
Past: Making physical memory pretty

• Physical memory:
– no protection
– limited size
– almost forces contiguous allocation
– sharing visible to program
– easy to share data

• Virtual memory
– each program isolated from others
– transparent:can’t tell where running
– can share code, data
– non-contiguous allocation
– Today: some nuances + illusion of infinite memory

gcc

emacs

gcc

gcc
gcc

Paging

• Readings for this topic: Chapter 10
• Our simple world:

– load entire process into memory. Run it. Exit.

• Problems?
– slow (especially with big process)
– wasteful of space (process doesn’t use all of its memory)

• Solution: partial residency
– demand paging: only bring in pages actually used
– paging: only keep frequently used pages in memory

• Mechanism:
– use virtual memory to map some addresses to physical pages,

some to disk

Demand paging from 50,000 feet

• Virtual address translated to:

– Physical memory ($0.1/meg). Very fast, but small

– Disk ($.001/meg). Very large, but verrrrrry slow
(millis vs nanos)

– Error (free!)
page table

Physical memory

disk

Demand paging = fool the process
• Want: disk-sized memory that’s fast as

physical mem
– 90/10 rule: 10% of memory gets 90% of memory refs

– so, keep that 10% in real memory, the other 90% on disk

• how to pick which 10%? (look at past references)

Physical memory Disk

o
f refe

re
n

ce
s

Memory address

Demand Paging is Caching

• Since Demand Paging is Caching, must ask:
– What is block size?

• 1 page

– What is organization of this cache (i.e. direct-mapped,
set-associative, fully-associative)?
• Fully associative: arbitrary virtualphysical mapping

– How do we find a page in the cache when look for it?
• First check TLB, then page-table traversal

– What is page replacement policy? (i.e. LRU, Random…)
• This requires more explanation… (kind of LRU)

– What happens on a miss?
• Go to lower level to fill miss (i.e. disk)

– What happens on a write? (write-through, write back)
• Definitely write-back. Need dirty bit!

• Extend page table entries with extra bit (“present”)
– if page in memory? present = 1, on disk, present = 0
– translations on entries with present = 1 work as before
– if present = 0, then translation causes a page fault.

• What happens on page fault?
– OS finds a free page or evicts one (which one??)
– issues a disk request to read in data into that page
– puts process on blocked Q, cswitches to new process
– when disk completes: set present = 1, put back on run Q

Virtual memory mechanics

Disk

Mem

32 :P=1
4183:P=0
177 :P=1
5721:P=0

Steps in Handling a Page Fault

Virtual memory problems

• Problem 1: how to resume a process after a fault?
– Need to save state and resume.
– Process might have been in the middle of an instruction!

• Problem 2: what to fetch?
– Just needed page or more?

• Problem 3: what to eject?
– Cache always too small, which page to replace?
– Want to know future use...

Problem 1: resuming process after a
fault

• Fault might have happened in the middle of an inst!

– Our key constraint: don’t want user process to be aware
that page fault happened (just like context switching)

– Can we skip the faulting instruction? Uh, no.
– Can we restart the instruction from the beginning?

• Not if it has partial-side effects.
– Can we inspect instruction to figure out what to do?

• May be ambiguous where it was.

add r1, r2, r3
mov +(sp), (r2)

fault alloc page
read from disk
set mapping

OS

User program

resume

Solution: a bit of hardware support

• RISC machines are pretty simple:
– typically instructions idempotent until references

done!
– Thus, only need faulting address and faulting PC.

• Example: MIPS

• CISC harder:
– multiple memory references and side effects
– Notion of precise exceptions

Fault: epc = 0xffdd0,
bad va = 0x0ef80

fault handler

jump 0xffdd0

0xffdcc: add r1,r2,r3
0xffdd0: ld r1, 0(sp)

Problem 2: what to fetch?
• Page selection: when to bring pages into memory

– Like all caches: we need to know the future.

• Doesn’t the user know? (Request paging)
– Not reliably.

– Though, some Oses do have support for prefetching.

• Easy load-time hack: demand paging
– Load initial page(s). Run. Load others on fault.

– When will startup be slower? Memory less utilized?

– Most systems do some sort of variant of this

• Tweak: pre-paging. Get page & its neighbors (why?)

ld init pages ld page ld page ld page ...

Problem 3: what to eject & when?

• Random: pick any page.
– Pro: good for avoiding worst case
– con: good for avoiding best case

• FIFO: throw out oldest page
– fair: all pages get = residency
– dopey: ignores usage.

• MIN (optimal):
– throw out page not used for longest time.
– Impractical, but good yardstick

• Least recently used.
– throw out page that hasn’t been used in the longest time.
– Past = future? LRU = MIN.

addevict

Refs: AGBDCADCABCGABC

evict page

• Easy for Direct Mapped: Only one possibility

• Set Associative or Fully Associative:

– Random

– LRU (Least Recently Used)

2-way 4-way 8-way
Size LRU Rand LRU Rand LRU Rand
16 KB 5.2% 5.7% 4.7% 5.3% 4.4% 5.0%

64 KB 1.9% 2.0% 1.5% 1.7% 1.4% 1.5%

256 KB 1.15% 1.17% 1.13% 1.13% 1.12% 1.12%

Associativity vs. Miss rate

Reference string: A B C A B D A D B C B
FIFO MIN LRU

A B C A B C A B C A B C

A A B C A B C A B C

B A B C A B C A B C

D D B C

A D A C

D D A C

B D A B

C C A B

B C A B

Faults:
FIFO 7
MIN 5
LRU 5

Graph of Page Faults Versus The Number of
Frames

• One desirable property: When you add memory the
miss rate goes down
– Does this always happen?
– Seems like it should, right?

• No: Belady’s anomaly
– Certain replacement algorithms (FIFO) don’t have this

obvious property!

Adding Memory Doesn’t Always Help Fault Rate
• Does adding memory reduce number of page faults?

– Yes for LRU and MIN
– Not necessarily for FIFO! (Called Belady’s anomaly)

• After adding memory:
– With FIFO, contents can be completely different
– In contrast, with LRU or MIN, contents of memory with X pages

are a subset of contents with X+1 Page

D

C

E

B

A

D

C

B

A

DCBAEBADCBA E

3

2

1

Ref:

Page:

CD4

E

D

B

A

E

C

B

A

DCBAEBADCBA E

3

2

1

Ref:

Page:

Implementing Perfect LRU

• On every memory reference
– time stamp each page

• At eviction time:
– scan for oldest

• Problems:
– large page lists
– no hardware support for time stamps

• “Sort of” LRU
– do something simple & fast that finds an old page
– LRU an approximation anyway, a little more won’t hurt…

0xffdcd: add r1,r2,r3
0xffdd0: ld r1, 0(sp)

t=4

t=14

t=14

t=5

13

14

14

LRU in the real world: the clock
algorithm

• Each page has reference bit
– hardware sets on use, OS periodically clears
– Pages with bit set used more recently than without.

• Algorithm: FIFO + skip referenced pages
– keep pages in a circular FIFO list
– scan: page’s ref bit = 1, set to 0 & skip, otherwise evict.

• Hand sweeping slow?
– Good sign or bad sign?

• Hand sweeping fast?

R=1

R=0

R=1

R=1

R=1
R=0

R=0

R=1

R=0

R=0

R=1

Problem: what happens as memory
gets big?

• Soln: add another clock hand
– leading edge clears ref bits
– trailing edge is “C” pages back: evicts pages w/ 0 ref bit

• Implications:
– Angle too small?
– Angle too large?

R=1

R=0

R=1

R=1

R=1
R=0

R=0

R=1

R=0

R=0

R=1

BSD Unix: Clock algorithm in Action!

• use vmstat on SunOS/BSD unix to see
– bigmachine: vmstat -s # -s: pages scanned by

clock/second
• 2*92853 pages examined by the clock daemon

• 6 revolutions of the clock hand

• 127878 pages freed by clock daemon

– smallmachine: vmstat -s # smaller machine
• 15086 revolutions of the clock hand # buy more mem!

• 672474 forks

The clock algorithm improved

• Problem: crude & overly sensitive to sweeping interval
– Infrequent? all pages look used.
– Frequent? Lose too much usage information
– Simple changes = more accurate & robust w/ ~same work

• Clock: 1 bit per page
– when page used: set use bit
– sweep: clear use bit
– select page? FIFO + skip if use bit set

• Clock’: n bits per page
– when page used: set use bit
– sweep: use_count = (use_bit << n-1) | (use_count >> 2)

• (why shift?)

– select page? take lowest use count

Nth Chance version of Clock Algorithm
• Nth chance algorithm: Give page N chances

– OS keeps counter per page: # sweeps
– On page fault, OS checks use bit:

• 1clear use and also clear counter (used in last sweep)
• 0increment counter; if count=N, replace page

– Means that clock hand has to sweep by N times without page
being used before page is replaced

• How do we pick N?
– Why pick large N? Better approx to LRU

• If N ~ 1K, really good approximation
– Why pick small N? More efficient

• Otherwise might have to look a long way to find free page

• What about dirty pages?
– Takes extra overhead to replace a dirty page, so give dirty

pages an extra chance before replacing?
– Common approach:

• Clean pages, use N=1
• Dirty pages, use N=2 (and write back to disk when N=1)

Clock Algorithms: Details

• Which bits of a PTE entry are useful to us?
– Use: Set when page is referenced; cleared by clock algorithm

– Modified: set when page is modified, cleared when page
written to disk

– Valid: ok for program to reference this page

– Read-only: ok for program to read page, but not modify
• For example for catching modifications to code pages!

• Do we really need hardware-supported “modified” bit?
– No. Can emulate it (BSD Unix) using read-only bit

• Initially, mark all pages as read-only, even data pages

• On write, trap to OS. OS sets software “modified” bit, and marks page
as read-write.

• Whenever page comes back in from disk, mark read-only

Clock Algorithms Details (continued)
• Do we really need a hardware-supported “use” bit?

– No. Can emulate it similar to above:
• Mark all pages as invalid, even if in memory
• On read to invalid page, trap to OS
• OS sets use bit, and marks page read-only

– Get modified bit in same way as previous:
• On write, trap to OS (either invalid or read-only)
• Set use and modified bits, mark page read-write

– When clock hand passes by, reset use and modified bits
and mark page as invalid again

• Remember, however, that clock is just an
approximation of LRU
– Can we do a better approximation, given that we have to

take page faults on some reads and writes to collect use
information?

– Need to identify an old page, not oldest page!
– Answer: second chance list

Second-Chance List Algorithm (VAX/VMS)

• Split memory in two: Active list (RW), SC list (Invalid)
• Access pages in Active list at full speed
• Otherwise, Page Fault

– Always move overflow page from end of Active list to front
of Second-chance list (SC) and mark invalid

– Desired Page On SC List: move to front of Active list, mark
RW

– Not on SC list: page in to front of Active list, mark RW; page
out LRU victim at end of SC list

Directly
Mapped Pages

Marked: RW
List: FIFO

Second
Chance List

Marked: Invalid
List: LRU

LRU victim

Page-in
From disk

New
Active
Pages

New
SC
Victims

Second-Chance List Algorithm
• How many pages for second chance list?

– If 0  FIFO
– If all  LRU, but page fault on every page reference

• Pick intermediate value. Result is:
– Pro: Few disk accesses (page only goes to disk if unused

for a long time)
– Con: Increased overhead trapping to OS (software /

hardware tradeoff)
• With page translation, we can adapt to any kind of

access the program makes
– Later, we will show how to use page translation /

protection to share memory between threads on widely
separated machines

• Question: why didn’t VAX include “use” bit?
– Strecker (architect) asked OS people, they said they

didn’t need it, so didn’t implement it
– He later got blamed, but VAX did OK anyway

Another take: page buffering

• VMS:

addevict

modified list
(batch writes

= speed)

unmodified
free list

used

free

Free List

• Keep set of free pages ready for use in demand paging
– Freelist filled in background by Clock algorithm or other

technique (“Pageout demon”)
– Dirty pages start copying back to disk when enter list

• Like VAX second-chance list
– If page needed before reused, just return to active set

• Advantage: Faster for page fault
– Can always use page (or pages) immediately on fault

Set of all pages

in Memory

Single Clock Hand:
Advances as needed to keep freelist
full (“background”)

D

D

Free Pages
For Processes

Demand Paging (more details)
• Does software-loaded TLB need use bit?

Two Options:
– Hardware sets use bit in TLB; when TLB entry is replaced,

software copies use bit back to page table

– Software manages TLB entries as FIFO list; everything not
in TLB is Second-Chance list, managed as strict LRU

• Core Map
– Page tables map virtual page  physical page

– Do we need a reverse mapping (i.e. physical page 
virtual page)?
• Yes. Clock algorithm runs through page frames. If sharing, then

multiple virtual-pages per physical page

• Can’t push page out to disk without invalidating all PTEs

