
Lecture 17: File Systems



Building a File System
• File System: Layer of OS that transforms block 

interface of disks (or other block devices) into Files, 
Directories, etc.

• File System Components
– Disk Management: collecting disk blocks into files
– Naming: Interface to find files by name, not by blocks
– Protection: Layers to keep data secure
– Reliability/Durability: Keeping of files durable despite 

crashes, media failures, attacks, etc
• User vs. System View of a File

– User’s view: 
• Durable Data Structures

– System’s view (system call interface):
• Collection of Bytes (UNIX)
• Doesn’t matter to system what kind of data structures you want 

to store on disk!
– System’s view (inside OS):

• Collection of blocks (a block is a logical transfer unit, while a 
sector is the physical transfer unit)

• Block size  sector size; in UNIX, block size is 4KB



Files: named bytes on disk
• File abstraction:

– user’s view: named sequence of bytes 

– FS’s view: collection of disk blocks
– file system’s job: translate name & offset to disk blocks 

• File operations:
– create a file, delete a file
– read from file, write to file

• Want: operations to have as few disk accesses as 
possible & have minimal space overhead

offset:int disk addr:int

int main() { … foo.c



Files?

• Latex source, .o file, shell script, a.out, …

• UNIX: file = sequence of bytes

– Shell scripts: first byte=#

– Perl scripts: start with #!/usr/bin/perl, ….

• Mac: file has a type which associates it with 
the program that created it

• DOS/Windows: Use file extensions to identify 
file (ad-hoc)



File attributes

• Name

• Type – in Unix, implicit

• Location – where file is stored on disk

• Size

• Protection

• Time, date, and user identification

• All filesystem information stored in non-
volatile storage – important for crash recovery



Lots of file formats, or few file 
formats?

• UNIX: one file format

• VMS: three file formats

• IBM: lots



Translating from User to System View

• What happens if user says: give me bytes 2—12?

– Fetch block corresponding to those bytes

– Return just the correct portion of the block

• What about: write bytes 2—12?

– Fetch block

– Modify portion

– Write out Block

• Everything inside File System is in whole size blocks

– For example, getc(), putc()  buffers something like 
4096 bytes, even if interface is one byte at a time

• From now on, file is a collection of blocks



• In some sense, the problems we will look at are no 
different than those in virtual memory
– like page tables, file system meta data are simply data 

structures used to construct mappings.

– Page table: map virtual page # to physical page #

– file meta data: map byte offset to disk block address

– directory: map name to disk block address

What’s so hard about grouping 
blocks???

Page table28 33

Unix inode418 8003121

directoryfoo.c 3330103



Disk Management Policies
• Basic entities on a disk:

– File: user-visible group of blocks arranged sequentially 
in logical space

– Directory: user-visible index mapping names to files 
(next lecture)

• Access disk as linear array of sectors.  Two 
Options: 
– Identify sectors as vectors [cylinder, surface, sector]. 

Sort in cylinder-major order. Not used much anymore.
– Logical Block Addressing (LBA). Every sector has 

integer address from zero up to max number of 
sectors.

– Controller translates from address  physical position
• First case: OS/BIOS must deal with bad sectors
• Second case: hardware shields OS from structure of disk



Disk Management Policies

• Need way to track free disk blocks
– Link free blocks together  too slow today
– Use bitmap to represent free space on disk

• Need way to structure files: File Header
– Track which blocks belong at which offsets within 

the logical file structure
– Optimize placement of files’ disk blocks to match 

access and usage patterns



• In some ways problem similar:   
– want location transparency, oblivious to size, & protection

• In some ways the problem is easier: 
– CPU time to do FS mappings not a big deal (= no TLB)

– Page tables deal with sparse address spaces and random 
access, files are dense (0 .. filesize-1) & ~sequential

• In some way’s problem is harder:
– Each layer of translation = potential disk access

– Space a huge premium!  (But disk is huge?!?!)  Reason?  
Cache space never enough, the amount of data you can get 
into one fetch never enough.

– Range very extreme: Many <10k, some more than GB.

– Implications?

FS vs VM



Some working intuitions
• FS performance dominated by # of disk accesses

– Each access costs 10s of milliseconds
– Touch the disk 50-100 extra times = 1 *second*
– Can easily do 100s of millions of ALU ops in same time

• Access cost dominated by movement, not transfer
– Can get 20x the data for only ~5% more overhead
– 1 sector = 10ms + 8ms + 50us (512/10MB/s) = 18ms
– 20 sectors = 10ms + 8ms + 1ms = 19ms

• Observations:
– all blocks in file tend to be used together, sequentially
– all files in a directory tend to be used together
– all names in a directory tend to be used together
– How to exploit?



Common addressing patterns
• Sequential:

– file data processed in sequential order
– by far the most common mode
– example: editor writes out new file, compiler reads in file, 

etc.

• Random access: 
– address any block in file directly without passing through 

predecessors
– examples: data set for demand paging, databases

• Keyed access: 
– search for block with particular values
– examples: associative data base, index
– usually not provided by OS 



Problem: how to track file’s data?
• Disk management: 

– Need to keep track of where file contents are on disk
– Must be able to use this to map byte offset to disk block
– The data structure used to track a file’s sectors is called a 

file descriptor
– file descriptors often stored on disk along with file

• Things to keep in mind while designing file structure:
– Most files are small 
– Much of the disk is allocated to large files
– Many of the I/O operations are made to large files
– Want good sequential and good random access
– What do I need?



Designing a File System

• Sequential access mode only
– Lay out file sequentially on disk

– Problems?

• Direct access mode
– Have a disk block table telling where each disk 

block is

• Indexed access mode
– Build an index on the identifier (more 

sophisticated).

– E.g., IBM ISAM (Indexed Sequential Access Mode): 
User selects key, and system builds a two-level 
index for the key



Simple mechanism: contiguous 
allocation

• “Extent-based”: allocate files like segmented memory 
– When creating a file, make the user specify pre-specify its 

length and allocate all space at once
– File descriptor contents: location and size

– Example: IBM OS/360

– Pro: simple, fast access, both sequential and random. 
– Cons?   (What does VM scheme does this correspond to?)

file a (base=1,len=3)      file b (base=5,len=2)

what happens if 
file c needs 2 
sectors???



First Technique: Continuous Allocation

– Use continuous range of blocks in logical block 
space
• Analogous to base+bounds in virtual memory
• User says in advance how big file will be (disadvantage)

– Search bit-map for space using best fit/first fit
• What if not enough contiguous space for new file?

– File Header Contains:
• First block/LBA in file
• File size (# of blocks)

– Pros: Fast Sequential Access, Easy Random access
– Cons: External Fragmentation/Hard to grow files

• Free holes get smaller and smaller
• Could compact space, but that would be really

expensive



Linked List Allocation
• Second Technique: Linked List Approach

– Each block, pointer to next on disk

– Pros: Can grow files dynamically, Free list same as file
– Cons: Bad Sequential Access (seek between each 

block), Unreliable (lose block, lose rest of file)
– Serious Con: Bad random access!!!!
– Technique originally from Alto (First PC, built at Xerox)

• No attempt to allocate contiguous blocks

Null

File Header



Example: DOS FS (simplified)
• Uses linked files.  Cute: links reside in fixed-sized “file 

allocation table” (FAT) rather than in the blocks.  

– Still do pointer chasing, but can cache entire FAT so can be 
cheap compared to disk access.

file a

6            4           3

free

eof

1

eof

3

eof

4
...

file b

2            1           

FAT (16-bit entries)

a: 6

b: 2

Directory (5)
0

1

2

3

4

5

6



Linked Allocation: File-Allocation Table 
(FAT)

• MSDOS links pages together to create a file
– Links not in pages, but in the File Allocation Table (FAT)

• FAT contains an entry for each block on the disk
• FAT Entries corresponding to blocks of file linked together

– Access properties:
• Sequential access expensive unless FAT cached in memory
• Random access expensive always, but really expensive if FAT 

not cached in memory



FAT discussion
• Entry size = 16 bits.

– What’s the maximum size of the FAT?  
– Given a 512 byte block, what’s the maximum size of FS?
– Option: go to bigger blocks (called “Allocation Unit Size” at Format 

time).  Pro?  Con? 

• Space overhead of FAT is trivial:
– 2 bytes / 512 byte block = ~.4% (Compare to Unix) 

• Reliability: how to protect against errors? 
– Create duplicate copies of FAT on disk.  
– State duplication a very common theme in reliability

• Bootstrapping: where is root directory? 
– Fixed location on disk / have a table in the bootsector (sector zero) 



Indexed files
• Each file has an array holding all of it’s block pointers

– (purpose and issues = those of a page table)
– max file size fixed by array’s size (static or dynamic?)
– create: allocate array to hold all file’s blocks, but allocate on 

demand using free list

– pro: both sequential and random access easy
– con?

file a                     file b



Indexed files

• Issues same as in page tables

– Large possible file size = lots of unused entries

– Large actual size? table needs large contiguous disk chunk

– Solve identically: small regions with index array, this array 
with another array, …  Downside?

•

2^32 file size

2^20 entries!

4K blocks

idle

idle



Indexed Allocation (summary)

• Third Technique: Indexed Files (VMS)
– System Allocates file header block to hold array of pointers big 

enough to point to all blocks
• User pre-declares max file size;

– Pros: Can easily grow up to space allocated for index 
Random access is fast

– Cons: Clumsy to grow file bigger than table size
Still lots of seeks: blocks may be spread over disk



ptr 1
ptr 2

…
ptr 128

Multi-level indexed files: ~4.3 BSD

• File descriptor (inode) = 14 block pointers + attrs

ptr 1
ptr 2
ptr 3
ptr 4
...

ptr 13
ptr 14

attrs

data blocks

ptr 1
ptr 2

…
ptr 128

Indirect block

Double indirect block

Indirect blks



• Pro?
– simple, easy to build, fast access to small files
– Inode size?
– Maximum file length fixed, but large. (With 4k blks?)

• Cons:
– what’s the worst case # of accesses?
– What’s some bad space overheads?

• An empirical problem:
– because you allocate blocks by taking them off unordered 

freelist, meta data and data get strewn across disk

Unix discussion



• Inodes are stored in a fixed sized array
– Size of array determined when disk is initialized and can’t be 

changed.   Array lives in known location on disk.  Originally at 
one side of disk:

– Now is smeared across it (why?)

– The index of an inode in the inode array called an i-number.  
Internally, the OS refers to files by inumber

– When file is opened, the inode brought in memory, when 
closed, it is flushed back to disk.

More about inodes

Inode array   file blocks ...



Example: Unix file system

• Want to modify byte 4 in /a/b.c:

• readin root directory (blk 10)
• lookup a (blk 12); readin
• lookup inode for b.c (13); readin

• use inode to find blk for byte 4 (blksize = 512, so offset = 0 
gives blk 14); readin and modify

Root directory

. : 10 : dir  a: 12: dir . :12 dir  .. :10:dir  b.c :13:inode

refcnt=1

int main() { … 

14 0  …   0



Multilevel Indexed Files (UNIX 4.1) 
• Multilevel Indexed Files: 

Like multilevel address 
translation 
(from UNIX 4.1 BSD)
– Key idea: efficient for small 

files, but still allow big files

• File hdr contains 13 pointers 
– Fixed size table, pointers not all equivalent
– This header is called an “inode” in UNIX

• File Header format:
– First 10 pointers are to data blocks
– Ptr 11 points to “indirect block” containing 256 block ptrs
– Pointer 12 points to “doubly indirect block” containing 256 

indirect block ptrs for total of 64K blocks
– Pointer 13 points to a triply indirect block (16M blocks)



Some important fields in a UNIX inode

• Mode
– Protection info, file type (normal[-], directory[d], symbolic 

link[l]

• Owner
• Number of links

– Number of directory entries that point to me

• Length (of file)
• Nblocks: number of blocks occupied on disk
• Array of 10 direct block pointers
• One indirect block pointer
• One doubly indirect block pointer
• One triply indirect block pointer



File Allocation for Cray-1 DEMOS

• DEMOS: File system structure similar to segmentation
– Idea: reduce disk seeks by 

• using contiguous allocation in normal case

• but allow flexibility to have non-contiguous allocation

– Cray-1 had 12ns cycle time, so CPU:disk speed ratio about the same as today 
(a few million instructions per seek)

• Header: table of base & size (10 “block group” pointers)
– Each block chunk is a contiguous group of disk blocks

– Sequential reads within a block chunk can proceed at high speed – similar to 
continuous allocation

• How do you find an available block group? 
– Use freelist bitmap to find block of 0’s. 

base size

file header

1,3,2
1,3,3
1,3,4
1,3,5
1,3,6
1,3,7
1,3,8
1,3,9

disk group

Basic Segmentation Structure: 
Each segment contiguous on disk



Large File Version of DEMOS

• What if need much bigger files?

– If need more than 10 groups, set flag in header: BIGFILE
• Each table entry now points to an indirect block group

– Suppose 1000 blocks in a block group  80GB max file
• Assuming 8KB blocks, 8byte entries

(10 ptrs1024 groups/ptr1000 blocks/group)*8K =80GB

• Discussion of DEMOS scheme

– Pros: Fast sequential access, Free areas merge simply

Easy to find free block groups (when disk not full)

– Cons: Disk full  No long runs of blocks (fragmentation), so high 

overhead allocation/access

file header

base size 1,3,2
1,3,3
1,3,4
1,3,5
1,3,6
1,3,7
1,3,8
1,3,9

disk groupbase size

indirect
block group



How to keep DEMOS performing well?
• In many systems, disks are always full

– How to fix?  Announce that disk space is getting low, 
so please delete files? Have quotas.

• Solution:
– Don’t let disks get completely full: reserve portion

• Free count = # blocks free in bitmap

• Scheme: Don’t allocate data if count < reserve

– How much reserve do you need?
• In practice, 10% seems like enough

– Tradeoff: pay for more disk, get contiguous allocation
• Since seeks so expensive for performance, this is a very 

good tradeoff



UNIX BSD 4.2
• Same as BSD 4.1 (same file header and triply indirect blocks), except 

incorporated ideas from DEMOS:

– Uses bitmap allocation in place of freelist

– Attempt to allocate files contiguously

– 10% reserved disk space

– Skip-sector positioning (mentioned next slide)

• Problem: When create a file, don’t know how big it will become (in UNIX, 
most writes are by appending)

– How much contiguous space do you allocate for a file?

– In Demos, power of 2 growth: once it grows past 1MB, allocate 2MB, etc

– In BSD 4.2, just find some range of free blocks

• Put each new file at the front of different range

• To expand a file, you first try successive blocks in bitmap, then choose new range of 
blocks

– Also in BSD 4.2: store files from same directory near each other



Attack of the Rotational Delay
• Problem 2: Missing blocks due to rotational delay

– Issue: Read one block, do processing, and read next block.  In 
meantime, disk has continued turning: missed next block! Need 
1 revolution/block!

– Solution1: Skip sector positioning (“interleaving”)
• Place the blocks from one file on every other block of a track: give time 

for processing to overlap rotation
– Solution2: Read ahead: read next block right after first, even if 

application hasn’t asked for it yet.
• This can be done either by OS (read ahead) 
• By disk itself (track buffers). Many disk controllers have internal RAM 

that allows them to read a complete track
– Modern disk controllers: Track buffers, elevator algorithms, bad 

block filtering

Skip Sector

Track Buffer
(Holds complete track)



Protection
• Why have protection?

– Because want to share but not share everything
– Want protection on individual file and operation basis

• For convenience, create coarser grain concepts
– All people in research group able to access files, others 

denied
– Everybody should be able to read files in a directory

• Some Nouns
– Operations: open, read, write, execute
– Resources: files
– Principals: users or processes

• Can describe desired protection using access matrix
– Columns = principals
– Rows = resources
– Entry = operations allowed



Two standard mechanisms for access 
control

• Access Lists
– For each resource, give a list of principals allowed to 

access that resource and the access they are allowed

– Access list  = one row of access matrix 

– Instead of organizing on a principal-to-principal basis, can 
organize on a group basis

• Capabilities
– For each resource and access operation, give out 

capabilities that give the holder the right to perform the 
operation on that resource

– Capabilities must be unforgeable

– Capability = column of access matrix

– Can also organize capabilities on a group basis



Directories
• Directory: a relation used for naming

– Just a table of (file name, inumber) pairs

• How are directories constructed?
– Directories often stored in files

• Reuse of existing mechanism
• Directory named by inode/inumber like other files

– Needs to be quickly searchable
• Options: Simple list or Hashtable
• Can be cached into memory in easier form to search

• How are directories modified?
– Originally, direct read/write of special file
– System calls for manipulation: mkdir, rmdir
– Ties to file creation/destruction

• On creating a file by name, new inode grabbed and associated with 
new file in particular directory



Directory Organization
• Directories organized into a hierarchical structure

– Seems standard, but in early 70’s it wasn’t

– Permits much easier organization of data structures

• Entries in directory can be either files or 
directories

• Files named by ordered set (e.g., /programs/p/list)



Directory Structure

• Not really a hierarchy!
– Many systems allow directory structure to be organized as an 

acyclic graph or even a (potentially) cyclic graph
– Hard Links: different names for the same file

• Multiple directory entries point at the same file
– Soft Links: “shortcut” pointers to other files

• Implemented by storing the logical name of actual file

• Name Resolution: The process of converting a logical name 
into a physical resource (like a file)
– Traverse succession of directories until reach target file
– Global file system: May be spread across the network



How is a directory implemented?

• A file consisting of a list of (name, inode-
number) pairs.

• UNIX:
– Early UNIX:

• Name : max 14 characters

• Inode #: 2 bytes.

– Current UNIX
• Each directory entry also has the length of the name, so 

now name can be unbounded

• Ways to refer a file
– Relative to current directory

– Relative to root directory (where is root 
directory?)



Directory Structure (Con’t)
• How many disk accesses to resolve “/my/book/count”?

– Read in file header for root (fixed spot on disk)

– Read in first data block for root
• Table of file name/index pairs.  Search linearly – ok since directories 

typically very small

– Read in file header for “my”

– Read in first data block for “my”; search for “book”

– Read in file header for “book”

– Read in first data block for “book”; search for “count”

– Read in file header for “count”

• Current working directory: Per-address-space pointer to a 
directory (inode) used for resolving file names
– Allows user to specify relative filename instead of absolute path 

(say CWD=“/my/book” can resolve “count”)


