
CSL373: Operating Systems
more VM fun

The past: translating VAs to PAs
• Load-time reloc: translate when load from disk

Pro: don’t need hardware support
Con: hard to redo after running + no protection

• Base & Bounds = add base and check bounds
Pro: simple relocation + protection, fast
Con: inflexible

• Segmentation = multiple base & bounds (segments)
Pro: Gives more flexible sharing and space usage
Con: segments need contiquous memory; fragmentation

• Paging: quantize memory into fixed pages, map these
Pro: Eliminates external fragmentation; flexible mappings
Con: internal frag; mapping contiguous ranges more costly

• Today: paging + segmentation & speed issues

Paging + segmentation: best of both?
• Dual problems:

Paged VM: simple page table
= lots of storage

Segmentation: All bytes in segment
must map to contiguous set of storage
locations. Makes paging problematic: all
of seg in mem or none.

• Idea: use paging + segmentation!
Map program mem with page table
Map page table mem with seg table

Call virtual address chunk
a “segment”

Each segment has
>= 1 pages

4MB
seg

Phys
mem

gcc

text

heap

Paging + segmentation tradeoffs
• Page-based virtual memory lets segments come from non-

contiguous memory
marks allocation flexible
portion of segment can be on disk!

• Segmentation = way to keep page table space manageable
Page tables correspond to logical units (code, stack)
Often relatively large
(But what happens if page tables really large?)

• Going from paging to P+S is like going from single segment
to multiple segments, except at a higher level.
Instead of having a single page table, have many page tables

with base and bound for each.

Example: system 370
• System 370: 24 bit virtual address space (old machine):

4 bits of segment #
8 bits of page #
12 bits of offset

• The mappings:
– Segment table: maps segment number to physical address &

size of that segment’s page table.
– Page table maps virtual page to 12 bit physical page number,

which is concatenated to the 12 bit offset to get a 24 bit
address

Seg # page # (8 bits) page offset (12 bits)
(4 bits)

Example system 370 translation

Read of VA 0x2070

0x0 02 070

– 0x202016 read? 0x104c84 read?
– 0x011424 read? 0x210014 write?

0
1
2

Base bound prot
0x2000 0x14 R
0x0000 0x00
0x1000 0x0d RW

Segment table

0x001f
0x0011 0x2020
…
0x0003
0x002a
0x0013 0x2000
…
0x000c
0x0007 0x1020
…
0x004
0x00b
0x006 0x1000

Table entry
addresses

Page table
(2-byte entries)

SEG: 0 page 2 * 2 bytes +0x2000 = 0x2004
(0x3 << 12 | 0x070) = 0x3070

P+S discussion
• If segment not used then no need to have page table for it

• Can share at two levels:
single page or single segment (whole page table)

• Pages eliminate external fragmentation and make it
possible for segments to grow, page without shuffling

• If page size small compared to most fragments then
internal fragmentation not too bad (.5 of page per seg)

• User not given write access to page tables
Read access can be quite useful (e.g., to let garbage collectors

see dirty bits), but only experimental OSes provide this…

• If translation tables kept in main memory, overhead high
1 or 2 overhead reference for every real reference (i.e., mem op)

• Other example systems: VAX, Multics, x86, …

Who won?
• Simplicity = good (and fast): Most new architectures

have gone with pages
Examples: MIPS, SPARC, Alpha.
And many old architectures have added paging even if they

started with segmentation!

• But: to efficiently map large regions, many new
machines backsliding into “super pages”
Large, multi-page pages: have strict alignment restrictions;

(typically) small # of sizes

inflexibility = speed, but handles 80% of the cases we want
(e.g., that 8MB framebuffer)

4K page
16K superpage

32K alignment
(VA%32K = 0)

Virtual memory is complicated, but
not deep

• Again: Despite the obscure terminology, all virtual
memory is trying to do is map ints to ints:

VA:int PA:int
• Most complexity from fact that CS has no good way

to construct a general integer function.
Mapping between two arbitrary sets of integers,
fundamentally requires a table of some sort

Page table = a lookup table to manually build function
The usual variations: an array (“direct” page table), hash

tables, weird trees of arrays.
The usual complications: speed, space

4
5
6

42
213
101

Paging and segmentation not so
different

• Main difference is the way they map ints.
Segmentation: represents VA’s as byte ranges (*va, nbytes))
Restricts outputs so it can map them using a single table entry

result: can protect & alloc variable-sized units, but force mapped range
to be contiguous, hard code index for speed.

Paging: represents VA’s as pages, maps them using a tuple ([vpn, ppn])
for each page sized unit (forces base to be page aligned)

Result: can only protect and allocate fixed-size units, but can map any
page to any other.

Hardware caches and lookups differ, but only because of different
table layouts and logic, nothing fundamental…

[base, len)virtual physical

Mapping functions: a perennial OS/CS
theme

• OSes are constantly in the business of
constructing a mapping function and then trying
to make it fast

• Example: File systems:
Directory: map file name to inode

inodes: map file offset to disk block number

• Others: DNS names to IP addrs, IP addrs to eth, to
routes, variables to registers, symbols to VAs, …

foo.c
tsts

nachos

42
213
101

0
1
2

42
213
101

Variable versus fixed size
• Can view as space/flexibility vs time

fixed size: simple, fast but inflexible + internal frag
nice: allows simple, fast int-to-int mappings
e.g., computing address of array[i] = base+ i*element size

variable size: more flexible but complex, slower, external
frag

• Constant computer science theme:
variable sized instructions (CISC) vs fixed size (RISC)
variable sized packets (Ethernet) vs fixed size (ATM)
fixed sized examples: cache entires, disk blks, IP addrs
variable sized e.g.’s: variables names&sizes, files, DNS

names
our primal mud: digital (discrete) vs analog (continuous

signal)

Problem: large range = large page
tables

• Same problem as memory: Don’t want to have to allocate
page tables contiguously
So use same solution: map page tables using another page table
To stop recursion: the page-table page table (“system page table”)

resides in contiguous memory, usually at a known fixed address

Win: page tables can be pieced together from scatterred pages
Win: invalid mappings can be represented with invalid addresses

rather than requiring space in a table
Lose: Worst case lookup?

ls gcc emacs

Extending idea: hierarchical page
tables

• Large address range = lots of unused space = unwieldy PTs

• Conceptually: map small regions with direct page table, then
these with page tables

Space savings with 2^22 (4M) regions?

When are hierarchical (much) worse than non-hierarchical?

emacs

2^32 address space

2^20 (1M) entries!

2^12 (4K) pages

idle

idle

Inverted Page Table

• One entry for each physical page frame
specifying PID and VPN for that page

• On a TLB miss, search inverted page table data
structure to find physical page frame for the
virtual address of process. Speed up using:

– Hashing

– Associative table of recently accessed entries
(h/w)

e.g., IBM (RS/6000, RT, System38), HP Spectrum

Problem: mapping = slow
• If each memory reference requires 1 or more page

table translations, speed will be bad
• The obvious idea: caching

What to cache? VA-to-PA translations

Why? Program doesn’t wildly access entire address space
usually references (relatively) small, slowly-changing subsets
So, just cache the translations for these regions!

#
 of re

fe
re

nce
s

Memory address

Translation look-aside buffer (TLB)
• TLB is just a very fast memory with some comparators

Each TLB entry maps a VPN to PPN + protection information

On each memory reference: check TLB, if there, fast. If not insert
in TLB for next time. (Must remove some entry)

Typical: 64-2K entries, 95% hit rate

Virtual addr

VPN page offset
(12 bits)

3 128

Page table

Prot VPN PPN

r 3 1

mem

seg
128

0x1000

?fault

“invalid”

PPN

((1<<12)|128)

PT lookup
miss

Caching in real world

• Refrigerator -- kitchen

• Book issue -- library

• Water bottle – water cooler

• Lecture slides – book

• More?

CPU
µProc
60%/yr.
(2X/1.5yr)

DRAM
9%/yr.
(2X/10 yrs)

DRAM

1

10

100

1000
1

9
8

0
1

9
8

1

1
9

8
3

1
9

8
4

1
9

8
5

1
9

8
6

1
9

8
7

1
9

8
8

1
9

8
9

1
9

9
0

1
9

9
1

1
9

9
2

1
9

9
3

1
9

9
4

1
9

9
5

1
9

9
6

1
9

9
7

1
9

9
8

1
9

9
9

2
0

0
0

1
9

8
2

Processor-Memory
Performance Gap:
(grows 50% / year)

Pe
rf

o
rm

an
ce

Time

“Moore’s Law”

Processor-DRAM Memory Gap (latency)

Why Bother with Caching?

The precondition to caching: locality

• Temporal Locality (Locality in Time):

– Keep recently accessed data items closer to processor

• Spatial Locality (Locality in Space):

– Move contiguous blocks to the upper levels

Address Space
0 2n - 1

Probability
of reference

Lower Level

MemoryUpper Level

Memory
To Processor

From Processor
Blk X

Blk Y

Memory Hierarchy of a Modern Computer System
• Take advantage of the principle of locality to:

– Present as much memory as in the cheapest technology

– Provide access at speed offered by the fastest technology

O
n

-C
h

ip

C
ach

e

R
eg

isters

Control

Datapath

Secondary

Storage

(Disk)

Processor

Main

Memory

(DRAM)

Second

Level

Cache

(SRAM)

1s 10,000,000s
(10s ms)

Speed (ns): 10s-100s 100s

100s GsSize (bytes): Ks-Ms Ms

Tertiary

Storage

(Tape)

10,000,000,000s
(10s sec)

Ts

• Compulsory (cold start or process migration, first reference):
first access to a block
– “Cold” fact of life: not a whole lot you can do about it

– Note: If you are going to run “billions” of instruction, Compulsory Misses
are insignificant

• Capacity:
– Cache cannot contain all blocks access by the program

– Solution: increase cache size

• Conflict (collision):
– Multiple memory locations mapped

to the same cache location

– Solution 1: increase cache size

– Solution 2: increase associativity

• Coherence (Invalidation): other process (e.g., I/O) updates
memory

A Summary on Sources of Cache Misses

• Index Used to Lookup Candidates in Cache

– Index identifies the set

• Tag used to identify actual copy

– If no candidates match, then declare cache miss

• Block is minimum quantum of caching

– Data select field used to select data within block

– Many caching applications don’t have data select field

How is a Block found in a Cache?

Block
offset

Block Address

Tag Index

Set Select

Data Select

The (usual) possible cache
organizations

• Fully associative:
Entries can go anywhere

replacement?

minimizes conflict misses, but lookup is expensive: requires
searching entire table on every memory ref

• Direct mapped:
entries can go exactly one place

example: position = VPN % TLB-size

fast location but inflexible mapping = conflict misses

• Hybrid: Set associative

Entries can go in any of the sets (set assoc) but exactly in one
place in each. (Search sets in parallel = speed)

VPN?

VPN

VPN’

2-way set assoc: VPN?

TLB details
• TLB like hash table, but simpler

fixed size, no pointer chains

• How to build hash function?
In general: more information = better decisions.
In this case exploit fact about programs: spatial locality.
Better to use upper to lower address bits to map to entry?
If we have temporal locality, what are good to replace?
(Also, allow system to reserve space for some translations.)

• Complication: what to do when switch address space?
Flush TLB on context switch (e.g., x86)
Tag each entry with associated process’s ID (e.g., MIPS)
In general, OS must manually keep TLB in valid state

MIPS R3000

• L1 cache: 64K bytes, direct mapped. Write allocate,
Write through. Physically addressed

• Write buffer: 4 entries

• L2 cache: 256K bytes, direct mapped. Write back.

• Physical Memory: 64M bytes, 4K page frames.

• Backing Store Disk: 256M bytes of swap space

• TLB = 64 entry fully associative

MIPS R3000 Segments

• kuseg: top bit=0

• kseg0: top bits=100. Cached and unmapped.
Kernel instructions and data

• kseg1: top bits=101. Uncached and
unmapped. Disk buffers, I/O registers, ROM
code.

• kseg2: top bits=11. Cached and Mapped. Map
different for each process. Per-process kernel
data structures (e.g., user page tables)

Translation of user addresses

• 31 bits of virtual address + 6 bits of process ID
 32 bit physical address

• Page size = 4k. So VPN=how many bits?

• Mapping VPN to PPN using a linear page
table? Where is this page table stored?

• Page the page table using top 9 bits. Where is
the page table for the page table stored?

Example: MIPS R2000/R3000 TLB
• Used in DecStations and SGI machines

64 entries, fully associative

TLB entry format (64 bits per entry)

G – Global, valid for any PID (why?)
V – entry is valid (why have this?)
D – dirty bit, page has been modified
N – don’t cache memory addresses (why?)
PFN – physical address of the page
PID – process id for the page (how many? How to
reuse?)
VPN – virtual page number
Undef - undefined bits, set by OS (why?)

VPN PID Undef PFN N D V G Undef

20 6 6 20 1 1 1 1 8

Example: R3000 pipeline includes TLB “stages”

Inst Fetch Dcd/ Reg ALU / E.A Memory Write Reg

TLB I-Cache RF Operation WB

E.A. TLB D-Cache

MIPS R3000 Pipeline

ASID V. Page Number Offset

12206

0xx User segment (caching based on PT/TLB entry)

100 Kernel physical space, cached

101 Kernel physical space, uncached

11x Kernel virtual space

Allows context switching among

64 user processes without TLB flush

Virtual Address Space

TLB

64 entry, on-chip, fully associative, software TLB fault handler

• As described, TLB lookup is in serial with cache lookup:

• Machines with TLBs go one step further: they overlap TLB
lookup with cache access.
– Works because offset available early

Reducing translation time further

Virtual Address

TLB Lookup

V
Access
Rights PA

V page no. offset
10

P page no. offset

10

Physical Address

• Here is how this might work with a 4K cache:

TLB 4K Cache

10 2

00

4 bytes

index
1 K

page # disp
20

assoc
lookup

32

Hit/
Miss

FN Data Hit/
Miss

=FN

Overlapping TLB & Cache Access

MIPS R3000 Lookup

• Map on upper half of TLB entry, use lower half
of TLB entry. Can generate 3 different types of
TLB misses:

– UTLB miss (access to kuseg, no match in TLB)

– TLB miss (access to kseg0, kseg1, kseg2. no match)

– TLB mod (mapping is loaded, but access is a write
and the D bit is not set)

Each type of miss has it’s own exception handler

Alternatives
• OS may run completely unmapped. Problem:

can’t page OS data structures

• OS may have separate address space from user.
Problem: can’t as easily access user space

• Cache may be virtually addressed. Problem: flush
cache on context switch, can’t alias multiple
virtual addresses to same physical address

• TLB reload may be done entirely in hardware.
Problem: Locks OS into using a specific data
structure for page table (x86)

Problem: accessing user data
• OS needs to access user memory

I/O routines read/write user buffers. BUT:
User pointers cannot be trusted

obvious: user passes in null pointer or invalid address “0xfffee000”
Less obvious: user passes in valid *kernel* address

• User memory might be paged out.
OS will get a page fault in middle of system call
If it switches to new process then:

Prob 1: if kernel held single OS lock, system will deadlock
Prob 2: if system call halfway through, and depends on current state,

when restarted will have invalid view of world
Prob 3: if system call partially altered OS data structures…

• User pointers only valid in user address space
What happens if OS stores them away?

Where does OS live?
• Different address space?

“Microkernels”
Nice: “catch” wild pointer writes

Bad: Accessing user stuff clumsy.

• Common: user addresses co-exist with OS’s
OS aliased into every application address space at the same place

(allows user addresses to co-exist with OS’s)
e.g., Windows32 (2GB OS + 2GB user)

Linux32 (1GB OS + 3GB user)
As a refinement: OS runs “unmapped”

special address range in “privileged” mode that mapped to
physical memory by subtracting constant
e.g., Linux: addresses >= 0xc0000000 have this subtracted

What happens when an application tries to read/write OS data?

Summary: Virtual memory mapping

• What?
Give programmer logical (virtual) set of addresses rather

than actual physical set

• How?
translate every memory operation using table (page

table, segment table)
Speed: cache frequently used translations

• Result?
each user has a private address space
programs run independently of actual physical memory

addresses used, and actual memory size
protection: check that they only access their own

memory

