
What is an OS?

• software between applications and reality: 
– abstracts hardware and makes portable
– makes finite into (near)infinite
– provides protection

emacs gcc
Doom, XXI

OS
hardware



OS evolution: step 0

• Simple OS: One program, one user, one machine

– Examples: early PCs, nintendo, cars, elevators, …

– OS just a library of standard services. Examples: 
standard device drivers, interrupt handlers, I/O.

• Non-problems: No bad people. No bad programs. 
A minimum number of complex interactions.

• Problem: poor utilization, expensive

hardware OSApp

hardware



OS evolution: step 1

• Simple OS is inefficient
– If process is waiting for something, machine sits wasted.

• (Seemingly) Simple hack:
– Run more than one process at once
– When one process blocks, switch to another

• A couple of problems: what if a program
– Infinite loops?
– Starts randomly scribbling on memory?

• OS adds protection
+ Interposition
+ preemption
+ privilege

gcc emacs

OS
hardware



The design loop

• Find flaws fast!

Initial
design Draft design coding testing deployed

monthsmin hours days weeks


