
Lecture 13: Thrashing

Thrashing: exposing the lie of VM

• Thrashing: processes on system require more memory
than it has.

– Each time one page is brought in, another page, whose
contents will soon be referenced, is thrown out.

– Processes will spend all of their time blocked, waiting for
pages to be fetched from disk

– I/O devs at 100% utilization but system not getting much
useful work done

• What we wanted: virtual memory the size of disk with access
time of of physical memory

• What we have: memory with access time = disk access

Real mem

P1 P2 P3

Thrashing

• Process(es) “frequently”reference page not in mem
– Spend more time waiting for I/O then getting work done

• Three different reasons
– process doesn’t reuse memory, so caching doesn’t work

(past != future)

– process does reuse memory, but it does not “fit”

– individually, all processes fit and reuse memory, but too
many for system.

access pattern

mem

P1

mem

Thrashing

• If a process does not have “enough” pages, the page-
fault rate is very high. This leads to:
– low CPU utilization
– operating system spends most of its time swapping to disk

• Thrashing  a process is busy swapping pages in and
out

• Questions:
– How do we detect Thrashing?
– What is best response to Thrashing?

When does thrashing happen?

• (Over-)simple calculation of average access time:

– or, 1000x slower than main memory.

• Even small miss rates lead to unacceptable
average access times. What can OS do???

Let h = percentage of references to pages in memory
Then average access time is

h * (cost of memory access)
+ (1-h) * (cost of disk access + miss overhead)

For current technology, this becomes (about)
h * (100 nanoseconds) + (1-h) * (10 milliseconds)

Assume 1 out of 100 references misses.
= .99 * (100ns) + .01 (10ms)
= .99 (100ns) + .01 (10,000,000ns)
= 99 + 100,000 ~ 100 microseconds

Making the best of a bad situation

• Single process thrashing?
– If process does not fit or does not reuse memory, OS can do

nothing except contain damage. (cs140?).

• System thrashing?
– If thrashing arises because of the sum of several processes then

adapt:
• figure out how much memory each process needs
• change scheduling priorities to run processes in groups whose

memory needs can be satisfied (load shedding)
• if new processes try to start, can refuse (admission control)

• Careful: example of technical vs social.
– OS not only way to solve this problem (and others).
– “Social” solution: buy more memory.
– Another: use ‘ps’ to find idiot killing machine and yell

Methodology for solving?

• Approach 1: working set
– thrashing viewed from a caching perspective: given locality of

reference, how big a cache does the process need?
– Or: how much memory does process need in order to make

“reasonable” progress (its working set)?
– Only run processes whose memory requirements can be

satisfied.

• Approach 2: page fault frequency
– thrashing viewed as poor ratio of fetch to work
– PFF = page faults / instructions executed
– if PFF rises above threshold, process needs more memory

• not enough memory on the system? Swap out.

– if PFF sinks below threshold, memory can be taken away

• Program Memory Access
Patterns have temporal
and spatial locality
– Group of Pages accessed

along a given time slice
called the “Working Set”

– Working Set defines
minimum number of
pages needed for process
to behave well

• Not enough memory for
Working SetThrashing
– Better to swap out

process?

Locality In A Memory-Reference Pattern

Working set (1968, Denning)

• What we want to know: collection of pages process
must have in order to avoid thrashing
– This requires knowing the future. And our trick is?

• Working set:
– pages referenced by process in last T seconds of execution

considered to comprise its working set
– T: the working set parameter

• Uses?
– Cache partitioning: give each app enough space for WS
– Page replacement: preferentially discard non-WS pages
– Scheduling: process not executed unless WS in memory

Scheduling details: The balance set

• Sum of working sets of all runnable processes fits in
memory? Scheduling same as before.

• If they do not fit, then refuse to run some: divide into two
groups
– active: working set loaded
– inactive: working set intentionally not loaded
– balance set: sum of working sets of all active processes

• Long term scheduler:
– Keep moving processes from active -> inactive until balance set

less than memory size.
– Must allow inactive to become active. (if changes too

frequently?)

• As working set changes, must update balance set…

Working-Set Model

•   working-set window  fixed number of page
references
– Example: 10,000 instructions

• WSi (working set of Process Pi) = total set of pages
referenced in the most recent  (varies in time)
– if  too small will not encompass entire locality
– if  too large will encompass several localities
– if  =  will encompass entire program

• D = |WSi|  total demand frames
• if D > m Thrashing

– Policy: if D > m, then suspend/swap out processes
– This can improve overall system behavior by a lot!

What about Compulsory Misses?
• Recall that compulsory misses are misses that occur

the first time that a page is seen
– Pages that are touched for the first time
– Pages that are touched after process is swapped

out/swapped back in

• Clustering:
– On a page-fault, bring in multiple pages “around” the

faulting page
– Since efficiency of disk reads increases with sequential

reads, makes sense to read several sequential pages

• Working Set Tracking:
– Use algorithm to try to track working set of application
– When swapping process back in, swap in working set

How to implement working set?

• Associate an idle time with each page frame
– idle time = amount of CPU time received by process since

last access to page
• (why not amount of time since last reference to page?)

– page’s idle time > T? page not part of working set

• How to calculate?
– Scan all resident pages of a process

• use bit on? clear page’s idle time, clear use bit
• use bit off? add process CPU time (since last scan) to idle time

– Unix:
• scan happens every few seconds
• T on order of a minute or more

Some problems

• T is magic
– what if T too small? Too large?

– How did we pick it? Usually “try and see”

– Fortunately, systems aren’t too sensitive

• What processes should be in the balance set?
– Large ones so that they exit faster?

– Small ones since more can run at once?

• How do we compute working set for shared
pages?

Working sets of real programs

• Typical programs have phases:
– working set of one may have little to do with other
– balloons during transitions….

W
o

rkin
g set size

transition stable

Working set less important
• The concept is a good perspective on system behavior.

– As optimization trick, it’s less important: Early systems thrashed
lots, current systems not so much.

• Have OS designers gotten smarter? No. It’s the hardware
guys (cf. Moore’s law):
– Obvious: Memory much larger (more to go around)
– Less obvious: CPU faster so jobs exit quicker, return memory to

freelist faster.
– Some app can eat as much as you give. The percentage of them

that have “enough” seems to be increasing.

– Social implication: while speed very important OS research topic
in 80-90s, less so now (should it be more important again?)

