpoints because the checkpoint locations are
now determined by these WAR occurrences. Further, it is not possible to insert
a checkpoint between WAR occurrences within a single instruction (e.g., “inc
(nv)”). Ratchet authors also do not allow intermediate observables. Finally,
Ratchet’s output can also be verified using our tool.

Mementos is a hardware-assisted fully-automatic instrumentation tool to gen-
erate intermittent programs. At each checkpoint location, it relies on hardware
to determine the available energy and the checkpointing logic is only executed if
the available energy is less than a threshold level, i.e., the checkpoints are con-
ditional. Interestingly, our verifier does not require any modification to work in
this setting, the only difference would be that the number of failure and progress
paths that get generated would be more. A checkpoint-to-checkpoint path can
now bypass a successive checkpoint, resulting in a checkpoint-to-checkpoint path
to a second level successor. For example, in our example, there will be also a
progress path from node 1 to the exit, because the checkpoint at node 4 is
conditional.



Systems that tolerate power failures are not uncommon, file system is one
example that is designed to tolerate power failures. The file system design has to
ensure that across power failures, the disk layout remains consistent. In addition
to power failures, it has to worry about disk write reorderings done by the disk
controller. FSCQ [2] and Yggdrasil [22] are two recent papers that formally ver-
ified the file systems under power failures and reorderings. FSCQ is written in
Coq and requires manual annotations and proofs for verification. Yggdrasil, on
the other hand is an automatic technique. In FSCQ, the specifications are given
in Crash Hoare Logic (CHL) which allows programmers to specify the expected
behaviour under failures. The verification then entails proving that the file sys-
tem follows the given specifications. In Yggdrasil, the behavioral specifications
are provided as higher-level programs; The verification involves checking whether
the file system is a crash refinement of the given specification, i.e., it produces
states that are a subset of the states produced by the specification. The speci-
fications in both the techniques are crash-aware, i.e., the specification encodes
the behaviour under power failures. In contrast, our specifications are continu-
ous programs and are not aware of crashes, the intermittent should behave as if
there are no power failures. In addition, the problem of intermediate observables
is unique to our setting. It would be interesting to explore if our technique can
be used to verify file systems. Considering that our technique works smoothly
with loops, it would remove Yggdrasil’s important shortcoming of its inability
to reason about loops in a uniform way.

Smart card embedded systems are another interesting example of systems
that are designed to work with failures. These cards get powered by inserting
in the appropriate terminal, and suddenly removing it during an operation may
leave the card’s data in an inconsistent state. A mechanism is added to restore a
consistent state on the next insertion. A card has anti-tearing properties if it can
always be restored to a consistent state after tearing (removal) at every execution
state. Anti-tearing properties of smart cards are important and previous work [1]
formally verifies this by proving that tearing is safe at every program point in
Coq. This technique is not automatic and requires manual proofs.

Our work overlaps with previous work on equivalence checking in the context
of translation validation and verification [4,5,7,9–14,16,18,21,23–25]. The goal of
translation validation is to compute equivalence across compiler optimizations.
On the other hand, our work targets equivalence across the instrumentation,
albeit, under power failures. We have borrowed ideas from previous work, e.g.,
invariant inference is similar to that of [3–5] which are further based on Houdini
[8]. However, tackling non-determinism due to power failures and the problem
with intermediate observables is perhaps new to this space.

To conclude, we present a formal model of intermittence and a technique to
verify the correctness of the intermittent programs with respect to their contin-
uous versions. Our experiments demonstrate that synthesis along with working
at the binary level can reduce the size of the checkpoints significantly. We hope
that automatic instrumentation tools can leverage these ideas to produce verified
and efficient intermittent programs.
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