
DRAFT as of October 21, 2009: Copyright 2009 Cox, Kaashoek, Morris

Chapter 9

Exec

Chapter 2 stopped with the initproc invoking the kernel’s exec system call. As a
result, we took detours into interrupts, multiprocessing, device drivers, and a file sys-
tem. With these taken care of, we can finally look at the implementation of exec. As
we saw in Chapter 0, exec replaces the memory and registers of the current process
with a new program, but it leaves the file descriptors, process id, and parent process
the same. Exec is thus little more than a binary loader, just like the one in the boot
sector from Chapter 1. The additional complexity comes from setting up the stack.
The memory image of an executing process looks like:

[XXX better picture: not ASCII art,
show individual argv pointers, show argc,
show argument strings, show fake return address.]

+---------------------------------------+
| text | data | stack | args | heap ... |
+---------------------------------------+

^
|

initial sp

In xv6, the stack is a single page—4096 bytes—long. The command-line arguments
follow the stack immediately in memory, so that the program can start at main as if
the function call main(argc, argv) had just started. The heap comes last so that ex-
panding it does not require moving any of the other sections.

Code

When the system call arrives, syscall invokes sys_exec via the syscalls table (2879).
Sys_exec (4951) parses the system call arguments, as we saw in Chapter 3, and invokes
exec (4972).

Exec (5009) opens the named binary path using namei (5021) and then reads the
ELF header. Like the boot sector, it uses elf.magic to decide whether the binary is
an ELF binary (5025-5029). Then it makes two passes through the program segment and
argument lists. The first computes the total amount of memory needed, and the sec-
ond creates the memory image. The total memory size includes the program segments
(5032-5041), the argument strings (5043-5048), the argument vector pointed at by argv
(5049), the argv and argc arguments to main (5049-5051), and the stack (5053-5054). Exec
then allocates and zeros the required amount of memory (5056-5061) and copies the data
into the new memory image: the program segments (5063-5077), the argument strings

1



and pointers (5079-5090), and the stack frame for main (5092-5099).
Notice that when exec copies the program segments, it makes sure that the data

being loaded into memory fits in the declared size ph.memsz (5069-5070). Without this
check, a malformed ELF binary could cause exec to write past the end of the allocated
memory image, causing memory corruption and making the operating system unsta-
ble. The boot sector neglected this check both to reduce code size and because not
checking doesn’t change the failure mode: either way the machine doesn’t boot if given
a bad ELF image. In contrast, in exec this check is the difference between making one
process fail and making the entire system fail.

During the preparation of the new memory image, if exec detected an error like
an invalid program segment, it jumps to the label bad, frees the new image, and re-
turns –1. Exec must wait to free the old image until it is sure that the system call will
succeed: if the old image is gone, the system call cannot return –1 to it. The only er-
ror cases in exec happen during the creation of the image. Once the image is com-
plete, exec can free the old image and install the new one (5107-5111). After changing
the image, exec must update the user segment registers to refer to the new image, just
as sbrk did (5112). Finally, exec returns 0. Success!

Now the initcode (6700) is done. Exec has replaced it with the real /init
binary, loaded out of the file system. Init (6810) creates a new console device file if
needed and then opens it as file descriptors 0, 1, and 2. Then it loops, starting a con-
sole shell, handles orphaned zombies until the shell exits, and repeats. The system is
up.

Real world

Exec is the most complicated code in xv6 in and in most operating systems. It in-
volves pointer translation (in sys_exec too), many error cases, and must replace one
running process with another. Real world operationg systems have even more compli-
cated exec implementations. They handle shell scripts (see exercise below), more
complicated ELF binaries, and even multiple binary formats.

Exercises

1. Unix implementations of exec traditionally include special handling for shell scripts.
If the file to execute begins with the text #!, then the first line is taken to be a pro-
gram to run to interpret the file. For example, if exec is called to run myprog arg1
and myprog’s first line is #!/interp, then exec runs /interp with command line
/interp myprog arg1. Implement support for this convention in xv6.

2


