Why processes? Simplicity

Processes give isolated Address Spaces

|, E6eE [T g [0

Physical Memory (Paging)

Physical Memory (Segmentation)

Why processes? Speed

* |/O parallelism:

>|(wait for input)i >|(wait for input)|—>

gcc > >
overlap execution: make 1 CPU into many

(Real parallelism: > 1 CPU (multiprocessing))

e Completion time: 20 < 50 s
A >B—>

B’s completion time = 100s (A + B). So overlap
A —> — o

B 10< —> Completion time for B? A?

Process != Program

* Program: code + data int a;
passive int main() {
printf(“hello”);
}
Process: running program sTackI
state: registers, stack, heap... I

position: program counter
* We both run netscape: heap

data int a;

Same program, different process .
Poe PP code | main()

The multithreading illusion

e Each thread has its illusion of own CPU

— yet on a uni-processor, all threads share the same
physical CPU!

How does this work? k{{t}
CPU

* Two key pieces:
— thread control block: one per thread, holds execution

state
— dispatching loop: while(1)
interrupt thread
save state

get next thread
load state, jump to it

Remote Procedure Call (RPC)
Comparison

P1:
calls send(args) [2]
calls recv(), blocks [1]

P2:
calls recv(args) [2]
... does work ...
calls send(results) [2]
P1:
recv() returns [1]

Monolithic Kernel: around [8] total
user/kernel crossings

P1:
sets up args in regs
calls yield(P2) [1]

P2:
resumes [1]
... does work ...
sets up results in regs
P1: calls yield(P1) [1]

resumes [1]

ExoKernel: around [4] total
user/kernel crossings

