
DRAFT as of September 25, 2009: Copyright 2009 Cox, Kaashoek, Morris

Chapter 4

Locking

Xv6 runs on multiprocessors, computers with multiple CPUs executing code inde-
pendently. These multiple CPUs operate on a single physical address space and share
data structures; xv6 must introduce a coordination mechanism to keep them from in-
terfering with each other. Even on a uniprocessor, xv6 must use some mechanism to
keep interrupt handlers from interfering with non-interrupt code. Xv6 uses the same
low-level concept for both: locks. Locks provide mutual exclusion, ensuring that only
one CPU at a time can hold a lock. If xv6 only accesses a data structure while hold-
ing a particular lock, then xv6 can be sure that only one CPU at a time is accessing
the data structure. In this situation, we say that the lock protects the data structure.

As an example, consider the implementation of a simple linked list:

1 struct list {
2 int data;
3 struct list *next;
4 };
5
6 struct list *list = 0;
7
8 void
9 insert(int data)
10 {
11 struct list *l;
12
13 l = malloc(sizeof *l);
14 l->data = data;
15 l->next = list;
16 list = l;
17 }

Proving this implementation correct is a typical exercise in a data structures and algo-
rithms class. Even though this implementation can be proved correct, it isn’t, at least
not on a multiprocessor. If two different CPUs execute insert at the same time, it
could happen that both execute line 15 before either executes 16. If this happens,
there will now be two list nodes with next set to the former value of list. When the
two assignments to list happen at line 16, the second one will overwrite the first; the
node involved in the first assignment will be lost. This kind of problem is called a
race condition. The problem with races is that they depend on the exact timing of the
two CPUs involved and are consequently difficult to reproduce. For example, adding
print statements while debugging insert might change the timing of the execution
enough to make the race disappear.

The typical way to avoid races is to use a lock. Locks ensure mutual exclusion, so

1



that only one CPU can execute insert at a time; this makes the scenario above im-
possible. The correctly locked version of the above code adds just a few lines (not
numbered):

6 struct list *list = 0;
struct lock listlock;

7
8 void
9 insert(int data)
10 {
11 struct list *l;
12

acquire(&listlock);
13 l = malloc(sizeof *l);
14 l->data = data;
15 l->next = list;
16 list = l;

release(&listlock);
17 }

When we say that a lock protects data, we really mean that the lock protects some
collection of invariants that apply to the data. Invariants are properties of data struc-
tures that are maintained across operations. Typically, an operation’s correct behavior
depends on the invariants being true when the operation begins. The operation may
temporarily violate the invariants but must reestablish them before finishing. For ex-
ample, in the linked list case, the invariant is that list points at the first node in the
list and that each node’s next field points at the next node. The implementation of
insert vioilates this invariant temporarily: line X creates a new list element l with the
intent that l be the first node in the list, but l’s next pointer does not point at the
next node in the list yet (reestablished at line 15) and list does not point at l yet
(reestablished at line 16). The race condition we examined above happened because a
second CPU executed code that depended on the list invariants while they were (tem-
porarily) violated. Proper use of a lock ensures that only one CPU at a time can oper-
ate on the data structure, so that no CPU will execute a data structure operation when
the data structure’s invariants do not hold.

Code: Locks

Xv6’s represents a lock as a struct spinlock (1301). The critical field in the structure
is locked, a word that is zero when the lock is available and non-zero when it is held.
Logically, xv6 should acquire a lock by executing code like

21 void
22 acquire(struct spinlock *lk)
23 {
24 for(;;) {
25 if(!lk->locked) {
26 lk->locked = 1;
27 break;
28 }

2



29 }
30 }

Unfortunately, this implementation does not guarantee mutual exclusion on a modern
multiprocessor. It could happen that two (or more) CPUs simultaneously reach line
25, see that lk->locked is zero, and then both grab the lock by executing lines 26 and
27. At this point, two different CPUs hold the lock, which violates the mutual exclu-
sion property. Rather than helping us avoid race conditions, this implementation of
acquire has its own race condition. The problem here is that lines 25 and 26 execut-
ed as separate actions. In order for the routine above to be correct, lines 25 and 26
must execute in one atomic step.

To execute those two lines atomically, xv6 relies on a special 386 hardware in-
struction, xchg (0501). In one atomic operation, xchg swaps a word in memory with
the contents of a register. Acquire (1373) repeats this xchg instruction in a loop; each
iteration reads lk->locked and atomically sets it to 1 (1382). If the lock is held, lk-
>locked will already be 1, so the xchg returns 1 and the loop continues. If the xchg
returns 0, however, acquire has successfully acquired the lock—locked was 0 and is
now 1—so the loop can stop. Once the lock is acquired, acquire records, for debug-
ging, the CPU and stack trace that acquired the lock. When a process acquires a lock
and forget to release it, this information can help to identify the culprit. These debug-
ging fields are protected by the lock and must only be edited while holding the lock.

Release (1402) is the opposite of acquire: it clears the debugging fields and then
releases the lock.

Modularity and recursive locks

System design strives for clean, modular abstractions: it is best when a caller does
not need to know how a callee implements particular functionality. Locks interfere
with this modularity. For example, if a CPU holds a particular lock, it cannot call any
function f that will try to reacquire that lock: since the caller can’t release the lock un-
til f returns, if f tries to acquire the same lock, it will spin forever, or deadlock.

There are no transparent solutions that allow the caller and callee to hide which
locks they use. One common, transparent, but unsatisfactory solution is ‘‘recursive
locks,’’ which allow a callee to reacquire a lock already held by its caller. The problem
with this solution is that recursive locks can’t be used to protect invariants. After in-
sert called acquire(&listlock) above, it can assume that no other function holds
the lock, that no other function is in the middle of a list operation, and most impor-
tantly that all the list invariants hold. In a system with recursive locks, insert can as-
sume nothing after it calls acquire: perhaps acquire succeeded only because one of
insert’s caller already held the lock and was in the middle of editing the list data
structure. Maybe the invariants hold or maybe they don’t. The list no longer protects
them. Locks are just as important for protecting callers and callees from each other as
they are for protecting different CPUs from each other; recursive locks give up that
property.

Since there is no ideal transparent solution, we must consider locks part of the
function’s specification. The programmer must arrange that function doesn’t invoke a

3



function f while holding a lock that f needs. Locks force themselves into our abstrac-
tions.

Code: Using locks

The hardest part about using locks is deciding how many locks to use and which data
and invariants each lock protects. There are a few basic principles. First, any time a
variable can be written by one CPU at the same time that another CPU can read or
write it, a lock should be introduced to keep the two operations from overlapping.
Second, remeber that locks protect invariants: if an invariant involves multiple data
structures, typically all of the structures need to be protected by a single lock to ensure
the invariant is maintained.

The rules above say when locks are necessary but say nothing about when locks
are unnecessary, and it is important for efficiency not to lock too much. For protect-
ing kernel data structures, it would suffice to create a single lock that must be acquired
on entering the kernel and released on exiting the kernel. Many uniprocessor operat-
ing systems have been converted to run on multiprocessors using this approach, some-
times called a ‘‘giant kernel lock,’’ but the approach sacrifices true concurrency: only
one CPU can execute in the kernel at a time. If the kernel does any heavy computa-
tion, it would be more efficient to use a larger set of more fine-grained locks, so that
the kernel could execute on multiple CPUs simultaneously.

Ultimately, the choice of lock granularity is more art than science. Xv6 uses a few
coarse data-structure specific locks. Hopefully, the examples of xv6 will help convey a
feeling for some of the art.

4


