
CSL373: Operating Systems
Linking

Today
• Linking

e.g., f.o = hello.o (uses printf); c.o = libc.o (implements printf)

How to name and refer to things that don’t exist yet

How to merge separate name spaces into a cohesive whole

• Readings
• man a.out ; man elf

• run “nm” on a few .o and a.out files

f.c gcc f.s as

c.c gcc c.s as

f.o

c.o

ld a.out

Linking as our first naming system

• Naming = very deep theme that comes up
everywhere

Naming system: maps names to values

• Examples:
• Linking: where is printf? How to refer to it? How to

deal with synonyms? What if it doesn’t exist

• Virtual memory address (name) resolved to physical
address (value) using page table

• File systems: translating file and directory names to disk
locations, organizing names so you can navigate, …

• www.cse.iitd.ernet.in resolved to 10.20.33 using DNS

• Your name resolved to grade (value) using spreadsheet

Programming language view

long a, b;
int main() {

a = b + 1;
print(a);

}

a: 0
b: 0
main:

mov b, r2
add r1, r2, 1
mov r1, a
push a
call print
ret

1234: 0
1238: 0
main (1300):

110, 23,34,
…,
21,0,0,0,0,
…

patches:
1343print

gcc as

a.c

a.s a.o
called “relocations” (stored in symbol table)

Perspectives on information in
memory

• Programming language view:
• instructions: specify operations to perform

• variables: operands that can change over time

• constants: operands that never change

• Address versus data
• Addresses used to locate something: if you move it, must

update address

• Examples: linkers, garbage collectors, changing apartment

• Binding time: when is a value determined/computed?
• Compile time

• Link time

• Run time
early to late

How is a process specified?

• shell$./a.out

– A process is created from an executable

• The executable file (a.out) is the interface
between the linker and the OS

– specifies, where is code. where is data.

– where should they live?

code
data

int a;

foo:
ret

Linker: object files  executable

code=110
data=8, ...

“foo.o”

foo:
call 0
ret

bar:
ret

l: “hello world\n”

0

foo: 0: T
bar: 40: t
4: printf

40

Header: code/data size,
symbol table offset

Object code: instructions
and data gen‟d by compiler

Symbol table:
external defs

(exported objects in file)
external refs

(global symbols used in file)

external ref

How is a process created?
• On Unix systems, read by “loader”

reads all code/data segs into buffer cache; maps code (read
only) and initialized data (r/w) into addr space

fakes process state to look like switched out

• Big optimization fun:
Zero-initialized data does not need to be read in

Demand load: wait until code used before get from disk

Copies of same program running? Share code

Multiple programs use same routines: share code (harder)

ld loader Cache

Compile time runtime

What does a process look like? (Unix)

• Process address space divided into “segments”
text (code), data, heap (dynamic data), and stack

Why? (1) different allocation patterns;

(2) separate code/data

heap

stack

code

initialized data

address 2^n-1

address >= 0

Who builds what?

• Heap: constructed and layout by allocator
(malloc)

Compiler, linker not involved other than saying
where it can start

Namespace constructed dynamically and managed
by programmer (names stored in pointers, and
organized as data structures)

OS provides sbrk() system call to allocate a new
chunk of memory for the heap (called internally
by malloc()).

Who builds what?

• Stack: allocated dynamically (proc call), layout by
compiler
names are relative off stack pointer
managed by compiler (alloc on proc entry, dealloc on

exit)
linker not involved because name space entirely local:

compiler has enough information to build it.

e.g.,
void foo(void) {

long a, b;
a = a + 1;
b = b * 2;

}

foo:
add 8, sp
add 1, [sp+4]
mul 2, [sp]
…

sp = stack pointer

Local variable „a‟
stored at [sp+4],
local variable „b‟
stored at [sp]

Who builds what?

• Global data/code: allocation static (compiler),
layout (linker)

– Compiler emits them and can form symbolic
references between them (“call printf”)

– Linker lays them out, and translates references

Linkers (linkage editors)
• Unix: ld

Usually hidden behind compiler (try “gcc –v”)

• Three functions
Collect together all pieces of a program
Coalesce like segments
Fix addresses of code and data so the program can run

• Result: runnable program stored in new object
file

• Why compiler can’t do this?
Limited world view: one file, rather than all files

• Note *usually*: linkers only shuffle segments, but
do not rearrange their internals.

e.g., instructions not reordered; routines that are never called
are not removed from a.out

Simple linker: two passes needed

• Pass 1:
Coalesce like segments; arrange in non-overlapping mem.

Read file’s symbol table, construct global symbol table
with entry for every symbol used or defined

At end: virtual address for each segment known
(compute: start+offset)

code

data

symtab

a.o

code

data

symtab

b.o

code_a

code

code_b

data_a

data

data_b

symtab
(a.o)

Global
Symbol table

symtab
(b.o)

ld
pass 1

Simple linker: pass 2

• Pass 2:
Patch refs using file and global symbol table

(In the object files, the symbol table contained only
offsets inside the segments. Now the linker knows the
full virtual address, once segment is relocated.)

Emit result

• Symbol table: information about program kept
while linker running

segments: name, size, old location, new location

symbols: name, input segment, offset within segment

Why have a symbol table?
• Compiler:

Doesn’t know where data/code should be placed in
the process’s address space

Assumes everything starts at zero
Emits symbol table that holds the name and offset

of each created object
Routine/variables exported by the file are recorded

as global definition
Routine/variables used by the file are recorded as

references.

• Simpler perspective
code is in a big char array
data is in another big char array
compiler creates (object name, index) tuple for each

interesting thing
Linker then merges all of these arrays

foo:
call printf
ret

bar:
…
ret

0

foo: 0: T
bar: 40: t

40

4: printf

Linker: where to put emitted objects?

• At link time, linker
– Determines the size of each segment and the resulting

address to place each object at
– Stores all global definitions in a global symbol table that

maps the definition to its final virtual address

40

foo:
call printf
ret

bar:
...

0

foo: 0: T
bar: 40: t

printf:
...

0

80

30

ld
4040

foo:
call printf

bar:
...

4000

printf: ... 4080

4110

f.o

printf.o

a.out (partially done)

foo: 4000
bar: 4040
printf: 4080

Problem 2: where is everything? (ref)
• How to call procedures or reference variables?

e.g., call to printf needs a target addr

compiler places a 0 for the address

Emits an external reference telling the linker the
instruction’s offset and the symbol it needs

• At link time, the linker patches everything

foo:
call 0
ret

bar:
…
ret

0

foo: 0: T
bar: 40: t

4: printf

40

Linker: where is everything?
• At link time, the linker

records all references in the global symbol table

after reading all files, each symbol should have exactly one
definition and 0 or more uses

the linker then enumerates all references and fixes them by
inserting their symbol’s virtual address into the reference’s
specified instruction or data location

40

foo:
call 0
ret

bar:
...

0

foo: 0: T
bar: 40: t

printf:
...

0

80

30

ld
4040

foo:
call 4080

bar:
...

4000

printf: ... 4080

4110

f.o

printf.o

a.out

foo: 4000
bar: 4040
printf: 4080

Example: two modules and C lib

main.c:
extern float sin();
extern int printf(), scanf();
float val;
main() {

static float x;
printf(“enter number”);
scanf(“%f”, &x);
val = sin(x);
printf(“Sine is %f”, val);

}

C library:
int scanf(char *fmt, …) { … }
int printf(char *fmt, …) { … }

math.c:
float sin(float x) {

float tmp1, tmp2;
static float res;
static float lastx;
if(x != lastx) {

lastx = x;
… compute sin(x)…

}
return res;

}

Initial object files

Main.o:
def: val @ 0:D symbols
def: main @ 0:T
def: x @ 4:d

ref: printf @ 8:T,12:T
ref: scanf @ 4:T
ref: x @ 4:T, 8:T
ref: sin @ ?:T
ref: val @ ?:T, ?:T
x:
val:

call printf
call scanf(&x)
val = call sin(x)
call printf(val)

Math.o:
symbols

def: sin @0:T
def: res @ 0:d
def: lastx @4:d

relocation
ref: lastx@0:T,4:T
ref res @24:T

res: data
lastx:

if(x != lastx)
lastx = x;
… compute sin(x)…

return res;

0
4

0
4
8
12

relocation

data

text

text

0
4

0
4
…
24

Pass 1: Linker reorganization

a.out:

symbol table

val:
x:
res:
lastx:

main:
…
call printf(val)

sin:
…
return res;

printf: …
scanf: …

Symbol table:
data starts @ 0
text starts @ 16
def: val @ 0
def: x @ 4
def: res @ 8
def: main @ 16
…
ref: printf @ 26
ref: res @ 50
…

0
4
8
12

16
…
26
30
…
50
64
80

data

text

Starting virtual addr: 4000

(what are some other refs?)

Pass 2: relocation (insert virtual addrs)

“final” a.out:

symbol table

val:
x:
res:
lastx:

main:
…
call ??(??) //printf(val)

sin:
…
return load ??; // res

printf: …
scanf: …

Symbol table:
data starts 4000
text starts 4016
def: val @ 0
def: x @ 4
def: res @ 8
def: main @ 14
def: sin @ 30
def: printf @ 64
def: scanf @80
…

(usually don’t keep refs,
since won’t relink. Defs
are for debugger: can
be stripped out)

0
4
8
12

16
…
26
30
…
50
64
80

data

text

Starting virtual addr: 4000

4000
4004
4008
4012

4016
…
4026
4030
…
4050
4064
4080

What gets written out
a.out:

symbol table

main: …
…
call 4064(4000)

sin: …
…
return load 4008;

printf: …
scanf: …

Symbol table:
initialized data = 4000
uninitialized data = 4000
text = 4016
def: val @ 0
def: x @ 4
def: res @ 8
def: main @ 14
def: sin @ 30
def: printf @ 64
def: scanf @80

16
…
26
30
…
50
64
80

virtual addr: 4016

4016
…
4026
4030
…
4050
4064
4080

Uninitialized data allocated and zero filled at load time.

Types of relocation
• Place final address of symbol here

data example: extern int y, *x = &y;
y gets allocated an offset in the uninitialized data segment
x is allocated a space in the space of initialized data segment
(i.e., space in the actual executable file). The contents of this
space are set to y’s computed virtual address.

code example: call foo becomes call 0x44
the computed virtual address of foo is stuffed in the binary
encoding of “call”

• Add address of symbol to contents of this location
used for record/struct offsets
Example: q.head = 1 to move #1, q+4 to move #1, 0x54

• Add diff between final and original seg to this location
segment was moved, “static” variables need to be reloc’ed

• sbansal@sri ~$ cat /proc/29052/maps [application=bash]

• 00110000-00111000 r-xp 00110000 00:00 0 [vdso]

• 00bcd000-00be6000 r-xp 00000000 fd:00 135235 /lib/ld-2.5.so

• 00be6000-00be7000 r-xp 00018000 fd:00 135235 /lib/ld-2.5.so

• 00be7000-00be8000 rwxp 00019000 fd:00 135235 /lib/ld-2.5.so

• 00bea000-00d21000 r-xp 00000000 fd:00 135236 /lib/libc-2.5.so

• 00d21000-00d23000 r-xp 00137000 fd:00 135236 /lib/libc-2.5.so

• 00d23000-00d24000 rwxp 00139000 fd:00 135236 /lib/libc-2.5.so

• 00d24000-00d27000 rwxp 00d24000 00:00 0

• 00d52000-00d54000 r-xp 00000000 fd:00 135237 /lib/libdl-2.5.so

• 00d54000-00d55000 r-xp 00001000 fd:00 135237 /lib/libdl-2.5.so

• 00d55000-00d56000 rwxp 00002000 fd:00 135237 /lib/libdl-2.5.so

• 05cb9000-05cbc000 r-xp 00000000 fd:00 135248 /lib/libtermcap.so.2.0.8

• 05cbc000-05cbd000 rwxp 00002000 fd:00 135248 /lib/libtermcap.so.2.0.8

• 08047000-080f2000 r-xp 00000000 fd:00 2709149 /bin/bash

• 080f2000-080f7000 rw-p 000ab000 fd:00 2709149 /bin/bash

• 080f7000-080fc000 rw-p 080f7000 00:00 0

• 0987f000-098bf000 rw-p 0987f000 00:00 0

• b7d2f000-b7f2f000 r--p 00000000 fd:00 4997969 /usr/lib/locale/locale-archive

• b7f2f000-b7f64000 r--s 00000000 fd:00 2906265 /var/db/nscd/passwd

• b7f64000-b7f65000 rw-p b7f64000 00:00 0

• b7f75000-b7f76000 rw-p b7f75000 00:00 0

• b7f76000-b7f7d000 r--s 00000000 fd:00 32900 /usr/lib/gconv/gconv-modules.cache

• b7f7d000-b7f7e000 rw-p b7f7d000 00:00 0

• bf9b0000-bf9c5000 rw-p bf9b0000 00:00 0 [stack]

Linking variation 0: dynamic linking

• Link time isn’t special, can link at runtime too
– Why?

• Get code not available when program compiled

• Can use different library code for different environs

• Defer loading code until needed

Issues: what happens if can’t resolve? How can behavior
differ compared to static linking? Where to get
unresolved syms (e.g., “puts”) from?

void foo(void) { puts(“hello”); } gcc –c foo.c
foo:

call puts

void *p = dlopen (“foo.o", RTLD_LAZY);
void (*fp)(void) = dlsym(p, “foo");
fp();

Linking variation 1: static shared libraries

• Observation: everyone links in standard libraries
(e.g., libc.a), these libs consume space in every
executable.

• Insight: we can have a single copy on disk if we don’t
actually include lib code in executable

libc.a

printf:
scanf:
...

ls

4500

libc.a

printf:
scanf:
...

gcc

9000

Static shared libraries
Define a “shared library segment” at same address in every

program’s address space

Every shared lib is allocated a unique range in this seg, and
computes where external defs reside

Linker links program against lib (why?) but does not bring in
actual code

Loader marks shared lib region as unreadable
When process calls lib code, seg faults: enclosed linker brings in

lib code from known place & maps it in.
So? Different running programs can now share code!

libc.a
…

math.a
…

0xffe0000

0xfff0000

gcc
ls

0xffe0000
0xfff0000

0xffe0000
0xfff0000

helo
0xffe0000
0xfff0000

Linking variation 2: dynamic shared
libs

• Problem: static shared libraries require system-
wide pre-allocation of address space: clumsy

We want to link code anywhere in address space

• Problem 1: linker won’t know how to resolve refs
do resolution at runtime
link in stubs that know where to get code from
program calls stub, goes and gets code

printf_stub:
scanf_stub:
...

ls

4500 9000
libc.a
printf_stub:
scanf_stub:
...

gcc

printf:
...

sscanf:
...

“/usr/shrd-lib/libc.a”

Problem 2: Dynamic shared libraries
• Code must simultaneously run at different locations!

• Solution: make lib code “position independent” (re-entrant)
– Refer to routines, data using relative addressing (base + constant

offset) rather than absolute addresses

• Example:
– Internal call “call 0xf44” becomes “call lib_base + 0x44”

– “lib_base” contains the base address of library (private to each
process) and 0x44 is the called-routine’s internal offset

libc.a
printf:

...
call 0xf44

write:
…

...

0xf44

0xf00 printf:
...
call libc_base+0x44

write:
…

...

0x44

0x0

Code = data, data = code
• No inherent difference between code and data

– Code is just something that can be run through a CPU without
causing an “illegal instruction fault”

– Can be written/read at runtime just like data (dynamically-
generated code)

• Why dynamically generated code? Speed (usually)
– Big use: eliminate interpretation overhead. Gives 10-100x

performance improvement
– Example: Just-in-time compilers for Java
– In general: better information  better optimization. More

information at runtime

• The big tradeoff:
Total runtime = code gen cost + cost of running code

How?

• Determine binary encoding of desired assembly
instructions
SPARC: sub instruction

symbolic = “sub rdst, rsrc1, rsrc2”

binary = 10 rd 100 rs1 rs2
bitpos: 31 30 25 19 14 0

• Write these integer values into a memory buffer
unsigned code[1024], *cp = &code[0];
/* sub %g5, %g4, %g3 */
*cp++ = (2 << 30) | (5 << 25) | (4 << 19) | (4 << 14) | 3;

• Jump to the address of the buffer!
((int (*)())code)code)();/* cast to function pointer and call. */

32bits

Linking summary

• Compiler: generates 1 object file for each source file
Problem: incomplete world view

Where to put variables and code? How to refer to them?

Names definitions symbolically (“printf”), refers to
routines/variable by symbolic name

• Linker: combines all object files into 1 executable file
Big lever: global view of everything. Decides where everything

lives, finds all references and updates them

Important interface with OS: what is code, what is data, where is
start point?

• OS loader reads object files into memory:
Allows optimizations across trust boundaries (share code)

Provides interface for process to allocate memory (sbrk)

