
DRAFT as of September 12, 2009: Copyright 2009 Cox, Kaashoek, Morris

Chapter 0

Operating system interfaces

Computers are simple machines of enormous complexity. On the one hand, a
processor can do very little: it just executes a single instruction from memory and re-
peats, billions of times per second. On the other hand, the details of how it does this
and how software is expected to interact with the hardware vary wildly. The job of an
operating system is to address both of these problems. An operating system creates
the illusion of a simple machine that does quite a bit for the programs that it runs. It
manages the low-level hardware, so that, for example, a word processor need not con-
cern itself with which video card is being used. It also multiplexes the hardware, al-
lowing many programs to share the computer and run (or appear to run) at the same
time. Finally, operating systems provide controlled ways for programs to interact with
each other, so that programs can share data or work together.

This description of an operating system does not say exactly what interface the
operating system provides to user programs. Operating systems researchers have ex-
perimented and continue to experiment with a variety of interfaces. Designing a good
interface turns out to be a difficult challenge. On the one hand, we would like the in-
terface to be simple and narrow because that makes it easier to get the implementation
right. On the other hand, application writers want to offer many features to users. The
trick in resolving this tension is to design interfaces that rely on a few mechanism that
can be combined in ways to provide much generality.

This book uses a single operating system as a concrete example to illustrate oper-
ating system concepts. That operating system, xv6, provides the basic interfaces intro-
duced by Ken Thompson and Dennis Ritchie’s Unix operating system, as well as mim-
icking Unix’s internal design. The Unix operating system provides an an example of
narrow interface whose mechanisms combine well, offering a surprising degree of gen-
erality. This interface has been so successful that modern operating systems—BSD,
Linux, Mac OS X, Solaris, and even, to a lesser extent, Microsoft Windows—have
Unix-like interfaces. Understanding xv6 is a good start toward understanding any of
these systems and many others.

Xv6 takes the form of a kernel, a special program that provides services to run-
ning programs. Each running program, called a process, has memory containing in-
structions, data, and a stack. The instructions correspond to the machine instructions
that implement the program’s computation. The data corresponds to the data struc-
tures that the program uses to implement its computation. The stack allows the pro-
gram to invoke procedure calls and run the computation.

When a process needs to invoke a kernel service, it invokes a procedure call in
the operating system interface. Such procedures are call system calls. The system call
enters the kernel; the kernel performs the service and returns. Thus a process alter-

1

nates between executing in user space and kernel space.
The kernel uses the CPU’s hardware protection mechanisms to ensure that each

process executing in user space can access only its own memory. The kernel executes
with the hardware privileges required to implement these protections; user programs
execute without those privileges. When a user program invokes a system call, the
hardware raises the privilege level and starts executing a pre-arranged function in the
kernel. Chapter 3 examines this sequence in more detail.

The collection of system calls that a kernel provides is the interface that user pro-
grams see. The xv6 kernel provides a subset of the services and system calls that Unix
kernels traditionally offer. The calls are:

System call Description

fork() Create process
exit() Exit process
wait() Wait for a child
kill(pid) Send a signal to process pid
getpid() Return current process’s id
sleep(n) Sleep for n seconds
exec(*argv) Load program
sbrk(n) Grow process’s memory with n bytes
open(s, flags) Open a file with mode specified in flags
read(fd, buf, n) Read n byes from an open file into buf
write(fd, buf, n) Write n bytes from an open file into fd
close(fd) Release fd
dup(fd) Duplicate fd
pipe(p) Create a pipe and return fd’s in p
chdir(s) Change directory to directory s
mkdir(s) Create a new directory s
mknod(s, major, minor) Create a device file
fstat(fd) Return info about an open file
link(s1, s2) Create another name (s2) for the file s1
unlink(s) Remove a name

The rest of this chapter outlines xv6’s services—processes, memory, file descrip-
tors, pipes, and a file system—by using the system call interface in small code exam-
ples, and explaining how the shell uses the system call interface. The shell’s use of the
system calls illustrates how carefully the system calls have been designed.

The shell is an ordinary program that reads commands from the user and exe-
cutes them. It is the main interactive way that users use traditional Unix-like systems.
The fact that the shell is a user program, not part of the kernel, means that it is easily
replaced. In fact, modern Unix systems have a variety of shells to choose from, each
with its own syntax and semantics. The xv6 shell is a simple implementation of the
essence of the Unix Bourne shell. It’s implementation can be found at sheet (6850).

Code: Processes and memory

An xv6 process consists of user-space memory (instructions, data, and stack) and

2

a kernel process data structure. Xv6 provides time-sharing: it transparently switches
the available CPUs among the set of processes waiting to execute. When a process is
not executing, xv6 saves its CPU registers, restoring them when it next runs the pro-
cess. Each process can be uniquely identified by a positive integer called its process
identifier, or pid.

One process may create another using the fork system call. Fork creates a new
process, called the child, with exactly the same memory contents as the calling process,
called the parent. Fork returns in both the parent and the child. In the parent, fork
returns the child’s pid; in the child, it returns zero. For example, consider the following
program fragment:

int pid;

pid = fork();
if(pid > 0){
printf("parent: child=%d\n", pid);
pid = wait();
printf("child %d is done\n", pid);

} else if(pid == 0){
printf("child: exiting\n");
exit();

} else {
printf("fork error\n");

}

The exit system call causes the calling process to exit (stop executing). The wait sys-
tem call waits for one of the calling process’s children to exit and returns the pid of
the child that exited. In the example, the output lines

parent: child=1234
child: exiting

might come out in either order, depending on whether the parent or child gets to its
printf call first. After those two, the child exits, and then the parent’s wait returns,
causing the parent to print

parent: child 1234 is done

Note that the parent and child were executing with different memory and different
registers: changing a variable in the parent does not affect the same variable in the
child, nor does the child affect the parent. The main form of direct communication
between parent and child is wait and exit.

The exec system call replaces the calling process’s memory with a new memory
image loaded from a file stored in the file system. The file must have a particular for-
mat, which specifies which part of the file are instructions, which part is data, at which
instruction to start, etc.. The format xv6 uses is called the ELF format, which Chapter
1 discusses in more detail. When exec succeeds, it does not return to the calling pro-
gram; instead, the instructions loaded from the file start executing at the entry point
declared in the ELF header. Exec takes two arguments: the name of the file containing
the executable and an array of string arguments. For example:

3

char *argv[3];

argv[0] = "echo";
argv[1] = "hello";
argv[2] = 0;
exec("/bin/echo", argv);
printf("exec error\n");

This fragment replaces the calling program with an instance of the program
/bin/echo running with the argument list echo hello. (Most programs ignore the
first argument, which is conventionally the name of the program.)

The xv6 shell uses the above calls to run programs on behalf of users. The main
structure of the shell is simple; see main on line (7001). The main loop reads the input
on the command line using getcmd. Then it calls fork, which creates another running
shell program. The parent shell calls wait, while the child process runs the command.
For example, if the user had typed "echo hello" at the prompt, runcmd would have
been called with "echo hello" as the argument. runcmd (6906) runs the actual
command. For the simple example, it would call exec on line (6926), which loads and
starts the program echo, changing the program counter to the first instruction of
echo. If exec succeeds then the child will be running echo and the child will not exe-
cute the next line of runcmd. Instead, it will be running instructions of echo and at
some point in the future, echo will call exit, which will cause the parent to return
from wait in main (7001). You might wonder why fork and exec are not combined in
a single call; as we will see later, the choice of having separate calls for creating a pro-
cess and loading a program is clever.

Xv6 allocates most user-space memory implicitly: fork allocates the memory re-
quired for the child’s copy of the parent’s memory, and exec allocates enough memory
to hold the executable file. A process that needs more memory at run-time (perhaps
for malloc) can call sbrk(n) to grow its data memory by n bytes; sbrk returns the
location of the new memory.

Xv6 does not provide a notion of users or of protecting one user from another; in
Unix terms, all xv6 processes run as root.

Code: File descriptors

A file descriptor is a small integer representing a kernel-managed object that a
process may read from or write to. A file descriptor is obtained by calling open with
an pathname as argument. The object by the pathname may be a data file, a directory,
a pipe, or the console. It is conventional to call whatever object a file descriptor refers
to a file. Internally, the xv6 kernel uses the file descriptor as an index into a per-pro-
cess table, so that every process has a private space of file descriptors starting at zero.
By convention, a process reads from file descriptor 0 (standard input), writes output to
file descriptor 1 (standard output), and writes error messages to file descriptor 2 (stan-
dard error). As we will see, the shell exploits the convention to implement I/O redi-
rection and pipelines. The shell ensures that it always has three file descriptors open
(7007), which are by default file descriptors for the console.

4

The read and write system calls read bytes from and write bytes to open files
named by file descriptors. The call read(fd, buf, n) reads at most n bytes from the
open file corresponding to the file descriptor fd, copies them into buf, and returns the
number of bytes copied. Every file descriptor has an offset associated with it. Read
reads data from the current file offset and then advances that offset by the number of
bytes read: a subsequent read will return the bytes following the ones returned by the
first read. When there are no more bytes to read, read returns zero to signal the end
of the file.

The call write(fd, buf, n) writes n bytes from buf to the open file named by
the file descriptor fd and returns the number of bytes written. Fewer than n bytes are
written only when an error occurs. Like read, write writes data at the current file
offset and then advances that offset by the number of bytes written: each write picks
up where the previous one left off.

The following program fragment (which forms the essence of echo) copies data
from its standard input to its standard output. If an error occurs, it writes a message
on standard error.

char buf[512];
int n;

for(;;){
n = read(0, buf, sizeof buf);
if(n == 0)
break;

if(n < 0){
fprintf(2, "read error\n");
exit();

}
if(write(1, buf, n) != n){
fprintf(2, "write error\n");
exit();

}
}

The important thing to note in the code fragment is that echo doesn’t know whether
it is reading from a file, console, or whatever. Similarly echo doesn’t know whether it
is printing to a console, a file, or whatever. The use of file descriptors and the conven-
tion that file descriptor 0 is input and file descriptor 1 is output allows a simple imple-
mentation of echo.

The close system call releases a file descriptor, making it free for reuse by a fu-
ture open, pipe, or dup system call (see below). An important rule in Unix is that the
kernel must always allocates the lowest-numbered file descriptor that is unused by the
calling process.

This rule and how fork works makes I/O redirection work well. Fork copies the
parent’s file descriptor table along with its memory, so that the child starts with exactly
the same open files as the parent. Exec replaces the calling process’s memory but pre-
serves its file table. This behavior allows the shell to implement I/O redirection by
forking, reopening chosen file descriptors, and then execing the new program. Here is
a simplified version of the code a shell runs for the command cat <input.txt:

5

char *argv[2];

argv[0] = "cat";
argv[1] = 0;
if(fork() == 0) {
close(0);
open("input.txt", O_RDONLY);
exec("cat", argv);

}

After the child closes file descriptor 0, open is guaranteed to use that file descriptor for
the newly opened input.txt: 0 will be the smallest available file descriptor. Cat then
executes with file descriptor 0 (standard input) referring to input.txt.

The code for I/O redirection in the xv6 shell works exactly in this way; see the
case at (6930). Recall that at this point in the code the shell already forked the child
shell and that runcmd will call exec to load the new program. Now it should be clear
why it is a good idea that fork and exec are separate calls. This separation allows the
shell to fix up the child process before the child runs the intended program.

Although fork copies the file descriptor table, each underlying file offset is shared
between parent and child. Consider this example:

if(fork() == 0) {
write(1, "hello ", 6);
exit();

} else {
wait();
write(1, "world\n", 6);

}

At the end of this fragment, the file attached to file descriptor 1 will contain the data
hello world. The write in the parent (which, thanks to wait, runs only after the
child is done) picks up where the child’s write left off. This behavior helps produce
useful results from sequences of shell commands, like (echo hello; echo world)
>output.txt.

The dup system call duplicates an existing file descriptor onto a new one. Both
file descriptors share an offset, just as the file descriptors duplicated by fork do. This
is another way to write hello world into a file:

close(2);
dup(1); // uses 2, assuming 0 and 1 not available
write(1, "hello ", 6);
write(2, "world\n", 6);

Two file descriptors share an offset if they were derived from the same original
file descriptor by a sequence of fork and dup calls. Otherwise file descriptors do not
share offsets, even if they resulted from open calls for the same file. Dup allows shells
to implement commands like the following one correctly (2> means redirect file de-
scriptor 2): ls existing-file non-existing-file > tmp1 2> tmp1. Both the name
of the existing file and the error message for the non-existing file will show up in the
file tmp1. The xv6 shell doesn’t support I/O redirection for the error file descriptor,
but now you can implement it.

File descriptors are a powerful abstraction, because they hide the details of what

6

they are connected to: a process writing to file descriptor 1 may be writing to a file, to
a device like the console, or to a pipe.

Code: Pipes

A pipe is a small kernel buffer exposed to processes as a pair of file descriptors,
one for reading and one for writing. Writing data to one end of the pipe makes that
data available for reading from the other end of the pipe. Pipes provide a way for
processes to communicate.

The following example code runs the program wc with standard input connected
to the read end of a pipe.

int p[2];
char *argv[2];

argv[0] = "wc";
argv[1] = 0;

pipe(p);
if(fork() == 0) {
close(0);
dup(p[0]);
close(p[0]);
close(p[1]);
exec("/bin/wc", argv);

} else {
write(p[1], "hello world\n", 12);
close(p[0]);
close(p[1]);

}

The program calls pipe to create a new pipe and record the read and write file de-
scriptors in the array p. After fork, both parent and child have file descriptors refer-
ring to the pipe. The child dups the read end onto file descriptor 0, closes the file de-
scriptors in p, and execs wc. When wc reads from its standard input, it reads from the
pipe. The parent writes to the write end of the pipe and then closes both of its file
descriptors.

If no data is available, a read on a pipe waits for either data to be written or all
file descriptors referring to the write end to be closed; in the latter case, read will re-
turn 0, just as if the end of a data file had been reached. The fact that read blocks
until it is impossible for new data to arrive is one reason that it’s important for the
child to close the write end of the pipe before executing wc above: if one of wc’s file
descriptors referred to the write end of the pipe, wc would never see end-of-file.

The xv6 shell implements pipes in similar manner as the above code fragment;
see (6950). The child process creates a pipe to connect the left end of the pipe with the
right end of the pipe. Then it calls runcmd for the left part of the pipe and runcmd for
the right end of the pipe, and waits for the left and the right end to finish, by calling
wait twice. The right end of the pipe may be a command that itself includes a pipe
(e.g., a | b | c), which itself forks two new child processes (one for b and one for c).

7

Thus, the shell may create a tree of processes. The leaves of this tree are commands
and the interior nodes are processes that wait until the left and right children com-
plete. In principle, you could have the interior nodes run the left end of a pipe, but
doing so correctly will complicate the implementation.

Pipes may seem no more powerful than temporary files: the pipeline

echo hello world | wc

could also be implemented without pipes as

echo hello world >/tmp/xyz; wc </tmp/xyz

There are at least three key differences between pipes and temporary files. First, pipes
automatically clean themselves up; with the file redirection, a shell would have to be
careful to remove /tmp/xyz when done. Second, pipes can pass arbitrarily long
streams of data, while file redirection requires enough free space on disk to store all
the data. Third, pipes allow for synchronization: two processes can use a pair of pipes
to send messages back and forth to each other, with each read blocking its calling pro-
cess until the other process has sent data with write.

Code: File system

Xv6 provides data files, which are uninterpreted byte streams, and directories,
which contain references to other data files and directories. Xv6 implements directo-
ries as a special kind of file. The directories are arranged into a tree, starting at a spe-
cial directory called the root. A path like /a/b/c refers to the file or directory named
c inside the directory named b inside the directory named a in the root directory /.
Paths that don’t begin with / are evaluated relative to the calling process’s current di-
rectory, which can be changed with the chdir system call. Both these code fragments
open the same file:

chdir("/a");
chdir("b");
open("c", O_RDONLY);

open("/a/b/c", O_RDONLY);

The first changes the process’s current directory to /a/b; the second neither refers to
nor modifies the process’s current directory.

The open system call evaluates the path name of an existing file or directory and
prepares that file for use by the calling process.

There are multiple system calls to create a new file or directory: mkdir creates a
new directory, open with the O_CREATE flag creates a new data file, and mknod creates
a new device file. This example illustrates all three:

mkdir("/dir");
fd = open("/dir/file", O_CREATE|O_WRONLY);
close(fd);
mknod("/console", 1, 1);

Mknod creates a file in the file system, but the file has no contents. Instead, the file’s

8

metadata marks it as a device file and records the major and minor device numbers
(the two arguments to mknod), which uniquely identify a kernel device. When a pro-
cess later opens the file, the kernel diverts read and write system calls to the kernel
device implementation instead of passing them through to the file system.

The fstat system call queries an open file descriptor to find out what kind of file
it is. It fills in a struct stat, defined in stat.h as:

#define T_DIR 1 // Directory
#define T_FILE 2 // File
#define T_DEV 3 // Special device

struct stat {
short type; // Type of file
int dev; // Device number
uint ino; // Inode number on device
short nlink; // Number of links to file
uint size; // Size of file in bytes

};

In xv6, a file’s name is separated from its content; the same content, called an in-
ode, can have multiple names, called links. The link system call creates another file
system name referring to the same inode as an existing file. This fragment creates a
new file named both a and b.

open("a", O_CREATE|O_WRONLY);
link("a", "b");

Reading from or writing to a is the same as reading from or writing to b. Each inode
is identified by a unique inode number. After the code sequence above, it is possible to
determine that a and b refer to the same underlying contents by inspecting the result
of fstat: both will return the same inode number (ino), and the nlink count will be
set to 2.

The unlink system call removes a name from the file system, but not necessarily
the underlying inode. Adding

unlink("a");

to the last code sequence will not remove the inode, because it is still accessible as b.
In order to remove or reuse an inode, xv6 requires not only that all its names have
been unlinked but also that there are no file descriptors referring to it. Thus,

fd = open("/tmp/xyz", O_CREATE|O_RDWR);
unlink("/tmp/xyz");

is an idiomatic way to create a temporary inode that will be cleaned up when the pro-
cess closes fd or exits.

The xv6 shell doesn’t directly support any calls for manipulating the file system.
User commands for file system operations are implemented as separate user-level pro-
grams such as mkdir, ln, rm, etc. This design allows anyone to extend the shell with
new user commands. In hint-sight this plan seems the obvious right one, but when
Unix was designed it was common that such commands were built into the shell.

The one exception is cd, which is a build in command; see line (7016). The reason
is that cd must change the current working directory of the shell itself. If cd were run

9

as a regular command, then the shell would fork a child process, the child process
would run cd, change the child’s working directory, and then return to the parent. The
parent’s (i.e., the shell’s) working directory would not change.

Real world

It is difficult today to remember that Unix’s combination of the ‘‘standard’’ file de-
scriptors, pipes, and convenient shell syntax for operations on them was a major ad-
vance in writing general-purpose reusable programs. The idea sparked a whole culture
of ‘‘software tools’’ that was responsible for much of Unix’s power and popularity, and
the shell was the first so-called ‘‘scripting language.’’ The Unix system call interface
persists today in systems like BSD, Linux, and Mac OS X.

Xv6, like Unix before it, has a very simple interface. It doesn’t implement modern
features like networking or computer graphics. The various Unix derivatives have
many more system calls, especially in those newer areas. Unix’s early devices, such as
terminals, are modeled as special files, like the console device file discussed above.
The authors of Unix went on to build Plan 9, which applied the ‘‘resources are files’’
concept to even these modern facilities, representing networks, graphics, and other re-
sources as files or file trees.

The file system as an interface has been a very powerful idea, most recently ap-
plied to network resources in the form of the World Wide Web. Even so, there are
other models for operating system interfaces. Multics, a predecessor of Unix, blurred
the distinction between data in memory and data on disk, producing a very different
flavor of interface. The complexity of the Multics design had a direct influence on the
designers of Unix, who tried to build something simpler.

This book examines how xv6 implements its Unix-like interface, but the ideas and
concepts apply to more than just Unix. Any operating system must multiplex process-
es onto the underlying hardware, isolate processes from each other, and provide mech-
anisms for controlled inter-process communication. After studying this book, you
should be able to look at other, more complex operating systems and see the concepts
underlying xv6 in those systems as well.

10

