
CSL373: Lecture 4
Abstracting synchronization and 

some subtleties



Past & Present

• Shared resources often require “mutual 
exclusion”

• a mutual exclusion between two events is a requirement 
that they do not overlap in time

• Conceptually: a thread is assigned exclusive use of a 
resource until it is done performing a critical set of 
operations.

• Today:
• some details  about threads

• how to simplify the construction of critical regions using 
semaphores and monitors (Chapter 4.6, 6)

• some nuances



Spinning tricks

• Initial spin was pretty simplistic:
lock(L)  {

for (acquired = 0; !acquired; )
aswap acquired, L;

}

• Atomic instructions are costly (need to lock the 
hardware bus), so want to avoid

lock(L) {
for (acquired = 0; !acquired; )

while (!L);
aswap acquired, L;

}

• Problem:  what happens if L put in register?



Locking variations
• Recursive locks

Why? Synchronization modularity
Can we swap lock() and l->owner assignment statements?

• “trylocks”: non-blocking lock acquisition
if (!try_lock(l))

return RESOURCE_BLOCKED;

• Exercise:  Implement try_lock() and try_unlock() using:
– aswap instruction
– lock() and unlock

recursive_lock(l) {
if(l->owner == cur_thread)

l->count++;
else

lock(l->lock);  
l->count = 0;
l->owner = cur_thread;

recursive_unlock(l) {
if(l->owner != cur_thread
|| l->count < 0)

fatal(bogus release!);
l->count--;
if(!l->count)

l->owner = -1; 
unlock(l->lock);



Blocking problems

• yield:  if another thread on run queue, take off, put current 
on run queue, switch

void  yield()  {
lock(runq); /* lock run q and dequeue */
new = deq(runq);
if (!new)

unlock(runq); /* no thread, continue */
else

old = current_thread;
current_thread = new;
enq(runq, old); /* put current on runq */
unlock(runq);
switch(old, new); /* context switch */

}

• yield() puts the thread back on run queue. What’s a 
problem here? Can we do better?



Blocking on a lock
• sleep(L): Put the current thread in BLOCKED state waiting on 

lock L.

• wake_sleepers(L): wake-up threads sleeping on L.

• What’s the difference between yield() and sleep()?

void sleep(l)  {
lock(runq);
new = deq(runq);
old = current_thread;
current_thread = new;
lock(l->sleepers);
enq(l->sleepers, old);
unlock(l->sleepers);
unlock(runq);
switch(old, new);

}

void wake_sleepers(l)  {
lock(runq);
lock(l->sleepers);
while (t = deq(l->sleepers)) {

enq(runq, t)
}
unlock(l->sleepers);
unlock(runq);

}



Blocking mechanics
• Producer/consumers:  producer puts characters in an infinite buffer, 

consumers pull out

• What are some problems? Does it work with one consumer? Does 
it work with n consumers? What if two consumers are sleeping and 
get woken up simultaneously?

• How to simplify?

char buf[];  /* infinite buf */
int head = 0, n = 0, tail = 0;
lock l; 
void put(char c) 

lock(l);
buf[head++] = c;
n++;
unlock(l);
wake_sleepers(l);

int get(void) {
lock(l);
if(!n)

unlock(l);
sleep(l);
lock(l);

c = buf[tail++];
n--;
unlock(l);
return c;



Semaphores

• Synchronization variable [Dijkstra, 1960s]
– A non-negative integer counter with atomic increment 

and decrement. Blocks rather than going negative.

– Used for mutual exclusion and scheduling

• Two operations on semaphore:
P(sem): decrement counter “sem”. If sem = 0, then block until 

greater than zero.   Also called wait().

V(sem): increment counter “sem” by one and wake 1 waiting 
process (if any). Also called signal().

Classic semaphores have no other operations.

• Key:
Semaphores are higher-level than locks (makes code simpler) 

but not too high level (keeps them relatively inexpensive).



Infinite buffer with locks vs with 
semaphores

char buf[]; char buf[];
int head = 0, tail = 0, n = 0;   int head = 0, tail = 0;
lock lock; sem holes = N, chars = 0;
void put(char c) void put(char c) 

lock(lock);       P(holes);
buf[head++] = c; buf[head++] = c;
n++; V(chars);
unlock(lock);

void get(void) void get(void) 
lock(lock);
while(!n) P(chars);

unlock(lock);
yield();
lock(lock);

c = buf[tail++]; c = buf[tail++];
n--; V(holes);
unlock(lock);
return c; return c; 



Scheduling with semaphores

• In general, scheduling dependencies between 
threads
– T1, T2, …, Tn can be enforced with n-1 semaphores
– S1, S2, …, Sn-1 used as follows:

• T1 runs and signals V(S1) when done.
• Tm waits for Sm-1 (using P) and signals V(Sm) when done.

• (contrived) example: schedule  print(f(x,y))
float  x, y, z;
sem Sx = 0, Sy = 0, Sz = 0;
T1: T2: T3:
x = …; P(Sx); P(Sz);
V(Sx); P(Sy); print(z);
y = …; z = f(x,y); …
V(Sy); V(Sz);
… …



Monitors

• High-level data abstraction that unifies handling of:
Shared data, operations on it, synch and scheduling
All operations on data structure have single (implicit) lock
An operation can relinquish control and wait on condition
// only one process at time can update instance of Q
Class Q   {

int head, tail; //  shared data
void enq(val)  { locked access to Q instance }
int deq()  { locked access to Q instance }

}
Can be embedded in programming language:

Mesa/Cedar from Xerox PARC
Java “synchronized” keyword

• Monitors easier and safer than semaphores
Compiler can check, lock implicit (cannot be forgotten)

(Read Ch. 6.7)



Monitors. Try #1
synchronized class Queue  {

int head, tail;   //  shared data
int *buf;          // (assume) infinite buffer
void init() {

head = tail = 0;
}
void enq(val)  {

buf[head++] = val
}
int deq()  {

return buf[tail++];
}

}

• Correct? What do we need?



Monitors. Try #2
synchronized class Queue  {

int head, tail;   //  shared data
int *buf;           // (assume) infinite buffer
void init() {

head = tail = 0;
}
void enq(val)  {

buf[head++] = val
}
int deq()  {

while (tail == head) continue;
return buf[tail++];

}
}

• Correct? What do I need?



Condition variables: blocking in a 
monitor

• Three basic atomic operations on condition 
variables

condition  x, y;

• wait(condition):
release monitor lock, sleep, re-acquire lock when woken
usage:  while (!exper)  wait(condition);

• signal(condition):
wake *one* process waiting on condition (if there is one)
Hoare: signaler immediately gives lock to waiter (theory)
Mesa: signaler keeps lock and processor (practice)
No history in condition variable (unlike semaphore)

• broadcast(condition)
wake *all* processes waiting on condition
Useful when waiters checking different expressions.



Mesa-style monitor subtleties
char buf[N];                     // producer/consumer with monitors
int n = 0, tail = 0, head = 0;
condition not_empty, not_full;
void put(char ch)

if(n == N)
wait(not_full);

buf[head%N] = ch;
head++;
n++;

signal(not_empty);
char get() 

if(n == 0)
wait(not_empty);

ch = buf[tail%N];
tail++; 
n--;
signal(not_full);
return ch;

Consider the following time line: 
0. initial condition: n = 0
1. c0 tries to take char, blocks    

on not_empty (releasing monitor   
lock)

2. p0 puts a char (n = 1), signals 
not_empty

3. c0 is put on run queue
4. Before c0 runs, another     

consumer thread c1 enters
and takes character (n = 0)

5. c0 runs.

What is a possible fix?

This code would be correct under Hoare semantics, but incorrect under Mesa



Implementing Condition Variables 
using Semaphores

• Why is this solution incorrect? Read Birrell paper 
for correct solution 

struct condition {
int waiting;
semaphore *sema;

} 

wait(condition *c, lock* l)
{    

waiting++;
l->release();
sema->P();
l->acquire();

}

signal(condition *c, lock* l)
{

if (waiting > 0) {
sema->V();
waiting--;

}
} 



Eliminating locks

• One use of locks is to coordinate multiple updates of a 
single piece of state. How to remove locks here?

Duplicate state so each instance only has a single writer
(Assumption:  assignment is atomic)

• Circular buffer:
Why do we need lock in circular buffer?

To prevent loss of update to buf.n.  No other reason.

What is buf.n good for?
signaling buf full and empty.

How else to check this?
Full:    (buf.head – buf.tail)  == N

Empty:  buf.head == buf.tail

Can we use these facts to eliminate locks in get/put? 
Exercise.



Lock free synch:  1 consumer, 1 
producer

int head = 0, tail = 0;
char buf[N]; 
void put(char c) {

while((buf.head - buf.tail) == N)
wait();

buf.buf[buf.head % N] = c;
buf.head++; 
}

void get(void) {
char c;
while(buf.tail == buf.head)

wait();
c = buf.buf[buf.tail % N];
buf.tail++;  
return c;

}

All shared variables have single 
writer (no lock needed):

head - producer
tail - consumer
buffer:
head != tail then
no overlap and

buf[head] - producer
buf[tail] - consumer

head = tail then
empty and consumer 
waits until head != tail

invariants:
not full: once not full true, can 

only be changed by producer
not empty: once not empty can 
only be changed by consumer      



Locks vs explicit scheduling

• Race condition = bad interleaving of processes.
– We’ve used locks to prevent bad interleavings
– Could use scheduler to enforce legal schedules.

• Examples:
– run processes sequentially vs acquire locks

doc appointment vs emergency room
classroom scheduling vs hostel bathroom
dinner reservation vs showing up
run processes sequentially vs acquire locks

• Tradeoffs?

gccemacs c.c
save read

c.c



Transactions
• Mr. X deposits money to a shared bank 

account

• Mrs. X withdraws the money from the bank 
account at the same time.

• Solution with locks?
deposit(account) {

lock(account); 
<lot of processing 
on account.money>
account.money++;
unlock(account);

}

withdraw(account) {
lock(account);
<lot of processing on 
account.money>
account.money--;
unlock(account);

}What is the common case? Can we do better for the common 
case at (maybe) the expense of the uncommon case?



Transactions (aka optimistic 
concurrency control)

deposit(account) {
m = account.money;
m++;
If (no_error)

commit change
Else

rollback & try again
}

Error routine might check if nobody else modified the 
value of money while it was operating on it.
Rollback might throw away all computed results

atomic



Non-Blocking Synchronization (LL/SC) 
[RISC]

• Semantics of LL:
– Load memory location into register and mark it as loaded 

by this processor. Can be marked loaded by more than one

• Semantics of SC: 
– If the memory location is marked as loaded by *this* 

processor, store the new value and remove all marks from 
the memory location. Otherwise, don't perform the store. 
Return whether or not the store succeeded.

Lock(lock) :
while (1) {

LL  r1, lock
if (r1 == 1) {

mov $0, r2 
if (SC r2, lock) break;

}
}

Unlock():
mov $1, r1
st r1, mem



LL/SC to implement some operations 
directly

• e.g. increment mem:

• Increment operation is now non-blocking: If two threads start 
to perform the increment at the same time, neither will block 
– both will complete the add and only one will successfully 
perform the SC. The other will retry.

• Eliminates problems with locking like: one thread acquires 
locks and dies, or one thread acquires locks and is suspended 
for a long time

while (1) {
LL r1, mem
ADDI r1, 1, r1
if (SC r1, lock) break;

} 



Synchronization in the real world

• Synchronization whenever >1 user of resource
Use same solutions in real world: lock (on door), 

scheduling (appointments), duplicate resource 
(everyone has laptop)

• Examples:
Contagious disease race conditions

One road, multiple cars: traffic lights (scheduling-based 
synchronization), two lanes (“duplicate” state – trade 
less utilization for simpler coordination)

Bathroom: door(lock), male/female (duplicate state)

You & partner: lock = “hacking thread.c”  unlock = “done”

Parking space: car parked (lock), not parked (unlocked). 
Parking assignment (lock always, no concurency = bad 
utilization) 



Summary
• Concurrency errors:

One way to view: thread checks condition(s)/examines value(s) 
and continues with the implicit assumption that this result 
still holds while another thread modifies.

• Simplest fixes?
Run threads sequentially (poor utilization or impossible)

Do not share state (may be impossible)

• More complex fixes:
Use locks, semaphores, monitors to enforce mutual exclusion

Use transactions.


