DRAFT as of September 20, 2009: Copyright 2009 Cox, Kaashoek, Morris

Chapter 1

Bootstrap

Hardware

A computer’s CPU (central processing unit, or processor) runs a conceptually sim-
ple loop: it inspects the value of a register called the program counter, reads a ma-
chine instruction from that address in memory, advances the program counter past the
instuction, and executes the instruction. Repeat. If the execution of the instruction
does not modify the program counter, this simple loop will interpret the memory
pointed at by the program counter as a simple sequence of machine instructions to
run one after the other. Instructions that do change the program counter implement
conditional branches, unconditional branches, and function calls.

The execution engine is useless without the ability to store and modify program
data. The simplest, fastest storage for data is provided by the processor’s register set.
A register is a storage cell inside the processor itself, capable of holding a machine
word-sized value (typically 16, 32, or 64 bits). Data stored in registers can typically be
read or written quickly, in a single CPU cycle. The x86 provides eight general purpose
32-bit registers—%eax, %ebx, %ecx, %edx, %edi, %esi, %ebp, and %esp—and a program
counter %eip (the “instruction pointer”). The common e prefix stands for extended, as
these are 32-bit extensions of the 16-bit registers %ax, %bx, %cx, %dx, %di, %si, %bp,
%sp, and %ip. The two register sets are aliased so that, for example, %ax is the bottom
half of %eax: writing to %ax changes the value stored in %eax and vice versa. The first
four registers also have names for the bottom two 8-bit bytes: %al and %ah denote the
low and high 8 bits of %ax; %b1, %bh, %c1, %ch, %d1, and %dh continue the pattern. In
addition to these registers, the x86 has eight 80-bit floating-point registers as well as a
handful of special-purpose registers like the control registers %cr0, %cr2, %cr3, and
%cr4; the debug registers %dr0, %drl, %dr2, and %dr3; the segment registers %cs, %ds,
%es, %fs, %gs, and %ss; and the global and local descriptor table pseudo-registers
%gdtr and %1dtr. The control, segment selector, and descriptor table registers are im-
portant to any operating system, as we will see in this chapter. The floating-point and
debug registers are less interesting and not used by xv6.

Registers are very fast but very expensive in bulk. Most processors provide at
most a few tens of general-purpose registers. The next conceptual level of storage is
the main random-access memory (RAM). Main memory is 10-100x slower than a
register, but it is much cheaper, so there can be more of it. A typical x86 processor
has at most a kilobyte of registers, but a typical PC today has gigabytes of main mem-
ory. Because of the enormous differences in both access speed and size between regis-

ters and main memory, most processors, including the x86, store copies of recently-ac-
cessed sections of main memory in on-chip cache memory. The cache memory serves
as a middle ground between registers and memory both in access time and in size.
Today’s x86 processors typically have two levels of cache, a small first-level cache with
access times relatively close to the processors clock rate and a larger second-level
cache with access times in between the first-level cache and main memory. This table
shows actual numbers for an Intel Core 2 Duo system:

Intel Core 2 Duo E7200 at 2.53 GHz
TODO: Plug in non-made-up numbers!

storage access time size

register 0.6 ns 64 bytes

L1 cache 0.5 ns 64 kilobytes

L2 cache 10 ns 4 megabytes
main memory 100 ns 4 gigabytes

For the most part, x86 processors hide the cache from the operating system, so we
can think of the processor as having just two kinds of storage—registers and memo-
ry—and not worry about the distinctions between the different levels of the memory
hierarchy. The exceptions—the only reasons an x86 operating system needs to worry
about the memory cache—are concurrency (Chapter 4) and device drivers (Chapter 6).

One reason memory access is so much slower than register access is that the
memory is a set of chips physically separate from the processor chip. To allow the
processor to communicate with the memory, there is a collection of wires, called a bus,
running between the two. A simple mental model is that some of the wires, called
lines, carry address bits; some carry data bits. To read a value from main memory, the
processor sends high or low voltages representing 1 or 0 bits on the address lines and
a 1 on the “read” line for a prescribed amount of time and then reads back the value
by interpreting the voltages on the data lines. To write a value to main memory, the
processor sends appropriate bits on the address and data lines and a 1 on the “write”
line for a prescribed amount of time. This model is an accurate description of the ear-
liest x86 chips, but it is a drastic oversimplification of a modern system. Even so,
thanks to the processor-centric view the operating system has of the rest of the com-
puter, this simple model suffices to understand a modern operating system. The de-
tails of modern I/O buses are the province of computer architecture textbooks.

Processors must communicate not just with memory but with hardware devices
too. The x86 processor provides special in and out instructions that read and write
values from device addresses called ports. The hardware implementation of these in-
structions is essentially the same as reading and writing memory. Early x86 processors
had an extra address line: 0 meant read/write from a device port and 1 meant
read/write from main memory.

Many computer architectures have no separate device access instructions. Instead
the devices have fixed memory addresses and the processor communicates with the
device (at the operating systems behest) by reading and writing values at those ad-
dresses. In fact, modern x86 architectures use this technique, called memory-mapped

I/O, for most high-speed devices such as network, disk, and graphics controllers. For
reasons of backwards compatibility, though, the old in and out instructions linger, as
do legacy hardware devices that use them, such as the IDE disk controller, which we
will see shortly.

Bootstrap

When an x86 PC boots, it starts executing a program called the BIOS, which is
stored in flash memory on the motherboard. The BIOS’ job is to prepare the hard-
ware and then transfer control to the operating system. Specifically, it transfers control
to code loaded from the boot sector, the first 512-byte sector of the boot disk. The
BIOS loads a copy of that sector into memory at 0x7c00 and then jumps (sets the
processor’s %ip) to that address. When the boot sector begins executing, the processor
is simulating an Intel 8088, the core of the original IBM PC released in 1981. The xv6
boot sector’s job is to put the processor in a more modern operating mode and then
transfer control to the xv6 kernel. In xv6, the boot sector comprises two source files,
one written in a combination of 16-bit and 32-bit x86 assembly (bootasm.S; (0900))
and one written in C (bootmain.c; (1100)). This chapter examines the operation of the
xv6 boot sector, from the time the BIOS starts it to the time it transfers control to the
kernel proper. The boot sector is a microcosm of the kernel itself: it contains low-lev-
el assembly and C code, it manages its own memory, and it even has a device driver,
all in under 512 bytes of machine code.

Code: Assembly bootstrap

The first instruction in the boot sector is c1i (0915), which disables processor in-
terrupts. Interrupts are a way for hardware devices to invoke operating system func-
tions called interrupt handlers. The BIOS is a tiny operating system, and it might have
set up its own interrupt handlers as part of the initializing the hardware. But the
BIOS isn’'t running anymore—xv6 is, or will be—so it is no longer appropriate or safe
to handle interrupts from hardware devices. When xv6 is ready (in Chapter 3), it will
re-enable interrupts.

Remember that the processor is simulating an Intel 8088. The Intel 8088 had
eight 16-bit general-purpose registers but 20 wires in its address bus leading to memo-
ry, and thus could be connected to 1 megabyte of memory. The segment registers %cs,
%ds, %es, and %ss provided the additional bits necessary to generate 20-bit memory
addresses from 16-bit registers. In fact, they provide more than enough bits: the seg-
ment registers are 16 bits wide too. A full memory reference on the 8088 consists of
two 16-bit words, a segment and an offset, written segment:offset. Typically, the seg-
ment is taken from a segment register and the offset from a general-purpose register.
For example, the movs instruction copies data from %ds:%si to %es:%di. The 20-bit
memory address that went out on the 8088 bus was the segment times 16 plus the oft-
set. Well call the addresses the processor chip sends to memory "physical addresses,"
and the addresses that programs directly manipulate "virtual addresses." Thus, on an

8088, a virtual address consists of a 16-bit segment register combined with a 16-bit
general-purpose register, for example 0x8765:0x4321, and translates to a 20-bit physi-
cal address sent to the memory chips, in this case 0x87650+0x4321 = 0x8b971.

PC BIOSes guarantee to copy the boot sector to physical address 0x7c00 and
start it executing, but there is no guarantee that they will choose to set %cs:%ip to
0x0000:0x7c00. In fact, some BIOSes use 0x0000:0x7c00 when the boot sector is from
a hard disk and use 0x07c0:0x0000 when the boot sector is from a bootable CD or
DVD. There are no guarantees at all about the initial contents of the segment registers
used for data accesses (%ds, %es, %ss), so first order of business after disabling inter-
rupts is to set %ax to zero and then copy that zero into %ds, %es, and %ss (0918-0921).

The address calculation can produce a 21-bit address, but the Intel 8088 could
only address 20 bits of memory, so it discarded the top bit: OxffffO+Oxffff =
0x10ffef, but virtual address Oxffff:0xffff on the 8088 referred to physical address
0x0ffef. The Intel 80286 had 24-bit physical addresses and thus could address 16
megabytes of memory, so its real mode did not discard the top bit: virtual address
OxfFff:0xffff on the 80286 referred to physical address 0x10ffef. The IBM PC AT,
IBM’s 1984 update to the IBM PC, used an 80286 instead of an 8088, but by then
there were programs that depended on the 8088’s address truncation and did not run
correctly on the 80286.

IBM worked around this incompatibility in hardware: the PC AT design connect-
ed the 20th address line of memory (A20) to the logical AND of the 20th address line
coming out of the 80286 processor and the second bit of the keyboard controller’s out-
put port. When the PC AT booted, the keyboard output port’s second bit was zero,
making the memory controller always see zero on the A20 line, which in turn made
the 80286’s memory accesses behave like an 8088, so that 8088 programs would run
correctly. Of course, IBM wanted to allow new programs to take advantage of the ex-
panded memory. PC AT-specific software instructed the keyboard controller to change
the output port bit to a 1, allowing the 80286s A20 values to pass unfiltered to the
memory controller. To this day, modern PCs continue this backwards compatibility
dance, and low-level software probably continues to depend on 8088 behavior at boot.
The boot sector must enable the A20 line using I/O to the keyboard controller on
ports 0x64 and 0x60 (0923-0941).

The 8088 had 16-bit general-purpose registers, so that a program that wanted to
use more than 65,536 bytes of memory required awkward manipulation of segment
registers. The 8088’s 20-bit physical addresses also limited the total amount of RAM to
a size that seems small today. Modern software expects to be able to use tens to thou-
sands of megabytes of memory, and expects to be able to do it without fiddling with
segment registers. The minimum modern expectation is that a processor should have
32-bit registers that can be used directly as addresses. The Intel x86 architecture ar-
rived at those capabilities in two stages of evolution. The 80286 introduced "protected
mode” which allowed the segmentation scheme to generate physical addresses with as
many bits as required. The 80386 introduced "32-bit mode" which replaced the 80286’
16-bit registers with 32-bit registers. The xv6 boot sequence enables both modes as fol-
lows.

In protected mode, a segment register is not a simple base memory address any-

more. Instead, it is an index into a segment descriptor table. Each table entry specifies
a base physical address, a maximum virtual address called the limit, and permission
bits for the segment. These additions are the protection in protected mode: they can
be used to make sure that one program cannot access memory belonging to another
program (including the operating system itself). Chapter 2 will put the protection fea-
tures to good use; the boot sector simply wants access to more than 20 bits of memo-
ry. It executes an 1gdt instruction (0954) to set the processor’s global descriptor table
(GDT) register with the value gdtdesc (0995-0997), which in turns points at the table
gdt (0990-0993).

This simple GDT has three entries: the processor requires entry 0 to be a null
entry; entry 1 is a 32-bit code segment with offset 0 and limit Oxftftttft, allowing access
to all of physical memory; and entry 2 is a data segment with the same offset and lim-
it. "32-bit code segment" enables the 80386s 32-bit mode, so that the processor will
default to 32-bit registers, addresses, and arithmetic when executing in the segment. In
protected mode, the bottom two bits of a segment register give the processor’s privilege
level (0 is kernel, 3 is user mode, 1 and 2 are intermediate). The next bit selects be-
tween the global descriptor table (0) and a second table called the local descriptor ta-
ble (1). The rest of the bits are an index into the given table. Thus 0x8 and 0x10 refer
to GDT entries 1 and 2 with kernel privilege level. Those entries are the code and
data segments the boot sector will use in protected mode. The code refers to these
numbers using the aliases SEG_KCODE and SEG_KDATA (0907-0908).

Once it has loaded the GDT register, the boot sector enables protected mode, by
setting the 1 bit (CRO_PE) in register %cr0 (0955-0957). Enabling protected mode does
not change how the processor translates virtual to physical addresses or whether it is
in 32-bit mode; it is only when one loads a new value into a segment register that the
processor reads the GDT and changes its internal segmentation settings. Thus the
processor continues to execute in 16-bit mode with the same segment translations as
before. The switch to 32-bit mode happens when the code executes a far jump (1jmp)
instruction (0961). The jump continues execution at the next line (0964) but in doing so
sets %cs to SEG_KCODE, which causes the processor to load the descriptor entry from
the gdt table. The entry describes a 32-bit code segment, so the processor switches
into 32-bit mode. The boot sector code has nursed the processor through an evolution
from 8088 through 80286 to 80386.

The boot sector’s first action in 32-bit mode is to initialize the data segment regis-
ters with SEG_KDATA (0966-0969). The segments are set up so that the processor uses
32-bit virtual addresses directly as 32-bit physical addresses, without translation, so the
software can now conveniently use all of the machine’s memory. The only step left be-
fore executing C code is to set up a stack in an unused region of memory. The mem-
ory from 0xa0000 to 0x100000 is typically littered with device memory regions, and
the xv6 kernel expects to be placed at 0x100000. The boot sector itself is at 0x7c00
through 0x7d00. Essentially any other section of memory would be a fine location for
the stack. The boot sector chooses 0x7c00 (known in this file as $start) as the top
of the stack; the stack will grow down from there, toward 0x0000, away from the boot
sector code.

Finally the boot sector calls the C function bootmain (0976). Bootmain’s job is to

load and run the kernel. It only returns if something has gone wrong. In that case,
the code sends a few output words on port 0x8a00 (0978-0984). On real hardware, there
is no device connected to that port, so this code does nothing. If the boot sector is
running inside the PC simulator Bochs, port 0x8a00 is connected to Bochs itself; the
code sequence triggers a Bochs debugger breakpoint. Bochs or not, the code then exe-
cutes an infinite loop (0985-0986). A real boot sector might attempt to print an error
message first.

Code: C bootstrap

The C part of the boot sector, bootmain.c (1100), loads a kernel from an IDE disk
into memory and then starts executing it. The kernel is an ELF format binary, defined
in e1f.h. An ELF binary is an ELF file header, struct e1fhdr (0ss5), followed by a se-
quence of program section headers, struct proghdr (0874). Each proghdr describes a
section of the kernel that must be loaded into memory. These headers typically take
up the first hundred or so bytes of the binary. To get access to the headers, bootmain
loads the first 4096 bytes of the file, a gross overestimation of the amount needed
(1113). It places the in-memory copy at address 0x10000, another out-of-the-way mem-
ory address.

bootmain casts freely between pointers and integers (1123, 1126, and so on). Program-
ming languages distinguish the two to catch errors, but the underlying processor sees
no difference. An operating system must work at the processor’s level; occasionally it
will need to treat a pointer as an integer or vice versa. C allows these conversions, in
contrast to languages like Pascal and Java, precisely because one of the first uses of C
was to write an operating system: Unix.

Back in the boot sector, what should be an ELF binary header has been loaded
into memory at address 0x10000 (1113). The next step is to check that the first four
bytes of the header, the so-called magic number, are the bytes 0x7F, "E’, "L’, "F’, or
ELF_MAGIC (0852). All ELF binary headers are required to begin with this magic num-
ber as identication. If the ELF header has the right magic number, the boot sector as-
sumes that the binary is well-formed. There are many other sanity checks that a prop-
er ELF loader would do, as we will see in Chapter 9, but the boot sector doesn’t have
the code space. Checking the magic number guards against simply forgetting to write
a kernel to the disk, not against malicious binaries.

An ELF header points at a small number of program headers (proghdrs) describ-
ing the sections that make up the running kernel image. Each proghdr gives a virtual
address (va), the location where the section’s content lies on the disk relative to the
start of the ELF header (offset), the number of bytes to load from the file (filesz),
and the number of bytes to allocate in memory (memsz). If memsz is larger than
filesz, the bytes not loaded from the file are to be zeroed. This is more efficient,
both in space and I/O, than storing the zeroed bytes directly in the binary. As an ex-
ample, the xv6 kernel has two loadable program sections, code and data:

objdump -p kernel
kernel: file format el1f32-1386

Program Header:

LOAD off 0x00001000 vaddr 0x00100000 paddr 0x00100000 align 2*%12
filesz 0x000063ca memsz 0x000063ca flags r-x

LOAD off 0x000073e0 vaddr 0x001073e0 paddr 0x001073e0 align 2%*%12
filesz 0x0000079e memsz 0x000067e4 flags rw-

STACK off 0x00000000 vaddr 0x00000000 paddr 0x00000000 align 2%%*2
filesz 0x00000000 memsz 0x00000000 flags rwx

Notice that the second section, the data section, has a memsz larger than its filesz:
the first 0x79e bytes are loaded from the kernel binary and the remaining 0x6046
bytes are zeroed.

Bootmain uses the addresses in the proghdr to direct the loading of the kernel.
It reads each sections content starting from the disk location offset bytes after the
start of the ELF header, and writes to memory starting at address va. Bootmain calls
readseg to load data from disk (1137) and calls stosb to zero the remainder of the
segment (1139). Stosb (0442) uses the x86 instruction rep stosb to initialize every byte
of a block of memory.

Readseg (1179) reads at least count bytes from the disk offset into memory at
va. The x86 IDE disk interface operates in terms of 512-byte chunks called sectors, so
readseg may read not only the desired section of memory but also some bytes before
and after, depending on alignment. For the second program segment in the example
above, the boot sector will call readseg((uchar*)0x1073e0, 0x73e0, 0x79e). Due
to sector granularity, this call is equivalent to readseg((uchar#*)0x107200, 0x7200,
0xa00): it reads 0x1e0 bytes before the desired memory region and 0x82 bytes after-
ward. In practice, this sloppy behavior turns out not to be a problem (see exercise
XXX). Readseg begins by computing the ending virtual address, the first memory ad-
dress above va that doesn't need to be loaded from disk (1183), and rounding va down
to a sector-aligned disk offset . Then it converts the offset from a byte offset to a sec-
tor offset; it adds 1 because the kernel starts at disk sector 1 (disk sector 0 is the boot
sector). Finally, it calls readsect to read each sector into memory.

Readsect (1160) reads a single disk sector. It is our first example of a device driv-
er, albeit a tiny one. Readsect begins by calling waitdisk to wait until the disk sig-
nals that it is ready to accept a command. The disk does so by setting the top two bits
of its status byte (connected to input port 0x1f7) to 01. Waitdisk (1151) reads the sta-
tus byte until the bits are set that way. Chapter 6 will examine more efficient ways to
wait for hardware status changes, but busy waiting like this (also called polling) is fine
for the boot sector.

Once the disk is ready, readsect issues a read command. It first writes com-
mand arguments—the sector count and the sector number (offset)—to the disk regis-
ters on output ports O0x1f2-0x1f6 (1164-1168). The bits Oxe0 in the write to port 0x1f6
signal to the disk that 0x1f3-0x1f6 contain a sector number (a so-called linear block
address), in contrast to a more complicated cylinder/head/sector address used in early
PC disks. After writing the arguments, readsect writes to the command register to
trigger the read (1154). The command 0x20 is “read sectors” Now the disk will read

the data stored in the specified sectors and make it available in 32-bit pieces on input
port 0x1f0. Waitdisk (1151) waits until the disk signals that the data is ready, and then
the call to ins1 reads the 128 (SECTSIZE/4) 32-bit pieces into memory starting at dst
(1173).

Inb, outb, and ins1 are not ordinary C functions. They are inlined functions
whose bodies are assembly language fragments (0403, 0421, 0412). When gcc sees the call
to inb (1154), the inlined assembly causes it to emit a single inb instruction. This style
allows the use of low-level instructions like inb and outb while still writing the con-
trol logic in C instead of assembly.

The implementation of ins1 (0412) is worth looking at more closely. Rep ins1 is
actually a tight loop masquerading as a single instruction. The rep prefix executes the
following instruction %ecx times, decrementing %ecx after each iteration. The ins1
instruction reads a 32-bit value from port %dx into memory at address %edi and then
increments %edi by 4. Thus rep ins1 copies 4x%ecx bytes, in 32-bit chunks, from
port %dx into memory starting at address %edi. The register annotations tell GCC to
prepare for the assembly sequence by storing dst in %edi, cnt in %ecx, and port in
%dx. Thus the ins1 function copies 4xcnt bytes from the 32-bit port port into mem-
ory starting at dst. The c1d instruction clears the processor’s direction flag, so that the
ins1 instruction increments %edi; when the flag is set, ins1 decrements %ed1i instead.
The x86 calling convention does not define the state of the direction flag on entry to a
function, so each use of an instruction like ins1 must initialize it to the desired value.

The boot loader is almost done. Bootmain loops calling readseg, which loops
calling readsect (1135-1140). At the end of the loop, bootmain has loaded the kernel
into memory. Now it is time to run the kernel. The ELF header specifies the kernel
entry point, the %eip where the kernel expects to be started (just as the boot loader
expected to be started at 0x7c00). Bootmain casts the entry point integer to a function
pointer and calls that function, essentially jumping to the kernel’s entry point (1144-1145).
The kernel should not return, but if it does, bootmain will return, and then
bootasm.S will attempt a Bochs breakpoint and then loop forever.

Where is the kernel in memory? Bootmain does not directly decide; it just fol-
lows the directions in the ELF headers. The “linker" creates the ELF headers, and the
xv6 Makefile that calls the linker tells it that the kernel should start at 0x100000.

Assuming all has gone well, the kernel entry pointer will be the kernel's main
function (see main.c). The next chapter continues there.

Real world

The boot sector described in this chapter compiles to around 470 bytes of ma-
chine code, depending on the optimizations used when compiling the C code. In or-
der to fit in that small amount of space, the xv6 boot sector makes a major simplifying
assumption, that the kernel has been written to the boot disk contiguously starting at
sector 1. More commonly, kernels are stored in ordinary file systems, where they may
not be contiguous, or are loaded over a network. These complications require the boot
loader to be able to drive a variety of disk and network controllers and understand
various file systems and network protocols. In other words, the boot loader itself must

be a small operating system. Since such complicated boot loaders certainly won't fit in
512 bytes, most PC operating systems use a two-step boot process. First, a simple boot
sector like the one in this chapter loads a full-featured boot-loader from a known disk
location, often relying on the less space-constrained BIOS for disk access rather than
trying to drive the disk itself. Then the full loader, relieved of the 512-byte limit, can
implement the complexity needed to locate, load, and execute the desired kernel.

TODO: Also, x86 does not imply BIOS: Macs use EFI. I wonder if the Mac has
an A20 line.

Exercises

1. Look at the kernel load addresses; why doesn’t the sloppy readsect cause problems?
2. something about BIOS lasting longer + security problems

3. Suppose you wanted bootmain() to load the kernel at 0x200000 instead of
0x100000, and you did so by modifying bootmain() to add 0x100000 to the va of each
ELF section. Something would go wrong. What?

