
To Appear in the 16th ACM Symposium on Operating System Principles, October, 1997

Towards Transparent and Efficient
Software Distributed Shared Memory

Daniel J. Scales and Kourosh Gharachorloo
Western Research Laboratory

Digital Equipment Corporation
fscales,kouroshg@pa.dec.com

Abstract

Despite a large research effort, software distributed shared
memory systems have not been widely used to run parallel
applications across clusters of computers. The higher per-
formance of hardware multiprocessors makes them the pre-
ferred platform for developing and executing applications.
In addition, most applications are distributed only in binary
format for a handful of popular hardware systems. Due to
their limited functionality, software systems cannot directly
execute the applications developed for hardware platforms.
We have developed a system called Shasta that attempts to
address the issues of efficiency and transparency that have
hindered wider acceptance of software systems. Shasta is a
distributed shared memory system that supports coherence
at a fine granularity in software and can efficiently exploit
small-scale SMP nodes by allowing processes on the same
node to share data at hardware speeds.

This paper focuses on our goal of tapping into large classes
of commercially available applications by transparently exe-
cuting the same binaries that run on hardware platforms. We
discuss the issues involved in achieving transparent execu-
tion of binaries, which include supporting the full instruction
set architecture, implementing an appropriate memory con-
sistency model, and extending OS services across separate
nodes. We also describe the techniques used in Shasta to
solve the above problems. The Shasta system is fully func-
tional on a prototype cluster of Alpha multiprocessors con-
nected through Digital’s Memory Channel network and can
transparently run parallel applications on the cluster that were
compiled to run on a single shared-memory multiprocessor.
As an example of Shasta’s flexibility, it can execute Oracle

7.3, a commercial database engine, across the cluster, includ-
ing workloads modeled after the TPC-B and TPC-D database
benchmarks. To characterize the performance of the system
and the cost of providing complete transparency, we present
performance results for microbenchmarks and applications
running on the cluster, include preliminary results for Oracle
runs.

1 Introduction

There has been much research on supporting a shared ad-
dress space in software across a cluster of workstations or
servers. A variety of such distributed shared memory (DSM)
systems have been developed, using various techniques to
minimize the software overhead for supporting the shared
address space. The most common approach uses the virtual
memory hardware to detect access to data that is not available
locally [2, 7, 9, 19]. These systems communicate data and
maintain coherence at a fixed granularity equal to the size of
a virtual page.

Despite all the research on software DSM systems, soft-
ware platforms have yet to make an impact on mainstream
computing. At the same time, hardware shared memory sys-
tems have gained wide acceptance. The higher performance
of hardware systems makes them the preferred platform for
application development. Software vendors typically dis-
tribute applications in binary format only for a few popular
hardware platforms. Due to their limited functionality, soft-
ware systems cannot directly execute these applications, and
thus fail to capitalize on the increasing number of applica-
tions available for hardware systems. For example, software
systems typically require the use of special constructs for
synchronization and task creation and severely limit the use
of system calls across the cluster. We have attempted to ad-
dress some of the above issues of efficiency and transparency
in the Shasta system [14]. Shasta is a software DSM system
that supports sharing of data at a fine granularity by inserting
code in an application executable that checks if data being

1

accessed by a load or store is available locally in the appro-
priate state. This paper focuses on the issues in transparently
executing hardware binaries in the context of the Shasta sys-
tem.

Transparent execution of binaries encompasses several
challenging problems which fall into two broad categories,
correctly supporting the complete instruction set architecture
and extending OS services across separate nodes. As an ex-
ample in the instruction set category, software systems have
to directly support atomic read-modify-write instructions as
opposed to depending on special high-level synchronization
constructs (as is done in virtually all current software DSM
systems). Software systems must also correctly support the
memory consistency model specified by a given instruction
set architecture. Much of the recent research on software
DSM systems involves protocol innovations related to ex-
ploiting or further relaxing the memory consistency model
to solve false sharing problems that arise from page-level
coherence. However, many important commercial archi-
tectures, including the Intel x86 architecture, support rather
strict memory consistency models that disallow virtually all
the critical performance optimizations that are used in such
page-based DSM systems. Even architectures that support
aggressive relaxed models (i.e., Alpha, PowerPC, and Sparc)
fail to provide sufficient information (in the executable) to
allow many of the optimizationsbased on release consistency
that are exploited by several of the software systems [1, 7].
Furthermore, the above issues related to hardware memory
consistency models are unlikely to change in the foreseeable
future.

Transparently executing applications that use OS services
leads to another set of challenging problems. Some of the
issues are similar to those faced by cluster operating systems
such as Locus [11], Sprite [10], and Solaris-MC [8]. The
functionality of the OS must be extended so that system calls
work transparently across the cluster as if all processes were
on the same machine. However, there are a number of ad-
ditional issues when software is also used to support shared
memory across the cluster. One problem is that the OS is typ-
ically unaware of the software DSM layer that is providing
shared memory across the nodes. Therefore, all parameters
to system calls that are located in shared memory (and there-
fore may not currently be local) must be validated before the
system call is made. Other problems can occur in complex
applications because individual application processes main-
tain protocol state information about the application data.
This arrangement works well for typical scientific applica-
tions in which a fixed number of long-lived processes are
created at startup that are all active until the computation has
been finished. However, many difficult issues arise if the
application dynamically creates and destroys processes or if
the application executes with more processes than available
processors (to help hide I/O latency, for example). Our gen-
eral solution to these problems is to ensure that one process
per processor remains running regardless of how many appli-
cation processes are created and destroyed, and to allow all
processes running on the same processor (or node) to handle

each other’s incoming messages.
In this paper we discuss the above issues in detail and de-

scribe the corresponding solutions that we have adopted in
Shasta. We have implemented a complete solution for sup-
porting the full Alpha instruction set architecture. Due to the
large amount of effort necessary to extend all OS services, we
chose a short-term goal of supporting sufficient functionality
to execute a commercial database such as Oracle, which still
uses a relatively rich set of OS services. The Shasta system
is fully functional on our prototype cluster which consists
of a total of sixteen 300 MHz Alpha processors connected
through the Memory Channel [6]. We can currently run the
Oracle 7.3 executable across the cluster using Shasta and ex-
ecute applications that are similar to the TPC-B and TPC-D
benchmarks. We present performance results for various mi-
crobenchmarks and applications, including Oracle, running
on the above cluster. Overall, our results show that transpar-
ent execution of binaries can be achieved in most cases with
only a small reduction cost in performance.

The following section describes the basic design of Shasta.
Sections 3 and 4 discuss issues related to supporting a hard-
ware instruction set architecture and extending OS services
across nodes, respectively, and describe the solutions that
we have adopted in Shasta. Section 5 discusses some is-
sues related to the use of code modification in Shasta. We
present detailed performance results in Section 6. Finally,
we describe related work and conclude.

2 Basic Design of Shasta

This section presents an overview of the Shasta system, which
is described more fully in previous papers on support for fine-
grain coherence [14], the base cache coherence protocol [12],
and protocol extensions to exploit SMP nodes [13].

2.1 Cache Coherence Protocol

Shasta divides the virtual address space of each processor
into private and shared regions. Data in the shared region
may be cached by multiple processors at the same time, with
copies residing at the same virtual address on each processor.
Shared data in the Shasta system has three basic states at each
processor: invalid – the data is not valid on this processor;
shared – the data is valid on this processor and other pro-
cessors have copies of the data as well; and exclusive – the
data is valid on this processor and no other processors have
copies of this data. Communication is required if a processor
attempts to read data that is in the invalid state, or attempts
to write data that is in the invalid or shared state. In this case,
we say that there is a shared miss. Shasta inserts code in the
application executable at each load and store to determine if
there is a shared miss and, if necessary, invoke protocol code.

Shasta divides up the shared address space into ranges of
memory called blocks. All data within a block is in the same
state and is always fetched and kept coherent as a unit. A

2

unique aspect of the Shasta system is that the block size can
be different for different program data. To simplify the inline
code, Shasta divides up the blocks into fixed-size ranges
called lines (typically 64 or 128 bytes) and maintains state
information for each line in a state table.

Coherence is maintained using a directory-based invalida-
tion protocol. The protocol supports three types of requests:
read, read-exclusive, and exclusive (or upgrade, if the re-
questing processor already has the line in shared state). A
home processor is associated with each block and maintains
a directory for that block, which contains a list of the proces-
sors caching a copy of the block. Because of the high cost
of handling messages via interrupts, messages from other
processors are serviced through a polling mechanism. The
Shasta implementation polls for incoming messages when-
ever the protocol waits for a reply. To ensure reasonable re-
sponse times, Shasta also insert polls at every loop backedge.
Polling is inexpensive (three instructions) in our Memory
Channel cluster because the implementation arranges for a
single cachable location that can be tested to determine if a
message has arrived.

2.2 Shared Miss Checks

Shasta inserts the shared miss checks in the application exe-
cutable using a modified version of ATOM [18]. An efficient
shared miss check requires about seven instructions. Since
the static and stack data areas are not shared, Shasta does
not insert checks for any loads or stores that are clearly to
these areas. Shasta also uses a number of other optimizations
that reduce the checking overhead to an average of about
20% (including polling overhead) across the SPLASH-2 ap-
plications [14]. The two most important optimizations are
described below.

Whenever a block on a processor becomes invalid, the
Shasta protocol stores a particular “flag” value in each 4-byte
word of the block. If the loaded value is not equal to the
flag value, the data must be valid and the application code
can continue immediately. If the loaded value is equal to the
flag value, then the protocol code also checks the state of the
block to distinguish an actual miss from a “false miss” (i.e.,
when the application data actually contains the flag value).
Since false misses almost never occur in practice, the above
technique can greatly reduce the load miss check overhead.

Shasta also attempts to batch together checks for multiple
loads and stores. There are often sequences of loads and
stores to addresses which are a small offset from the contents
of a base register. These loads and stores therefore access
nearby data within consecutive lines. If all the lines are
in the correct state, then the batch of loads and stores can
proceed without further checking. The batching technique
also applies to loads and stores via multiple base registers.

2.3 Exploiting SMP Nodes

Commercial small-scale SMPs (symmetric multiprocessors)
are an attractive building block for software distributed
shared memory systems. The primary advantage of SMP
nodes is that processors within an SMP can share memory
via the hardware, thus eliminating software intervention for
intra-node data sharing. The widespread availability of SMP
servers has led researchers to consider their use in page-
based systems [1, 3, 4, 19, 22], with SoftFLASH [4] and
Cashmere [19] being the only actual implementations based
on commercial multiprocessor nodes.

Exploiting SMP nodes efficiently in the context of a fine-
grain system like Shasta is a bit more complex. The primary
difficulty arises from race conditions caused by the fact that
the state check inserted at a load or store does not execute
atomically with the actual load or store of shared data, since
the two actions consist of multiple instructions. In contrast,
the virtual memory hardware provides atomic state check and
data access in page-based systems. An example of the race
condition that can arise is as follows. Assume processors
P1 and P2 are on the same node, and that an exclusive copy
of the data at address A is cached on this node. Assume P1
detects the exclusive state at its inline check for address A and
proceeds to do a store to the address, while P2 is servicing a
read request from another node. The undesirable race arises
if P2 downgrades the data to a shared state and reads the
value of A before P1’s store is complete and visible to P2.
One possible solution is to add sufficient synchronization
to ensure that P2 cannot downgrade the state and read the
value of A in between the inline state check and store on
P1. However, this solution results in a large increase in the
checking overhead at every load or store to shared data.

We have implemented a solution that allows sharing of
memory among processors on the same node and avoids the
race conditions described above without the use of costly
synchronization in the inline checking code [13]. The over-
all solution depends on the selective use of explicit messages
between processors on the same node for protocol opera-
tions that can lead to the race conditions involving the inline
checks. In addition to a shared state table for all processes on
the same node, each process maintains a private state table
that is only modified by the owner. Explicit messages are sent
to another process if servicing an incoming request requires
downgrading an entry in the private state table of that process
(e.g., an incoming read that changes the state of a line from
exclusive to shared). Because processes are allowed to read
each other’s private state tables, explicit downgrade mes-
sages are only sent to the processes that are actively sharing
that line. We refer to the system with the above modifica-
tions as SMP-Shasta and the original system as Base-Shasta.
When using SMP-Shasta on a cluster of SMP nodes, we have
observed significant performance improvements (of as high
as two times) in applications over Base-Shasta because of the
reduced number of remote misses and software protocol mes-
sages [13]. As we will see, the SMP-Shasta implementation
is also important for running efficiently when an application

3

executes with more than one process per processor.

2.4 Avoiding OS Interactions for Frequent
Protocol Actions

One of the key philosophies in the design of Shasta is to
avoid expensive OS interactions for frequent protocol ac-
tions. By far the most important design decision in Shasta
is to use inline state checks instead of depending on virtual
memory hardware to detect sharing misses. This approach
frees Shasta from supporting coherence at the fixed large
granularity dictated by a system’s page size. Physical page
sizes have remained large (e.g., minimum 8KB pages under
Digital Unix, and 16KB pages under SGI Irix) primarily as
a way to reduce the number of TLB misses. These large
page sizes exacerbate problems such as false sharing that
arise from maintaining coherence at a page-level. Aside
from allowing Shasta to support coherence at a fine granu-
larity, inline state checks eliminate the need for expensive
OS interactions for manipulating page protection and detect-
ing protection faults. Shasta also avoids OS interactions for
sending and receiving messages. Instead of depending on
expensive interrupts, Shasta uses an efficient polling mecha-
nism (described in Section 2.1) to detect incoming messages.
Finally, OS interaction is avoided for sending messages by
exploiting networks, such as Digital’s Memory Channel, that
provide protected user-level access.

3 Fully Supporting an Instruction Set
Architecture

This section discusses some of the challenging issues that
arise in fully supporting an instruction set architecture, and
describes how Shasta solves them in the context of the Alpha
architecture. We focus on issues related to supporting atomic
read-modify-write instructions and correctly implementing
the required memory consistency model.

3.1 Atomic Read-Modify-Write Instructions

All software DSM systems that we are aware of support only
a limited number of high-level synchronization constructs,
such as locks and barriers. Furthermore, such synchroniza-
tion is typically not implemented on top of the shared memory
abstraction, but is supported through specialized messages
and handlers. While this approach leads to efficient support
for synchronization, it is not general and fails to support trans-
parent execution of binaries which achieve synchronization
through either normal loads and stores or through specialized
atomic read-modify-write instructions.

3.1.1 Semantics of Load-Locked and Store-Conditional

The Alpha architecture provides a pair of instructions, load-
locked and store-conditional, that can be used together to

try_again:
ld_l t0, 0(a0)
bgt t0, try_again
or t0, 1, t0
stl_c t0, 0(a0)
beq t0, try_again

Figure 1: Example use of load-locked and store-conditional
to implement a binary lock.

support atomic read-modify-write functionality [16]. Similar
instruction pairs are provided by the MIPS and IBM PowerPC
architectures. Figure 1 shows an example of how acquisition
of a lock can be implemented using this pair of instructions.
The current value for the lock location is read by the load-
locked (LL). This value is first checked to see whether the
lock is free. In case the lock is free, the store-conditional
(SC) is used to store the modified “lock-taken” value. The
SC succeeds if no other processor has done a successful
store to the same cache line since this processor did the
LL; otherwise, the SC fails, no store is done, and failure is
signalled through a zero return value. LL and SC instructions
are quite general and can be used to implement numerous
other atomic operations such as compare-and-swap, fetch-
and-add, etc..

The exact semantics of the Alpha LL and SC instructions
are as follows. The Alpha architecture includes a logical no-
tion of a lock-address and a lock-flag per physical processor.
The LL instruction sets the lock-flag and the lock-address.
The lock-flag is reset if another processor successfully writes
to the cache line specified by lock-address. An SC instruc-
tion succeeds if the lock flag is set, and fails otherwise. To
ensure that an SC does not succeed incorrectly, the lock flag
is also reset when there is a process switch and when an
SC is executed, regardless of its success or failure. There are
also situations in which an implementation may reset the lock
flag, e.g., if there are any loads, stores, or taken branches in
the execution path between the LL and SC, or if the LL and
SC are not to the same 16-byte aligned address. Finally, to
avoid livelock, an SC that fails should not cause failure of
other LL/SC sequences; for example, livelock may occur if
a failed SC still sends out invalidations to other copies of the
line.

3.1.2 Solution in Shasta

A straightforward way of implementing LL and SC instruc-
tions in software is to directly emulate the lock-flag and
lock-address functionalityas described above. However, this
solution requires saving the load-locked address and setting
the lock-flag on every LL instruction and checking and reset-
ting the lock-flag at every SC, even if the sequence does not
involve any remote misses. Instead, we use a more efficient
implementation that applies to LL/SC sequences that satisfy
the following conditions: (a) for every SC, there is a unique
LL that dominates the SC, (b) there are no load, store, LL,
or SC instructions between the unique LL and SC, and (c)
the LL and SC are to the same cache line. Since the Alpha

4

architecture deprecates use of sequences that fail the above
conditions, virtually all sequences in real applications fall in
the simple category. 1

Our solution uses the state of the line prior to the LL as an
indication of whether the SC can run directly in hardware or
requires software intervention. In the case when the line is in
the exclusive state, the LL can proceed without entering the
protocol. Since there are no other loads or stores between the
LL and SC, the state will still be exclusive at the SC and the
SC can be directly executed without entering the protocol.
The hardware then ensures that the SC succeeds if and only
if no other process on the same node has written to the line.
The Shasta protocol is called at the SC for all other cases.
The protocol returns failure if the state of the line before
the SC is either invalid or pending. In the case of a shared
state, the success or failure of the SC must be determined
by the directory at the home processor. We have extended
the protocol with a new exclusive (or upgrade) request for
store-conditionals. The exclusive request is serviced (i.e.,
invalidations are sent out) if the directory still indicates the
node is a sharer; otherwise, a failure response is sent back.
The store (corresponding to the store-conditional) is com-
pleted within the protocol in the successful case. In all cases,
the return from the protocol code jumps around the actual SC
instruction in the application.

The following describes the inline code used to imple-
ment the LL and SC instructions. Code inserted immediately
before the LL instruction loads the state of the line into a
register, and calls protocol code to get the latest copy of the
line if the state is invalid or pending. No explicit polls are
inserted in the simple path between the LL and the SC, so as
to make sure that incoming requests (or downgrade messages
in SMP-Shasta) can’t change the state of the line. Code in-
serted before the SC also checks the state in the register and
proceeds to execute the SC instruction if the line is in the
exclusive state. Otherwise, the code calls the protocol to
handle an SC miss as described above. Note that the above
scheme actually depends on the functionality of the LL and
SC instructions on the underlying hardware only if (a) we
are exploiting the SMP extension of Shasta, and (b) the line
is locally in exclusive state. To achieve correct behavior in
this case, we ensure that we do not add any taken branches,
loads, or stores in the success path from the LL to the SC.

The above solution satisfies our goal of executing atomic
sequences virtually at hardware speeds (and with no protocol
invocation) when the line is already held in exclusive state.
We have also implemented another optimization to speed up
cases where the local node does not have a copy of the line.
The atomic sequence typically leads to two remote misses:
one to fetch a shared copy of the line for the LL, and another
to fetch ownership for the SC. By adding a single prefetch-
exclusive (as part of the binary rewrite phase) that fetches the
line in exclusive state before the start of the atomic sequence,

1For correctness, the Shasta implementation reverts to the less efficient
way of implementing atomic sequences (i.e., by emulating the lock-flag and
lock-address) in the unlikely case of an application that exhibits deprecated
sequences.

we can achieve a successful sequence with only a single
remote miss. We insert the prefetch-exclusive prior to the
loop containing the LL and SC so it is executed only once,
in order to avoid the possibility of livelock among multiple
sequences.

3.1.3 Implementation in Other Software DSM Systems

It would be very difficult to implement LL and SC instruc-
tions (or other atomic memory operations) correctly on most
existingsoftware DSM systems, because (as we discuss in the
next section) most assume that there are no races on memory
locations. For example, multi-writer protocols assume that
there are no unsynchronized writes to the same location and
delay propagating writes. A page-based DSM system using
a single-writer protocol (e.g. SoftFLASH) could potentially
implement LL and SC in a manner similar to Shasta, but these
operations would probably be very expensive. It would be
crucial to send only “diffs” upon a read request; otherwise, a
single atomic operation could involve transferring an entire
virtual memory page.

3.2 Memory Consistency Model Issues

The memory consistency model is a fundamental issue to
consider for software DSM systems, especially when the
goal is to transparently support binaries for commercial ar-
chitectures.

3.2.1 Current Software DSM Systems

Much of the recent research in software DSM systems has
been dedicated to relaxing memory consistency models fur-
ther and developing protocols that aggressively exploit such
models [1, 2, 7, 19]. In general, the use of a relaxed mem-
ory model allows a system to delay protocol actions, since
the ordering requirements on memory operations are relaxed.
Page-based systems typically use protocols that delay the ef-
fects of writes in order to alleviate false sharing issues that
arise because of the large coherence granularity. The use of a
relaxed model also allows a system to reduce communication
overhead by coalescing outgoing requests.

In order to exploit especially aggressive optimizations
based on relaxed memory models, a large number of page-
based DSM systems heavily depend on programs being prop-
erly labeled [5]. They also typically require that applications
synchronize via a few high-level constructs, such as locks
and barriers, that are directly implemented through message
passing as opposed to on top of the shared-memory abstrac-
tion. Because of these two assumptions, all memory op-
erations that are supported by the software shared-memory
layer are guaranteed to be race-free. This property often
simplifies the underlying software cache coherence protocol
and allows for a large number of further optimizations. For
example, the software protocols typically do not enforce seri-
alization of writes to the same location. Similarly, writes are

5

not guaranteed to eventually be visible to other nodes in the
absence of explicit release and acquire operations (as a result
of aggressively delaying protocol actions). Finally, explicit
knowledge of acquire and release synchronization allows for
further optimizations such as lazily following synchroniza-
tion chains across different processors to avoid communicat-
ing unnecessary data (as in implementations of lazy release
consistency [1, 7]).

3.2.2 Commercial Architectures

Many of the above optimizations and simplifications lead to
incorrect behavior if applied to binaries from commercial ar-
chitectures, either because the corresponding memory model
is more strict or because the binary does not provide sufficient
information about memory operations.

Several important commercial architectures support rel-
atively strict memory consistency models. The MIPS/SGI
architecture requires the system to support sequential con-
sistency, while the popular Intel x86 architecture supports
processor consistency [5] which is a little less strict. The re-
quirement to support either model would virtually disallow all
the key performance optimizations exploited in page-based
systems.

A number of commercial architectures, including Alpha,
PowerPC, and Sparc, support more relaxed models, which al-
low aggressive reordering of read and write operations. The
following discussion focuses on the Alpha memory model,
but the issues raised also apply to the PowerPC and Sparc
models due to the similarity among these models. The Al-
pha memory model [16] provides special fence instructions,
called memory-barrier (MB) instructions, for enforcing pro-
gram order among memory operations where necessary. A
memory barrier instruction ensures that all read and write op-
erations preceding the MB are performed prior to any reads
and writes following the MB. The Alpha model allows ag-
gressive reordering of memory operations between memory-
barrier instructions; hence, the optimizations allowed by the
model are similar to weak ordering or release consistency.
Nevertheless, even a commercial architecture such as Alpha
that aggressively exploits relaxed models disallows a num-
ber of important optimizations that are typically exploited in
page-based systems.

The fundamental issue with respect to commercial memory
models such as the Alpha is that ordering information is only
conveyed through special fence instructions, such as the MB,
as opposed to through special flavors of loads and stores as
in the release consistency model.2 Therefore, the coherence
protocol must conservatively assume that any read(s) preced-
ing a memory barrier may potentially behave as an acquire
synchronization for operations followingthe memory barrier,
and any write(s) following a memory barrier may potentially
behave as a release synchronization for operations preceding

2This will not change in the foreseeable future since instructions are still
32 bits in length (even though architectures have moved to 64-bit data and
addresses), and adding flavors such as acquire and release for every type of
load and store is not a viable option due to opcode space limitations.

P1 P2 P3 P4

A = 1; A = 2; while (Flag1 != 1) ; while (Flag2 != 1) ;
MB; MB; while (Flag3 != 1) ; while (Flag4 != 1) ;
Flag1 = 1; Flag3 = 1; MB; MB;
Flag2 = 1; Flag4 = 1; r1 = A; r2 = A;

Figure 2: Example to illustrate issues with commercial mem-
ory models.

the memory barrier. This property fundamentally disallows
aggressive optimizations, such as implementations of lazy re-
lease consistency [1, 7], that require exact knowledge about
the synchronization chain across multiple processors.

Because any operation may be involved in a race, the Alpha
memory model also requires that (i) all writes must eventually
be propagated and made visible to other processors and (ii)
writes to the same location be serialized (i.e., appear in the
same order to all processors). These requirements disallow
many of the optimizations even in systems that do not exploit
lazy release consistency (e.g., Cashmere [19]). Figure 2
presents a contrived example to illustrate why a number of
these optimizations are not correct under the Alpha memory
model. The example shows P1 and P2 both writing to location
A and setting some flags, while P3 and P4 wait for the flags
to be set and then read location A. Assume all locations
are initialized to 0. Under the Alpha memory model, the
only allowable outcomes are (r1,r2)=(1,1) or (r1,r2)=(2,2).
The first thing to note is that the both flag writes following
the MB on P1 (or P2) behave as release synchronization,
and both reads of the flags on P3 (or P4) behave as acquire
synchronization. Therefore, as mentioned above, it would be
incorrect to assume that only the operations that immediately
precede or follow an MB behave as synchronization. In
addition, an approach that lazily delays propagation of writes
and servicing of invalidates until the next MB will not behave
correctly. Therefore, the system has to periodically propagate
writes and service invalidates even in the absence of MB
instructions. Finally, the system must enforce serialization
of writes to the same location to disallow outcomes such as
(r1,r2)=(1,2) (which occurs if P3 and P4 observe the writes
to A in different orders).

Overall, supporting commercial memory models, even
those that are quite aggressive, may lead to drastic perfor-
mance losses in the case of page-based systems, because
the protocol optimizations that are required to achieve good
performance cannot be used.

3.2.3 Approach in Shasta

The Shasta coherence protocol closely resembles that of a
hardware DSM system, especially since coherence is main-
tained at a fine granularity. Therefore, many of the correct-
ness and performance issues are similar to those in hardware
systems. We describe a few of the issues that arise because
we are supporting shared memory in software.

To support the Alpha memory model, we need to correctly
implement the functionality associated with memory barri-

6

ers. This requires invoking protocol code at every MB to
make sure operations before the memory barrier are com-
pleted and any incoming invalidations that are received are
serviced. The binary rewrite capability in Shasta allows
us to easily insert an appropriate call to the protocol after
each MB instruction; we still execute the hardware MB in-
struction as well to ensure that proper ordering is maintained
within an SMP node. With respect to eventual propagation of
writes, Shasta supports a relatively eager protocol that leads
to timely propagation. In addition, by inserting polls at every
loop backedge, Shasta ensures that invalidations will also be
serviced in a timely fashion (e.g., consider a loop waiting
for a flag to be set). Finally, serialization of writes to the
same location is achieved in a similar way to hardware DSM
systems.

The Shasta protocol can also support more strict memory
models. For sequential consistency, the protocol simply stalls
on every store miss until all invalidation acknowledgments
have been received. The handling of batch misses remains the
same, except that some more complicated processing must
be done in the rare case that the miss handler cannot fetch
all lines in the correct state. However, in contrast to page-
based systems, the performance of Shasta is quite good even
when we support a strict model [12]. This effect is primarily
because Shasta supports coherence at a fine granularity, and
therefore does not depend heavily on relaxed memory mod-
els for alleviating problems associated with larger coherence
granularities. Section 6.4 presents results that illustrate this
point.

4 Providing OS Functionality

This section describes the techniques we have used to allow
transparent execution of applications that use a rich set of op-
erating system services. Compared to the problems solved by
cluster operating systems, a number of new issues arise be-
cause we also support shared memory in software. There are
three main areas that must be addressed. First, all arguments
to system calls must be validated, since they may reference
shared data that may not be available locally. Second, all
system calls and OS services (or some specified subset) must
be implemented to work correctly across a cluster of ma-
chines running independent operating systems. Third, we
must address issues that arise when applications create or
destroy processes dynamically or create more processes than
processors. Our Shasta implementation runs under Digital
Unix 3.2 and 4.0, but all of these issues apply generally to
most operating systems.

4.1 Validating System Call Arguments

In most software DSM systems, the operating system as a
whole is unaware of the shared memory layer that is sup-
ported through software. Therefore, a system call may not
operate correctly if one of its arguments references data that
is located in the global shared memory (i.e., one of its argu-

ment is a pointer to the shared memory area). For example,
in a page-based software DSM, the operating system may en-
counter a page protection error when it references the system
call arguments. Similarly, in Shasta, a read by the system call
may return invalid data if the referenced line is not cached
locally, and a write by the system call may be lost if the line is
not already held in exclusive state (since exclusive ownership
for the line will never be requested).

A simple method for validating system call arguments is
to copy shared data referenced by the system call into local
memory, using a copy routine that fetches the latest version
of the shared data. The system call can then be invoked with
arguments that point to the local copy of the data. When
the system call returns, any data that has been written by the
system call must be copied back to the shared region in a
coherent fashion. The obvious disadvantage of this approach
is the extra copying overhead, especially for system calls that
may read or write a large amount of data (e.g., the read and
write system calls).

A better approach is to ensure that the shared data refer-
enced by a system call is in the correct state before invoking
the system call, so the system call can operate on the origi-
nal arguments. The protocol may need to request exclusive
copies of data that is written to,and shared or exclusive copies
of data that is read by the system call. Interestingly, the exact
same functionality is required to implement batches of loads
and stores, as described in Section 2.2. A system call can
be logically treated as a batch of loads and stores to several
ranges of lines, with validation done in the same way as for a
batch. We do this validationby replacing system call routines
with “wrapper” routines that validate any regions in shared
memory that are referenced by the arguments (according to
the semantics of the system call).

The Shasta routine for handling batches goes through each
range of data and makes the appropriate requests when lines
are not in the correct state. However, it cannot guarantee
that the lines will all be in the appropriate state once all the
replies have come back. For example, the batch miss handler
may request a line for reading and receive the contents of
the line, but may subsequently receive an invalidate request
for the line while it is still waiting for some of its other
requests to complete. However, even though a line may not
be in the right state, loads to the line will still get the correct
value (assuming a relaxed model such as the Alpha memory
model) as long as the original contents of the line remain in
memory. We therefore delay storing the invalid flag value
(see Section 2.2) for invalidated lines until after the end of
the batch. Similarly, the batch miss handler may request a
line in exclusive state, but lose exclusive access while it is
still waiting for other requests. We may therefore also have
to reissue stores to lines that were not in the exclusive (or
pending-shared) state when the batch miss handler returned
and the batched code was executed. The above invalidations
and reissues are done at the time of the next entry into the
protocol code (due to explicit polls or misses) after the batch
code is complete.

7

4.2 Extending System Calls across the Cluster

The issues of extending OS functionality across a cluster
have been addressed extensively by a number of systems [8,
10, 11]. These systems typically attempt to provide almost
complete transparency by reimplementing all system calls so
that they work across the cluster. However, these systems
are usually not concerned with efficient software support
for shared memory across the cluster. Conversely, software
DSM systems support shared memory across the cluster, but
do not typically support system calls across the cluster. In
fact, applications are typically required to limit system calls
to the master process that spawns the other processes. Such
limitations can be tolerated for scientific applications, but
make it impossible to execute applications such as databases
that make extensive use of OS functionality.

Since our goal is to extend the range of applications that
can be executed on software DSM systems, we are primarily
interested in ensuring that the most common system calls
execute correctly across the cluster. Our short-term goal
of executing the Oracle database on Shasta requires us to
support several classes of system calls: calls for managing
processes, calls for managing shared memory segments, and
calls for accessing a common file system.

Our approach for supporting system calls across a cluster
involves replacing the system call routine in the original exe-
cutable with a routine that implements the new functionality.
Regarding process management, Shasta supports system calls
such as fork, wait, kill, pid block, pid unblock, and getpid.
Our fork call creates a copy of an existing process that can run
on the same node or another node on the cluster. We imple-
ment the cluster fork by explicitly copying all of the writable,
non-shared data of the parent process (the stack and the static
data) to the new process. Because local process ids on dif-
ferent nodes might conflict, Shasta assigns a unique global
process id to each of the processes executing an application.
When a process exits, Shasta arranges for information to be
sent to the parent process so that system calls such as wait
can be implemented correctly. Shasta also uses messages to
implement system calls, such as kill and pid unblock, that are
used to change the state of other processes.

The system calls for creating and mapping shared memory
segments, shmget and shmat, are implemented by allocating
sufficient space in the shared memory region for that segment
and returning the starting address of the region. A mapping
between the segment id and the region is maintained at each
process so that later calls that refer to the segment work
correctly. Because the shared memory segment must be
allocated in the shared region, Shasta does not support the
option of attaching a shared memory segment at a specified
address.

The default model of memory provided by Shasta supports
applications that share memory among multipleprocesses via
shared memory segments. To support thread-based applica-
tions that share the entire address space, Shasta would have
to insert inline checks for loads and stores to both the static
and the stack data segments. However, the overhead of these

extra checks, especially for the stack accesses, may lead to
lower performance. Since the stack is not commonly ac-
cessed by multiple threads except during thread creation and
termination, an interesting alternative is to support shared
access to stack segments via a simple page-based protocol
(that supports the Alpha instruction set), while using Shasta
to support sharing of static and dynamically allocated data.

To support the use of system calls that access files across
the cluster, in general we need to implement a distributed
file system such as Frangipani [20]. Frangipani provides all
nodes with coherent access to a shared set of files and is highly
available despite component failures. We do not currently
have a distributed file system available for our cluster, and
instead approximate a distributedfile system by mounting the
same filesystems at the same locations on each node via NFS.
Accesses to files by different nodes are not kept strictly coher-
ent, because of the caching and buffering required for good
NFS performance. However, this functionality is sufficient
for runningdecision support database applications (like TPC-
D) which execute mainly read operations on the database.

There are numerous limitations to our cluster extensions
to system calls. For example, we do not currently support the
passing of open file descriptors between processes. Also, our
current implementation of a remote fork does not implement
the full semantics of the UNIX fork. In particular, it does not
duplicate process state such as the current open files, memory
mappings, signal mask, etc. In addition, there are many
system calls which we have not extended at all. However,
we believe that the OS requirements of Oracle are extensive
enough to bring out many of the important issues. In addition,
there are many sets of applications which make use of the
same or a lower level of OS services.

4.3 Handling Complex Process Graphs

One of the most interesting issues that arises when supporting
complex applications on software DSM systems is dealing
with applications that have complex process creation graphs.
Software DSM systems have almost exclusively been used
to run applications which create a fixed number of processes
at startup that is equal to the number of processors and do
not create or destroy processes during the remainder of the
execution. Such a structure can be easily applied to most
scientific applications, but is inappropriate for many com-
mercial applications. For example, a database application
such as Oracle creates a number of long-lived “daemon” pro-
cesses, while “server” processes that do most of the work
may be created and destroyed in response to client requests.
In addition, the number of database processes may exceed the
number of physical processors, because of the use of daemon
processes and extra server processes as a way to help hide
I/O latencies.

The following section describes some of the issues that
arise in the presence of complex process graphs in more de-
tail. We next present our general solution to these problems.
Our solution is not specific to Shasta and may apply to other

8

software DSM systems. Next, we describe our implementa-
tion in Shasta which includes a number of simplifications to
the general solution. Finally, we describe a method for reduc-
ing the number of downgrade messages in SMP-Shasta that is
especially critical when the number of application processes
exceeds the number of processors.

4.3.1 Issues

Along withapplication data, software DSM systems typically
maintain some global protocol information in each applica-
tion process. For instance, in Shasta’s directory-based pro-
tocol, each block of application data has an assigned “home”
process that is responsible for maintaining the directory in-
formation for that block. Application processes that are dy-
namically created and destroyed raise a number of issues
with respect to maintaining such protocol state. First, how
should protocol state be preserved if a process is terminating?
Second, how should the responsibility for maintaining pro-
tocol information be distributed among processes to provide
good protocol efficiency? Should protocol responsibility be
continually redistributed as processes are created or should
a fixed set of processes automatically be created at startup
so that they can start maintaining and serving protocol in-
formation immediately (even though they may not execute
application code until later)? Similar issues arise with respect
to application data. For example, how should the application
data be preserved if a process is terminating, given that it
may hold exclusive copies of some data?

Another set of issues arise when an application creates
more processes than processors. Applications may be struc-
tured in this way for reasons of security or modularity, or as a
way of overlapping computation with I/O operations. Since
all requests from other nodes are served in software by the
application processes, a request can be greatly delayed if it is
sent to a process that is currently not active. Because the time
slice of the current process must end before the target process
is scheduled 3, the latency of the request can easily increase
to several milliseconds (which is two orders of magnitude
larger than the nominal latencies in Shasta). We assume here
that context switches are caused only by an application’s own
processes. Problems resulting from switches between pro-
cesses of different applications can potentially be dealt with
through techniques such as dynamic coscheduling [17].

Even if there is only one process per processor, a process
can be suspended due to a system call. For instance, a pro-
cess in a database application may be frequently suspended
waiting for I/O system calls to complete or for a signal from
another process. Again, a response to any incoming requests
will be delayed until the system call completes and the pro-
cess resumes execution.

A final issue has to do with load balancing. In a complex
application, some processes may be very active, while other

3We are assuming that incoming messages are detected through polling
instead of interrupts, because interrupts are much more expensiveand would
lead to higher latencies in the frequent cases when the target processes are
scheduled.

processes may be mostly inactive. What if one node ends up
withmore active processes than another node? In general, the
most active processes must be distributed evenly among the
nodes, and this balance may need to be adjusted dynamically
during a run.

4.3.2 Our General Solution

In this section, we describe our general solution to the issues
described above. In the next section, we describe our greatly
simplified but still workable implementation of the general
solution.

The general solution is as follows. The user (or appli-
cation) somehow specifies the pool of nodes on which to
run the application and exactly how many processors to use.
When the application starts, we immediately create one pro-
tocol process per processor which remains alive during the
entire application. The protocol process and all application
processes assigned to the same processor share protocol data
structures and memory. As application processes are cre-
ated, they are mapped to run on a processor in accordance
with a particular load-balancing policy. Application pro-
cesses are allowed to terminate whenever they wish to exit.
Since the associated protocol process always exists, no pro-
tocol or application data is ever lost as application processes
are destroyed.

In order to avoid the problem of long latencies that result
when a request is made to a process that is not currently run-
ning, it is essential that all processes assigned to the same
processor can serve all incoming requests for any of the pro-
cesses. Each application process (and the protocol process)
on a processor is able to access the incoming message queues
of all the other processes. The shared access to message
queues may require locking that was not previously required
for private message queues.

Protocol processes have a lower priority than application
processes and run a simple loop that checks for and handles
incoming messages. If there are any active application pro-
cesses, they will take over the processor and serve all incom-
ing messages. However, if there are no application processes
(none have been created or all have terminated), then the pro-
tocol process will execute and respond to requests. Similarly,
the protocol process will run if all application processes are
suspended in system calls. Protocol processes are analogous
to the shared-memory hardware in a multiprocessor, since
they preserve all the protocol and application data and are
always available to serve requests.

If a cluster consists of SMP nodes, then we have a choice of
using one protocol process per processor or per SMP node. If
there is one protocol process per processor, then we associate
application processes with specific protocol processes and
may attach protocol and application processes to specific
processors. In this case, locking costs are reduced, since we
only share message queues among processes running on the
same processor. If there is only one protocol process per
node, then we no longer need to attach processes to specific

9

processes. However, synchronization costs are higher, since
the message queues of all processes on the node must be
shared.

4.3.3 Our Implementation

We currently have an implementation that simplifies the
above general design in a number of ways but still func-
tions usefully. In particular, there are no protocol processes.
Instead, the user specifies a fixed number of Shasta processes
that are created when an application starts up. This number
should be the maximum number of processes that will ever be
alive during the application run. The user also specifies the
assignment of these processes to processors on the various
nodes in the cluster. The user can additionally specify which
processes should maintain directory information and serve di-
rectory requests. We do not currently have a load-balancing
algorithm that moves active processes among nodes, so we
require the user to do an assignment that achieves good load
balance.

New application processes that are created by fork are as-
signed to the existing Shasta processes. Applications that are
assigned to the same processor share application memory and
protocol data structures. We essentially use the SMP-Shasta
protocol and treat these processes as part of the same SMP
(even if they are running on a uniprocessor node). In addition,
processes on the same processor use shared message queues,
so that any active process can serve incoming messages for
all processes. One current limitation of our protocol is that
only the process that made a request for data can handle the
response to that request.

When an application process terminates, the original
Shasta process remains alive and continues to serve requests
for its protocol and application data (since there are no proto-
col processes). It can also be reused to run another application
process. However, a terminated process that doesn’t receive
requests for a while is put to sleep for successively longer
time periods to not take CPU time away from other active
processes.

We also allow new processes to join an existing group of
Shasta processes that are sharing memory. This functionality
is important for database and other commercial applications,
where server processes can be started up by a new client long
after the initial application processes have been started. The
joining process notifies the existing processes via a signal
that it wants to join the group, so that they establish commu-
nication with it.

Using our simplified implementation, we are currentlyable
to start up an Oracle 7.3 database on our cluster using Shasta
and run applications modeled after the TPC-B and TPC-
D benchmarks. Such runs involve creating a number of
daemon processes (as well several processes that die almost
immediately) and then creating server processes that do most
of the database work. We will give performance results for
the Oracle application in Section 6.

4.3.4 Reducing the Number of Downgrades Messages

There is one remaining case in the Shasta protocol where
a process may need to contact an inactive process. The
SMP-Shasta implementation sometimes needs to send ex-
plicit downgrade messages to other processes as part of ser-
vicing an incoming request (as described in Section 2.3).
Even though Shasta sends these messages selectively, the
long latency problem may still arise if the target of the down-
grade message is not currently scheduled. We have developed
a technique called direct downgrade that greatly reduces the
number of downgrade messages that must be sent.

We observe that a process P1 can directly downgrade the
private state table entry of another process P2 if P2 is not in
application code, since then the races described in Section
2.3 cannot occur. Therefore, all protocol routines and system
calls set a per-process flag when called and reset the flag when
they return to the application. Given proper synchronization,
a process P1 can then directly downgrade a private state
table entry of process P2 if P2’s flag indicates that it is not
in application code.4 This optimization is crucial for cases
where processes may block in system calls (e.g. pid block)
for long periods of time, since otherwise the response to
the original request will be delayed until the process finally
wakes up and handles the downgrade message.

5 Code Modification Issues

Shasta depends extensively on code modification both for
supporting fine grain coherence and for supporting transpar-
ent execution. This section briefly discusses some of the is-
sues related to code modification, which largely arise because
the executed code is different from the original application
code.

One issue is how and when code modification is triggered.
We currently do the Shasta code modification as an extra step
in building an application, and explicitly invoke the new exe-
cutable when we want to execute the application on a cluster.
However, this process can be automated by augmenting the
system loader to trigger the modification at application load
time when the user tries to run the application. The system
loaders for most modern UNIX systems already provide a re-
lated functionality for automatically linking in any necessary
shared libraries.

As with dynamically linking libraries, one issue with do-
ing code modification at load time is the amount of extra
time required. We provide some data on code modification
times under Shasta in Section 6.3. The loader can address
some of the speed issues by caching translations of the most
commonly executed applications in the file system. This
technique is also useful for ensuring that multiple invoca-
tions of the same application share the same modified text
image. For systems that use shared libraries, the loader can

4The protocol keeps track of the shared-memory addresses that may be
accessed by a system call, and disallows this optimization if the line that is
to be downgraded is within those ranges.

10

also cache translations of the most common shared libraries,
thereby reducing the amount of code that must be modified
when a new application is executed.

Code modification may also become an issue for devel-
opers who attempt to debug a Shasta application. When
it modifies an application, our version of ATOM correctly
updates the symbol table for the application to reflect the
code changes. Therefore, source code debugging functions
normally, and code changes are completely invisible for a
programmer debugging at the source code level. 5 The code
modifications are currently visible if the programmer debugs
at the machine code level, but the code changes could be
mostly hidden even at this level with some modifications to
the debugger.

A final problem with code modification relates to applica-
tions that actually examine or generate their own code. For
example, an application may do a checksum on its own code
as a security measure, or may dynamically generate code as
a way of improving its performance. Since there is no easy
solution for cases such as these, Shasta cannot necessarily be
used to execute such applications.

6 Performance Results

This section presents performance results for the Shasta im-
plementation. We first describe our prototype SMP cluster.
We next provide results for a few microbenchmarks that char-
acterize the cost of transparently executing hardware binaries.
The next set of results characterize the static and dynamic
overheads associated with inline checks for SPLASH-2 ap-
plications and the Oracle database. Finally, we present a
number of parallel performance results for the SPLASH-2
applications and for Oracle.

6.1 Prototype SMP Cluster

Our SMP cluster consists of four AlphaServer 4100s con-
nected by a Memory Channel network. Each AlphaServer
4100 has four 300 MHz 21164 processors, which each have
8 Kbyte on-chip instruction and data caches, a 96 Kbyte on-
chip combined second-level cache, and a 2 Mbyte board-level
cache. The individual processors are rated at 8.1 SpecInt95
and 12.7 SpecFP95, and the system bus has a bandwidth
of 1 Gbyte/s. The Memory Channel is a memory-mapped
network that allows a process to transmit data to a remote
process without any operating system overhead via a simple
store to a mapped page [6]. The one-way latency from user
process to user process over Memory Channel is about 4 mi-
croseconds, and each network link can support a bandwidth
of 60 Mbytes/sec. Each node in our cluster is connected to a
single network link.

Shasta uses a message-passing layer that runs efficiently

5The use of Shasta is visible in the debugger, however, in that some data
may be invalid in the local process, and this data is not automatically fetched
by Shasta when examined by the debugger.

MP SM SM locks
locks locks with prefetch

Cached latency 1.11 1.88 1.91
Uncontended miss latency 15.63 44.12 25.70
Contended miss latency 81.02 136.48 137.90

Table 1: Lock acquire latencies (in microseconds).

on top of the Memory Channel, and exploits shared memory
segments within an SMP when the communicating proces-
sors are on the same node. In the base Shasta protocol, the
minimum latency to fetch a 64-byte block from a remote node
(two hops) via the Memory Channel is 20 microseconds, and
the effective bandwidth for large blocks is about 35 Mbytes/s.

6.2 Synchronization and Validation Costs

Shasta supports two different ways for applications to do
synchronization. Applications can make use of high-level
lock and barrier routines provided by Shasta that use an effi-
cient message-passing protocol. Alternatively, as described
in Section 3.1, applications can use atomic Alpha instruc-
tions which are transparently supported by Shasta. As a way
of measuring the costs of supporting transparency, Table 1
shows the average time to acquire a lock via the message-
passing protocol (labeled MP) and via Alpha load-locked
and store-conditional instructions (labeled SM for shared
memory) in SMP-Shasta. The last column represents SM
locks augmented with a single prefetch-exclusive before the
load-locked instruction (as described in Section 3.1.2). The
first row gives the time for acquiring a lock that is free and
is cached locally. Even though the load-locked and store-
conditional are executed in hardware for SM locks, the pro-
tocol must still be called to enforce the memory barrier op-
eration that is called after acquiring the lock. The second
row gives the time for acquiring a free lock that resides on a
remote node. The MP locks have the lowest latency, because
they require sending only a single request to the remote node.
SM locks result in two round-trip requests, one for the load-
locked and another for the store-conditional. SM locks with
the prefetch-exclusive optimizationhave a lower latency than
standard SM locks because they eliminate one of the round-
trip requests. The last row gives the time for acquiring a lock
from a remote node when there is contention. The MP locks
have lowest latency under contention as well, because they
are queue-based. The prefetch-exclusive optimization does
not help in this case because the lock is not free when the
prefetch is issued. As expected, the message passing imple-
mentation is superior to transparently supporting the Alpha
synchronization instructions. However, as we will see, the
effect of this difference on the overall performance of an
application can be much smaller.

We have measured the cost of doing a memory barrier
with no outstanding stores pending as 0.32 microseconds
for Base-Shasta and 1.68 microseconds for SMP-Shasta (vs.
0.03 microseconds for a standard SMP application). The cost
for a memory barrier in Base-Shasta is to make a call into the

11

Standard Shasta app
app Base-Shasta SMP-Shasta

Open 58 66 79
Read of 4 bytes 12 16 20
Read of 8192 bytes 51 70 126
Read of 65536 bytes 370 576 845

Table 2: Average times for system calls (in microseconds)
for standard and Shasta applications.

protocol to check if there are any outstanding requests. The
extra cost for a memory barrier in SMP-Shasta is because of
the use of per-processor request counts as a way of reducing
contention during individual load and store misses. The cost
of a memory barrier could potentially be reduced by making
the appropriate check directly in inline code. In the case of
SMP-Shasta, the protocol would have to modified to allow a
simpler memory barrier check. Alternately, we could com-
pletely eliminate the memory barrier check by making the
Shasta protocol sequentially consistent (in particular, stalling
on all store misses).

We have also measured the costs of validating the argu-
ments to system calls. Table 2 gives the average times to
execute an open system call, and a read of 4 bytes, 8192
bytes, and 65536 bytes. The first column gives times for
a standard application, and the second and third columns
give times for a Shasta application using Base-Shasta and
SMP-Shasta, respectively. The file name argument of the
open call and the read buffer argument of the read call are
in shared memory, so the Shasta times include the validation
overhead. The times are higher for SMP-Shasta because of
locking costs. The Shasta validation overheads are certainly
measurable, but not excessive. In addition, these results are
for files that have been recently accessed, so no disk opera-
tions are involved. The relative overhead of validation would
be much less for system calls that accessed the disk.

6.3 Applications and Overhead Measure-
ments

We report results for nine of the SPLASH-2 applications [21].
Table 3 shows the input sizes used in our experiments along
with the sequential running times. We have increased some
of the standard input sizes in order to make sure that the
applications run for at least a few seconds on our cluster.
Table 3 also shows the single processor execution times for
each applicationafter the Shasta miss checks are added, along
with the percentage increase in the time over the original
sequential time (which averages 21.7%). 6 The last column
indicates the increase in the static code size due to the Shasta
miss checks.

The last three rows of the table gives the overheads for

6The running times of LU and LU-Contig are much shorter than those
in previous papers [12, 13] because of much better optimization by the
compiler in Digital Unix 4.0. The more efficient sequential runs also reduce
the parallel speedups attainable with Shasta for a given input size.

Oracle 7.3 executing a transaction processing application
(OLTP) modeled on the TPC-B database benchmark and de-
cision support queries (DSS-1 and DSS-2) modeled on the
TPC-D database benchmark. The first number in each row
reports the time for the standard Oracle executable to run on
a single Alpha processor. The second number gives the time
for the Shasta version of the Oracle executable to perform
the same run on a single processor. Although multiple pro-
cesses are used in the Oracle run, we set up the processes to
still share memory via UNIX shared memory segments rather
than via Shasta so that we can isolate the checking overhead.
Therefore, the indicated overhead corresponds solely to the
extra cost of doing the inline Shasta checks and polls. The
overhead for DSS-1 is fairly high. We believe this effect is
because the DSS-1 benchmark has fairly good locality (as it
searches entire tables), but does not have any simple inner
loopwhose accesses can be batched. The overhead of DSS-2,
a much larger query, is somewhat lower.

We also measured the time to generate the new Shasta
executables. For the SPLASH-2 applications, which have
from 255 to 485 procedures, the time ranges from 4.0 to 7.3
seconds. About 3 seconds of that time is the cost of reading
in the old executable and writing out the new executable, and
the remainder is the overhead for doing the Shasta analysis
and code insertion. For Oracle 7.3, which has over 12000
procedures, the conversion time is 202 seconds. Of this time,
about 26 seconds is to read the old and write the new exe-
cutable, 104 seconds is to do the necessary dataflow analysis,
and 72 seconds is to do the other Shasta analysis and code in-
sertion. We have not optimized any of the Shasta processing
phases, and believe that the dataflow analysis routines and
the other Shasta analysis routines can be significantly sped
up. The code modification delays for the SPLASH-2 appli-
cations seem acceptable, especially if optimizations lower
them to 2-3 seconds. While the modification time for Oracle
is large, we assume this initial conversion time is not signifi-
cant for such production applications which are executed for
long periods of time.

6.4 SPLASH-2 Parallel Performance

This section presents the parallel performance of the
SPLASH-2 applications running on Shasta. In our results,
two- and four-processor runs always execute entirely on a sin-
gle node, and 8-processor runs use two nodes. We are using
the Shasta SMP protocol (SMP-Shasta) that allows processes
on the same SMP node to share application data through the
hardware coherence mechanism. Processors on the same
node share the Memory Channel bandwidth when sending
messages to destinations on other nodes. We use a fixed
Shasta line size of 64 bytes. For FMM, LU-Contiguous and
Ocean, we use the standard home placement optimization, as
is done in most studies of the SPLASH-2 applications.

Figure 3 shows the speedups for the unmodified applica-
tions running on our prototype cluster. The speedups shown
are based on the execution time of the application running via

12

problem size sequential with Shasta code size
time miss checks increase

Barnes 16K particles 9.19s 10.08s (9.6%) 59%
FMM 32K particles 14.43s 16.69s (15.6%) 58%
LU 1024x1024 matrix 15.64s 19.93s (27.4%) 65%
LU-Contig 1024x1024 matrix 9.97s 13.55s (35.9%) 57%
Ocean 514x514 ocean 10.55s 13.86s (31.3%) 111%
Raytrace balls4 65.50s 81.41s (24.2%) 67%
Volrend head 1.67s 1.71s (2.3%) 65%
Water-Nsq 1000 molecules 8.30s 10.26s (23.6%) 59%
Water-Sp 1728 molecules 6.37s 8.06s (26.5%) 60%
Oracle OLTP 31.09s 37.06 (19.2%) 96%
Oracle DSS-1 8.83s 14.85s (68.1%) 96%
Oracle DSS-2 83.76s 114.93 (37.2%) 96%

Table 3: Sequential times and checking overheads for the SPLASH-2 applications and Oracle.

� Raytrace
� Water-Nsq
� FMM
� Water-Sp
� Barnes
� Volrend
� LU
� LU-Contig
� Ocean

|

0
|

2
|

4
|

6
|

8
|

10
|

12
|

14
|

16

|0

|1

|2

|3

|4

|5

|6

|7

|8

|9

 Number of Processors

 S
pe

ed
up

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

� Raytrace
� Water-Nsq
� FMM
� Water-Sp
� Barnes
� Volrend
� LU
� LU-Contig
� Ocean

|

0
|

2
|

4
|

6
|

8
|

10
|

12
|

14
|

16

|0

|1

|2

|3

|4

|5

|6

|7

|8
|9

 Number of Processors

 S
pe

ed
up

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�
�

�

�

�
�

�

Figure 3: Speedups of SPLASH-2 applications with message-passing (left) and Alpha (right) synchronization.

Shasta on 1 to 16 processors relative to the execution of the
original sequential application (with no miss checks). The
left graph gives speedups for the SPLASH applications when
using the message-passing version of locks and barriers. The
right graph gives speedups for SPLASH-2 binaries that are
compiled for Alpha hardware multiprocessor platforms and
hence use load-locked, store-conditional, and memory barrier
instructions to achieve synchronization and ordering. Over-
all, the speedups achieved by Shasta are quite promising
given the extremely fast processors (300MHz Alpha 21164)
and the small problem sizes used in this experiment.

When using the native Alpha binaries, 16-processor runs
of six applications slow down by just 2-10%. However,
16-processor runs of Raytrace, Volrend, and Ocean slow
down by 78%, 50%, and 34% respectively. Raytrace slows
down because it has a custom memory allocator protected
by a single lock which is highly contended, and for which
the queue-based message-passing implementation performs
much better. Volrend also slows down because of a few
highly contended locks. Ocean slows down because of a high
rate of executing barriers, which can also lead to contention,
since the barrier implementation requires each processor to
increment the barrier count atomically. We found that doing

a prefetch-exclusive prior to a load-locked/store-conditional
sequence, as described in Section 3.1.2, speeds up some of
the lock-intensive applications by 3-7%; however, the appli-
cations that exhibit high contention locks or frequent barriers
can slow down by up to 20%. One possible technique is to
use runtime information to do prefetches only for addresses
which do not have a lot of contention.

In contrast to page-based software DSM systems, the per-
formance of Shasta is quite insensitive to the underlying
memory consistency model. To illustrate this point, Figure
4 shows normalized execution times for 16-processor runs
(on Base-Shasta) of the SPLASH-2 applications with block-
ing stores (labeled SC for sequential consistency) and with
nonblocking stores (labeled RC for a relaxed model such as
release consistency). The figure also shows the breakdowns
of the execution into time spent executing the application,
time spent stalled for reads, time spent stalled for writes (be-
cause of limits on the number of outstanding writes), time
spent stalled on synchronization, and time spent handling
messages while not stalled. The loss in performance from
using a more strict memory consistency model is at most
10% across the SPLASH-2 applications. This result indicates
that Shasta is also suited for executing commercial binaries

13

||0

|10

|20

|30

|40

|50

|60

|70

|80

|90

|100

|110
 N

or
m

al
iz

ed
 r

un
 ti

m
e

Other
Msg
Sync
Write
Read
Task

SC RC

Barnes

SC RC

FMM

SC RC

LU

SC RC

LUcont

SC RC

Ocean

SC RC

RayTr

SC RC

VolRend

SC RC

WaterN

SC RC

WaterSp

Figure 4: Effect of nonblocking stores for 16-processor runs.

that require a strict memory consistency model (e.g., Intel
x86). A similar experiment with a typical page-based system
would exhibit a much larger reduction in performance, be-
cause page-based systems heavily depend on relaxed models
to alleviate problems such as false sharing that arise due to
the page-sized coherence granularity.

6.5 Oracle Performance

We have only preliminary results for running Oracle on
Shasta, because our implementation still suffers from a num-
ber of limitations. First, our current protocol implementation
allows a process to serve most incoming messages directed
to another process on the same SMP, but does not allow a
process to handle replies to another process’ request for data.
The active process may therefore stall at a memory barrier
because a store made by a now inactive process can not yet
completed. Second, we do not do dynamic load balancing
of processes. In Oracle, a server process will often block
to allow a daemon process to complete its request. How-
ever, if the daemon process is not on the same node as the
server processor, then the daemon process will not be able to
take advantage of the idle processor. Because of these lim-
itations, our Oracle runs are not performing as well as they
might. Finally, we do not currently have a distributed file
system across the cluster. Since transaction processing runs
do frequent writes to the database and require a coherent file
system across the nodes, we are able to execute OLTP (mod-
eled after TPC-B) only when all processes are on the same
node (but still using Shasta to share memory). We therefore
only report results for decision support runs.

Table 4 gives a small set of results when the DSS-1 query
is run on Oracle using one, two, or three servers to compute
the query response in parallel. These results are for a query
which is searching tables that are already cached in memory
by the database. Because the data being analyzed is cached,
the main server processes spend almost no time in I/O system
calls. However, some of the daemon processes do read and
write system calls as part of the normal database operation.

Oracle on SMP Oracle on Shasta
extra proc 1 proc/server

One server 8.83s 15.51s 15.40s
Two servers 4.77s 12.57s 19.29s
Three servers 3.06s 8.11s 11.11s

Table 4: Run times for DSS-1 on Shasta with varying num-
bers of servers.

||0

|10

|20

|30

|40

|50
|60

|70
|80

|90

|100

|110

|120

|130

|140

|150

|160

|170

 N
or

m
al

iz
ed

 R
un

 T
im

e

Msg
MB
Block
Write
Read
Task

EX EQ
2 servers

EX EQ
3 servers

Figure 5: Time breakdowns for runs of DSS-1.

The first column gives the times when the query is run on
standard Oracle on a single AlphaServer of our cluster using
as many processors as servers. The second column gives
times when Oracle is running on SMP-Shasta. All of the
database daemons and one of the servers is placed on one Al-
phaServer, while the second and third servers are placed on
the second AlphaServer. However, we use one extra proces-
sor on the first AlphaServer so that the most active daemons
do not have to context-switch with the server. Finally, the
last column gives Oracle running on Shasta across two Al-
phaServers, but using exactly one processor per server. That
is, all the daemons run on the same processor as the first
server. Figure 5 gives time breakdowns for two and three
server runs when using an extra processor (EX) and equal
numbers of servers and processors (EQ). The segments give
the time executing the application (“task” time), time spent
stalled for reads, time spent stalled for writes, time spent
explicitly blocked in pid block, time spent waiting at a mem-
ory barriers (for stores to complete), and time spent handling
messages while not stalled. The bars are normalized so that
the time for the EX runs is 100%.

We note the base Oracle performance scales well with
increasing numbers of servers, because the query is fully
parallelizable, though the servers do interact somewhat in
accessing common database control structures. We also get
speedup when we run Oracle on Shasta across the cluster
with one extra processor. However, because of the Shasta
checking overhead and communication of the server with the
daemons, three servers are required to get only slightly better
performance than a one-server Oracle run on an SMP. We
note from the time breakdowns that the read stall time goes
down between two and three server runs, because of sharing
via hardware between the second and third servers. When
the same number of processors as servers are used, we no
longer get a performance improvement when going from one

14

to two servers. Both the time spent blocked and time spent
stalled at memory barriers go up significantly, because of the
load balancing and message handling limitations described
above. The average latency of a read request also goes up,
from 244 �s to 323 �s for two servers, and 103 �s to 203 �s
for three servers. The majority of read requests have latencies
of 20-40 �s, but the average is increased by requests that are
delayed from effects due to context switching. The direct
downgrade optimization of Section 4.3.4 is very important
for all these runs; when it is turned off, all of the runs take so
long that we did not measure them.

This workload is not very typical of decision supportwork-
loads, because it is so small and because all the data is
already cached in memory. In addition, we would expect
worse behavior for transaction processing workloads where
the database is modified frequently and there is much more
sharing between server processes. The main point of these
results is to illustrate that speedup is possible for database
code running on top of Shasta.

7 Related Work

Shasta’s basic approach to checking loads and stores is de-
rived from the Blizzard-S work [15]. However, we have
substantially extended the previous work in this area by de-
veloping several techniques for reducing the otherwise ex-
cessive checking overheads. We have also designed an ef-
ficient protocol that exploits a relaxed consistency model,
supports multiple coherence granularities in a single applica-
tion, and executes efficiently on SMP clusters. Finally, we
have developed methods to transparently execute unmodified
multiprocessor executables.

There are a variety of other software DSM systems that
use the virtual memory hardware to detect access to data that
is not available locally in the correct state [1, 2, 4, 7, 9, 19].
None of these systems have focused on transparently execut-
ing SMP binaries. Most of these page-based systems make
use of aggressive protocol optimizations in order to minimize
the false sharing problems that can arise because of the large
coherence granularity. As described in Section 3, most of
these protocol optimizations violate the semantics of mem-
ory models for commercial processor architectures. These
systems would therefore have to use substantially less effi-
cient protocols in order to correctly execute unmodified SMP
executables. However, our solutions for extending system
calls across the cluster and for dealing with applications that
dynamically create and destroy processes can potentially be
adapted for use by other software DSM systems.

There are a number of distributed operating systems
that have been developed to make a cluster of machines
appear as a single machine with a single operating sys-
tem [8, 10, 11, 23]. These systems have concentrated on
extending nearly all operating system services to achieve
identical functionality regardless of where they are invoked
in the cluster. These extensions are typically implemented
through kernel modifications that add a global communi-

cation layer among the nodes and route kernel requests to
the appropriate node. The above systems do not typically
attempt to support shared memory between processes on dif-
ferent nodes, though a few systems do support sharing via
virtual memory mechanisms using a simple protocol similar
to Ivy [9].

We have not attempted to support a full distributed oper-
ating system in Shasta. We have instead focused on sup-
porting shared memory efficiently between processes, and
on supporting the necessary operating system services to run
interesting applications such as databases. In addition, our
method for extending operating system services is to mod-
ify application executables, rather than to modify the kernel.
This approach allows us to run on commodity hardware and
operating systems.

8 Conclusion

A key goal of the Shasta project is to address the issues
that can increase the commercial viability of software DSM
systems, namely good performance and a sufficiently large
applicationbase. Our previous work on Shasta has explored a
large number of optimizations to achieve better performance,
including efficient support for fine-grain coherence [14], ef-
fective protocol optimizations [12], and effectively exploiting
a cluster of SMP nodes [13]. With respect to increasing the
application base, we believe that the most promising way of
addressing this issue is to support transparent execution of
the increasing number of application binaries available for
hardware DSM systems.

This paper describes the challenging issues that arise in
transparent execution of binaries, which include supporting
the full user-level instruction set for a commercial architec-
ture and extending OS services across a cluster to provide
a seamless view to an application. We also describe the
solutions that we have implemented in the Shasta system.
Shasta fully supports the Alpha instruction set architecture,
including atomic memory operations and the Alpha memory
model. Due to the large amount of effort necessary to extend
all OS services, we chose a short-term goal of supportingsuf-
ficient functionality to execute a commercial database such
as Oracle, which still uses a relatively rich set of OS services.
We have extended the necessary system calls for managing
processes, shared memory segments, and files, and deal with
issues that arise when applications dynamically create and
destroy processes. In addition, Shasta validates system call
arguments to ensure that the referenced data is available be-
fore the system call is made. The solutions we have adopted
in Shasta are greatly simplified by our ability to modify bi-
naries, which is also used to support fine-grain coherence.

The Shasta system is fully functional on our cluster of
SMPs and can transparently execute SPLASH-2 binaries that
run on an Alpha multiprocessor. We can also run Oracle 7.3
across a cluster using Shasta, including runs that are mod-
eled on the TPC-B and TPC-D benchmarks. Our perfor-
mance results demonstrate that supporting transparent binary

15

execution has performance costs but still allows for good
performance. Shasta’s ability to support coherence at a fine
granularity plays a fundamental role in this result, by allow-
ing for efficient support of the memory models of commercial
processor architectures. Our research on transparently exe-
cuting commercial binaries raises a number of previously
unexplored issues in the design of software DSM systems,
and in their interaction with OS services, which we hope will
interest researchers in both communities.

Acknowledgments

We would like to thank John Heinlein and Anshu Aggarwal
for help with the implementation, Luiz Barroso for assis-
tance in setting up and using Oracle, and Marc Viredaz and
Drew Kramer for their help in maintaining our cluster of Al-
phaServers. We also thank the anonymous referees for their
comments.

TPC-B and TPC-D are trademarks of the Transaction Pro-
cessing Performance Council.

References
[1] A. Bilas, L. Iftode, D. Martin, and J. P. Singh. Shared Virtual Memory

Across SMP Nodes Using Automatic Update: Protocols and Per-
formance. Technical Report TR-517-96, Department of Computer
Science, Princeton University, 1996.

[2] J. B. Carter, J. K. Bennett, and W. Zwaenepoel. Implementation and
Performance of Munin. In Proceedings of the 13th ACM Symposium
on Operating Systems Principles, pages 152–164, Oct. 1991.

[3] A. L. Cox, S. Dwarkadas, P. Keleher, H. Lu, R. Rajamony, and
W. Zwaenepoel. Software Versus Hardware Shared-Memory Imple-
mentation: A Case Study. In Proceedings of the 21st Annual Inter-
national Symposium on Computer Architecture, pages 106–117, April
1994.

[4] A. Erlichson, N. Nuckolls, G. Chesson, and J. Hennessy. SoftFLASH:
Analyzing the Performance of Clustered Distributed Virtual Shared
Memory. In Proceedings of the Seventh International Conference
on Architectural Support for Programming Languages and Operating
Systems, pages 210–220, Oct. 1996.

[5] K. Gharachorloo, D. Lenoski, J. Laudon, P. Gibbons, A. Gupta, and
J. Hennessy. Memory Consistency and Event Ordering in Scalable
Shared-Memory Multiprocessors. In Proceedings of the 17th An-
nual International Symposium on Computer Architecture, pages 15–
26, May 1990.

[6] R. B. Gillett. Memory Channel Network for PCI. IEEE Micro,
16(1):12–18, Feb. 1996.

[7] P. Keleher, A. L. Cox, S. Dwarkadas, and W. Zwaenepoel. TreadMarks:
Distributed Shared Memory on Standard Workstations and Operating
Systems. In Proceedingsof the 1994 Winter Usenix Conference, pages
115–132, January 1994.

[8] Y. A. Khalidi, J. M. Bernabeu, V. Matena, K. Shirriff, and M. Thadani.
Solaris MC: A MultiComputer OS. In Proceedings of the USENIX
1996 Annual Technical Conference, pages 191–204, San Diego, CA,
Jan. 1996.

[9] K. Li and P. Hudak. Memory Coherence in Shared Virtual Memory
Systems. ACM Transactions on Computer Systems, 7(4):321–359,
Nov. 1989.

[10] J. Ousterhout, A. Cherenson, F. Douglis, M. Nelson, and B. Welch.
The Sprite Network Operating System. IEEE Computer, Feb. 1988.

[11] G. Popek and B. Walker. The LOCUS Distributed System Architecture.
MIT Press, 1985.

[12] D. J. Scales and K. Gharachorloo. Design and Performance of the
Shasta Distributed Shared Memory Protocol. In Proceedings of the
11th ACM International Conference on Supercomputing, July 1997.
Extended version available as Western Research Laboratory technical
report 97/2 (Feb. 1997).

[13] D. J. Scales, K. Gharachorloo, and A. Aggarwal. Fine-Grain Software
Distributed Shared Memory on SMP Clusters. Technical Report 97/3,
Western Research Laboratory, Digital Equipment Corporation, Feb.
1997.

[14] D. J. Scales, K. Gharachorloo, and C. A. Thekkath. Shasta: A Low-
Overhead Software-Only Approach to Fine-Grain Shared Memory. In
Proceedings of the Seventh International Conference on Architectural
Support for Programming Languages and Operating Systems, pages
174–185, Oct. 1996.

[15] I. Schoinas, B. Falsafi, A. R. Lebeck, S. K. Reinhardt, J. R. Larus,
and D. A. Wood. Fine-grain Access Control for Distributed Shared
Memory. In Proceedings of the Sixth International Conference on
Architectural Support for Programming Languages and Operating
Systems, pages 297–306, Oct. 1994.

[16] R. L. Sites and R. T. Witek, editors. Alpha AXP Architecture Reference
Manual. Digital Press, 1995. Second Edition.

[17] P. Sobalvarro. Demand-based Coscheduling of Parallel Jobs on Mul-
tiprogrammedMultiprocessors. PhD thesis, MIT Laboratory for Com-
puter Science, Feb. 1997.

[18] A. Srivastava and A. Eustace. ATOM: A System for Building Cus-
tomized Program Analysis Tools. In Proceedings of the SIGPLAN ’94
Conference on Programming Language Design and Implementation,
pages 196–205, June 1994.

[19] R. Stets, S. Dwarkadas, N. Hardavellas, G. Hunt, L. Kontothanas-
sis, S. Parthasarathy, and M. Scott. Cashmere-2L: Software Coherent
Shared Memory on a Clustered Remote-Write Network. In Proceed-
ings of the 16th ACM Symposium on Operating Systems Principles,
Oct. 1997.

[20] C. A. Thekkath, T. Mann, and E. K. Lee. Frangipani: A Scalable
Distributed File System. In Proceedings of the 16th ACM Symposium
on Operating Systems Principles, Oct. 1997.

[21] S. C. Woo, M. Ohara, E. Torrie, J. P. Singh, and A. Gupta. The
SPLASH-2 Programs: Characterization and Methodological Consid-
erations. In Proceedings of the 22nd International Symposium on
Computer Architecture, pages 24–36, June 1995.

[22] D. Yeung, J. Kubiatowicz, and A. Agarwal. MGS: A Multigrain Shared
Memory System. In Proceedings of the 23rd Annual International
Symposium on Computer Architecture, pages 44–56, May 1996.

[23] R. Zajcew et al. An OSF/1 UNIX for Massively Parallel Multicom-
puters. In Proceedings of the Winter 1993 USENIX Conference, pages
449–468, Jan. 1993.

16

