
Why processes? Simplicity

gccemacs
nfsd

lpr
lswww

emacsnfsd

lprls
www

OS
OS

Processes give isolated Address Spaces

emacsnfsd lpr lswww OS

Physical Memory (Paging)

Physical Memory (Segmentation)

Why processes? Speed

• I/O parallelism:

overlap execution: make 1 CPU into many

(Real parallelism: > 1 CPU (multiprocessing))

• Completion time:

B’s completion time = 100s (A + B). So overlap

emacs

gcc

(wait for input) (wait for input)

A B
80 s 20 s

A

B 10 s Completion time for B? A?

Process != Program

• Program: code + data

passive

• Process: running program

state: registers, stack, heap…

position: program counter

• We both run netscape:

Same program, different process

int a;
int main() {

printf(“hello”);
}

stack

heap
data
code

int a;

main()

The multithreading illusion

• Each thread has its illusion of own CPU
– yet on a uni-processor, all threads share the same

physical CPU!

How does this work?

• Two key pieces:
– thread control block: one per thread, holds execution

state
– dispatching loop: while(1)

interrupt thread
save state
get next thread
load state, jump to it

CPU

Remote Procedure Call (RPC)
Comparison

P1:
calls send(args) [2]
calls recv(), blocks [1]

P2:
calls recv(args) [2]

… does work …
calls send(results) [2]

P1:
recv() returns [1]

P1:
sets up args in regs
calls yield(P2) [1]

P2:
resumes [1]

… does work …
sets up results in regs

calls yield(P1) [1] P1:
resumes [1]

Monolithic Kernel: around [8] total
user/kernel crossings

ExoKernel: around [4] total
user/kernel crossings

