
The ITC Distributed File System"
Principles and Design

M. Satyanarayanan

John H. Howard

David A. Nichols

Robert N. Sidebotham

Alfred Z. Spector

Michael J. West

INFORMATION TECHNOLOGY CENTER

CARNEGIE-MELLON UNIVERSITY

PITTSBURGH, PA 15213

A b s t r a c t

This paper presents the design and rationale of a distributed file

system for a network of more than 5000 personal computer

workstations. While scale has been the dominant design influence,

careful attention has also been paid to the goals of location

transparency, user mobility and compatibility with existing operating

system interfaces. Security is an important design consideration, and

the mechanisms for it do not assume that the workstations or the

network are secure. Caching of entire files at workstations is a key

element in this design. A prototype of this system has been built and

is in use by a user community of about 400 individuals. A refined

implementation that will scale more gracefully and provide better

performance is close to completion.

1. Introduction

A campus-wide network of personal computer workstations has

been proposed as an appropriate solution to the long.term

computing needs of Carnegie-Mellon University (CMU)[8]. An

overview paper [14] presents the rationale for this decison, along

with other background information. Most pertinent to this paper

is the requirement that there be a mechanism to support sharing

Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct
commercial advantage, the ACM copyright notice and the title of the
publication and its date appear, and notice is given that copying is by
permission of the Association for Computing Machinery. To copy
otherwise, or to republish, requires a fee and/or specific permission.

© 1985 A C M - 0 - 8 9 7 9 1 - 1 7 4 - 1 - 1 2 / 8 5 - 0 0 3 5 $ 0 0 . 7 5

of information between workstations. We have adopted a

distributed file system with a single name space spanning all the

workstations on campus as the sharing mechanism.

In this paper we present the ITC distributed file system as a

solution to a system design problem. Sections 1.1 and

1.2 characterize the usage environment and discuss the

considerations which led to our design. Given this context,

Sectio.,s 2 and 3 describe the solution and the reasons for

specific design decisions. Section 4 is retrospective in nature

and discusses certain general principles that emerged during the

course of the design. Section 5 describes our experience with a

prototype implementation. To place our design in proper

perspective, Section 6 compares it with a representative sample

of other distributed file systems. Finally, Section 7 reviews the

highlights of the paper.

35

1.1. Usage Environment

CMU is composed of approximately 6,000 individuals, each of

whom could eventually own a workstation. In addition there will

be some workstations at public facilities such as libraries. These

observations bound the scale of the system to be between 5,000

and 100000 network nodes.

It is usually ttle case that individuals confine their computational

activities to a specific physical area. For example, we expect a

faculty memloer to typically use the workstation~n his office.

Students, on the other hand, will tend to use workstations in their

dormituries. However, it is not acceptable to insist that an

individual restrict his activities to one work.station. The sharing

mechanism we provide should not inhibit natural and

spontaneous movement of users.

Most computing at CMU is related to education or research and

typically involves text-processing or programming activities. The

use of computers for electronic mail mid bulletin boards is also

common. There is some numerical!y-oriented computation

related to simulation in departments such as physics, chemistry

and electrical engineering Finally, computers play a small but

increasing role in the administration of the university.

While we expect our system usage to be initially consistent with

this profile, widespread use of a campus-wide personal computer

network may change established usage patterns. To meet these

changes, a certain degree of system evolution witl be inevitable.

1.2. Design Considerat ions

The most daunting aspect of this system is its scale. The

projected final size of 5,000 or more nodes is at least an order of

magnitude larger than any existing distributed file system.

Concern for scalability has strongly motivated many key aspects

of our design.

The physical compactness of the CMU campus makes it possible

to use local area network (LAN) technology. A larger or more

physically fragmented institution might have had to resort to

lower.bandwidth networking technology.

The size of the system and its distribution across a campus make

it impossible to make the entire system physically secure. It is

reasonable to require that a small number of selected

components of the system be located in physically secure areas.

However, cross-campus LAN segments will be exposed, and

user-owned workstations will be outside our administrative

control. Further, individual ownership of workstations carries

with it the risk that owners may choose to modify the hardware

and software on their workstations in arbitrary ways. Hence

workstations cannot be called upon to play any trusted role in

preserving the security of the system.

We believe it important to be able to support many different kinds

of workstations, and regard heterogeneity as the rule rather than

the exception. Therefore, although we have focussed on a

homogeneous environment for initial implementation and

deployment experience, our design is extensible to an

environment with diverse workstation hardware and operating

systems.

2. High-level Design

2.1. The Sharing Mechanism

Why did we choose a distributed file system as our sharing

mechanism?

The design alternatives for sharing in a network fall into three

broad classes, ordered below according to decreasing degrees of

transparency, complexity and communication requirement:

• Distributed operating systems such as the V
kernel[4] and Accent[10] provide total network
transparency for a substantial fraction of their
primitives. In particular, they provide transparent
access to remote files.

• Distributed file systems such as the Cedar file system
[15] and IBIS [17] allow application programs to use
remote files exactly as if they were stored locally.
Such network transparency does not, however,
extend to other resources such as processes and
virtual memory.

• Loosely-coupled networks, such as the Arpanet, do
not offer network transparency at all. Sharing in
such a system involves explicit user actions to
transfer data.

Given our desire to make sharing as effortless as possible, we

rejected a Ioosely-cotipled network approach. On the other

hand, we found the constraints on our design in more serious

conflict with a distributed operating system approach than a

distributed file system approach. A number of considerations led

us to this conclusion:

Complexity Since a file system is only one component of
an operating system, distributing it is likely to
be easier than distributing the entire
operating system.

Scale A distributed operating system is likely to
require more frequent interactions between
its components for resource management.
The anticipated scale of the system makes
even the design of a distributed file system a
formidable task. Its implications for a
distributed operating system are more severe.

34

Security

Heterogeneity

Workstations are not trustworthy. The
building of a distributed operating system
from untrustworthy components is a much
harder problem.

It seems a more difficult proposition to span a
spectrum of workstations with a distributed
operating system than with a distributed file
system.

Further encouragement for adopting a distributed file system

approach comes from the fact that the most common and well-

understood mode of sharing between users on timesharing

systems is via the file system.

2.2. File System Goals

The observations presented earlier motivate the following goals

of our system:

Location Transparency
There should be a single name space for all
shared files in the system. Given the size of
the system, we consider it unacceptable to
require users to remember details such as the
current location of a file or the site where it
was created. Consequently, the naming
scheme should not incorporate any
information pertaining to the location of files.

Further, the resolution of file names to
network storage sites should be performed by
the file system.

User Mobility Users should be able to access any file in the
shared name space from any workstation.
The performance characteristics of the
system should not discourage users from
accessing their files from workstations other
than the one at which they usually work.

Security The file system cannot assume a benevolent
user environment. To encourage sharing of
files between users, the protection
mechanism should allow a wide range of
policies to be specified. Security should not
be predicated on the integrity of workstations.

Performance Acceptable performance is hard to quantify,
except in very specific circumstances. Our
goal is to provide a level of file system
performance that is at least as good as that of
a lightly.loaded timesharing system at CMU.
Users should never feel the need to make
explicit file placement decisions to improve
performance.

Sca/abi/ity It is inevitable that the system will grow with
time. Such growth should not cause serious
disruption of service, nor significant loss of
performance to users.

Availability Single point network or machine failures
should not affect the entire user community.
We are willing, however, to accept temporary
loss of service to small groups of users.

Integrity The probability of loss of stored data should
be at least as low as on the current
timesharing systems at CMU. Users should
not feel compelled to make backup copies of
their files because of the unreliability of the
system.

Heterogeneity A variety of workstations should be able to
participate in the sharing of files via the
distributed file system. It should be relatively
simple to integrate a new type of workstation.

A system that successfully meets these goals would resemble a

giant timesharing file system spanning the entire CMU campus.

Noticeably absent from the above list of goals is the ability to

support large databases. As mentioned in Section 1.1, there is

currently little use of such databases at CMU. The design

described in this paper is suitable for files up to a few megabytes

in size, given existing LAN transfer rates and workstation disk

capacities. Experimental evidence indicates that over 99% of the

files in use on a typical CMU timesharing system fall within this

class[12]. In the future, we do expect large campus-wide

databases to become increasingly important. A separate

distributed database design will have to address this issue.

2.3. Vice and Virtue

Figure 2-1 presents a high-level view of the entire system. The

large amoeba.like structure in the middle, called Vice 1, is a

collection of communication and computational resources. A

Virtue is an individual workstation attached to Vice. Software in

Virtue makes the shared files in Vice appear as a integral part of

the workstation file system.

There is a well.defined file system interface between Vice and

Virtue. This interface is relatively static and enhancements to it

occur in an upward-compatible manner as the system evolves. A

stable interface is the key to supporting heterogeneity. To

integrate a new type of workstation into the distributed file

system, one need only implement software that maps the file

system interface of that workstation to the Vice interface.

Vice is the boundary of trustworthiness. All computing and

communication elements within Vice are assumed to be secure.

This guarantee is achieved through physical and administrative

control of computers and the use of encryption on the network.

No user programs are executed on any Vice machine. Vice is

therefore an internally secure environment unless Trojan horses

are introduced by trusted system programmers.

lit is rumored that Vice stands for "Vast Integrated Computing Environment'*

3"7

I VIRTUE I

i v,o;o I iv,° o I
Each Virtue is an individual workstation. Vice has fine structure that is sho~,'n in detail
in Figure 2-2. This diagram is certainly not to scale, since Vice will encompas.~ an entire
campust

Figure 2-1: Vice and Virtue

Virtue, however, is under the control of individual users and is

never trusted by Vice. After mutual authentication Vice and

Virtue communicate only via encrypted messages. It is

encr'yption that maintains security in spite of the fact the network

is not physically secure.

Viewed at a finer granularity than Figure 2-1, Vice is composed of

a collection of semi-autonomous Clusters connected together by

a backbone LAN. Figure 2-2 illustrates such an interconnection

scheme. Each cluster consists of a collection of Virtue

workstations and a representative of Vice called a Cluster Server.

Cluster
Server

Cluster 0

Backbone Ethernet

I Cluster
Server

Cluster I

F¾
Cluster
Server

n

Cluster2

Each WS is a Virtue workstation. We expect a cluster to contain between 50 and 100
workstations. The final system that spans the CMU campus will have a total of about
100 clusters

Figure 2-2: Vice Topology

38

Each of the workstations in Figure 2-2 logically posseses a local

disk. Whether this logical disk is physically associated with the

workstation or is provided by a disk server is an issue that is

orthogonal to the design presented here. Using a disk server may

be cheaper, but will entail performance degradation. Scaling to

5000 workstations is more difficult when these workstations are

paging over the network in addition to accessing files remotely.

Further, security is compromised unless all traffic between the

disk server and its clients is encrypted. We are not confident that

paging traffic can be encrypted without excessive performance

degradation. Finally, nontechnical considerations such as the

need to allow students to take their workstations away from CMU

during vacations and upon graduation have further motivated our

requirement that workstations possess physical disks.

The Bridges which connect individual clusters to the backbone in

Figure 2-2 serve as routers. It should be emphasised that the

detailed topology of the network is invisible to workstations. All of

Vice is logically one network, with the bridges providing a uniform

network address space for all nodes.

Vice is decomposed into clusters primarily to addresses the

problem of scale. For optimal performance, Virtue should use the

server on its own cluster almost all the time, thereby making

cross-cluster file references relatively infrequent. Such an

access pattern balances server load and minimizes delays

through the bridges. This problem of localizing file references is

reminiscent of the problem of localizing virtual memory

references in hierarchically structured multiprocessors such as

Cm" [6].

Physical security considerations may dictate that cluster servers

be co-located in small groups in machine rooms, even though

each cluster server is logically associated with the work= 'ations in

its cluster.

3. De ta i l ed Design

In designing a distributed file system one has to answer a number

of fundamental questions. Chief among these are:

• How are files named? Is the location of a file in the
network apparent from its name? If not, how are files
located in the system?

• Can multiple copies of a file be stored at different
sites? How are these copies updated and kept
consistent?

e What are the primitives available to application
programs to operate on remote files? Are they
identical to the primitives provided for local files?

• How do network nodes access files? What are the
inter-machine primitives available?

• How is security enforced in the system? Can the
nodes on the network trust each other? Can the
network be assumed immune from eavesdropping?

• What is a feasible implementation strategy for the
design?

This list is by no means exhaustive, but it does characterize a

core of design issues that any distributed file system design must

address either explicitly or by default. No single set of answers to

these questions can be considered optimal for all situations. The

choice depends on the goals of the design and the external

constraints placed upon it.

In Sections 3.1 to 3.5 we describe our design by examing the

choices that we have made in answering the questions listed

above. This organization is exactly mirrored in Section 6, where

we compare our system to other distributed file systems.

3.1. Naming and Locat ion

From the point of view of each workstation, the space of file

names is p~rtitioned into a Local name space and a Shared name

space. Figure 3-1 illustrates this partitioning. The shared name

space is the same for all workstations, and contains the majority

of files accessed by users. The local name space is small, distinct

for each workstation, and contains files which typically belong to

one of the following classes:

1. System files essential for initializing the workstation
and for its functioning prior to connection to Vice.

2. Temporary files, such as those containing
intermediate output from compiler phases. Placing
such files in the shared name space serves no useful
purpose.

3. Data files that the owner of the workstation considers
so sensitive that he is unwilling to entrust them to the
security mechanisms of Vice. In practice we expect
few such files. Since these files cannot be accessed
from any other workstation they hinder user mobility.

4. A small number of frequently used, but rarely
updated, system programs. Such programs may be
stored locally to improve performance and to allow at
least a modicum of usability when Vice is unavailable.

Shared files are stored in Vice in a hierarchically structured name

space, similar to Unix [11]. It is the responsibility of Virtue to map

this hierachical structure to a format consistent with the local

name space. To simplify exposition, we assume throughout this

section that Virtue is a Unix workstation.

In Unix terminology, the local name space is the Root File System

of a workstation and the shared name space is mounted on a

39

LO AL

This is a Venn diagram del ,cting local and shared name spaces. Local 1, Local 2, and
Local 3 correspond to files in the local file systems of three different workstations.
Shared corresponds to the shared set of files in the system, and is identical for all the
workstations.

Figu re 3-1 : Shared and Local Name Spaces

/

tmp bin lib vmunix ~
Local Files vice

Shared Files

The files in the " / v i ce " subtree are common to all the workstations in the system.
Certain directories and files in the local name space, such as " / b i n " and " / l i b " , are
symbolic links into " /v ice" . All other local files are inaccessible to other workstations.

Figure 3-2:

known leaf directory during workstation initialization. Figure

3-2 depicts this situation, with " / v i ce" being the directory on

which Vice is mounted. File names generated on the workstation

with " /v ice" as the leading prefix correspond to files in the

shared space. All other names refer to files in the local space.

The presence of different types of workstations introduces an

additional complication in the naming scheme. Consider, for

example, an environment consisting of Sun and Va. ~

workstations, both running Unix. Regardless of the hardware it i~

run on, Unix expects to find system binaries in a directory whose

pathname is " /b in" . If these system binaries are stored in the

shared name space, there has to be a mechanism to differentially

redirect file accesses from different types of workstations. We

use Symbolic Links in Virtue for this purpose. On a Sun

A Unix Workstation's View of the File System

workstation, the local directory " / b i n " is a symbolic link to the

remote directory " / v i ce /un ix /sun /b in " ; on a Vax, " / b i n " is a

symbolic link to " / v i ce /un i x / vax /b in " . The extra level of

indirection provided by symbolic links is thus of great value in

supporting a heterogeneous environment.

Since location transparency is one of our goals, Virtue cannot

deduce the server on which a shared file is stored by merely

examining the name of the file. It is Vice that provides the

necessary file location mechanism. Each cluster server contains

a complete copy of a location database that maps files to

Custodians. The custodian of a file is the cluster server that has

complete responsibility for storage of the file and the servicing of

requests for it. A workstation has to find the custodian for a file

40

before operating on it. If a server receives a request for a file for

which it is not the custodian, it will respond with the identity of the

appropriate custodian. The size of the replicated location

database is relatively small because custodianship is on a subtree

basis. If all files in a subtree have the same custodian, the

location database has only an entry for the root of the subtree.

File subtrees of individual users are assigned to custodians in a

manner that balances server load and minimizes cross-cluster

references. A faculty member's files, for instance, would be

assigned to the custodian which is in the same cluster as the

workstation in his office. This assignment does not affect the

mobility of that individual, because he can still access his files

from any other part of the campus, albeit with some performance

penalty.

An important pro 9rty of the location database is that it changes

relatively slowly. There are two reasons for this. First, most file

creations and deletions occur at depths of the naming tree far

below that at which the assignment of custodians is done. Hence

normal user activity does not alter the location database.

Second, the reassignment of subtrees to custodians is infrequent

and typically involves human interaction. For example, if a

student moves from one dormitory to another he may request that

his files in Vice be moved to the cluster server at his new location.

Alternatively, we may install mechanisms in Vice to monitor long-

term access file patterns and recommend changes to improve

performance. Even then, a human operator will initiate the actual

reassignment of custodians.

Changing the location database is relatively expensive because it

involves updating all the cluster servers in the system. The files

whose custodians are being modified are unavailable during the

change. As explained in the previous paragraph, our design is

predicated on the assumption that such changes do not occur

frequently. This assumption does not compromise our goal of

allowing user mobility with reasonable performance because a

different mechanism, described in the next section, addresses

this issue.

3.2. Rep l i ca l ion

Caching is the main form of replication in our design. Virtue

caches entire files along with their status and custodianship

information. Caching and whole-file transfer are key mechanisms

in meeting the design objectives of performance, mobility and

scalability.

Part of the disk on each workstation is used to store local files,

while the rest is used as a cache of files in Vice. When an

application program on a workstation opens a file in the shared

name space, Virtue locates the appropriate custodian, fetches

the file, and stores it in the cache. This fetch is avoided if the file

is already present in the cache. After the file is opened, individual

read and write operations are directed to the cached copy. Virtue

does not communicate with Vice in performing these operations.

When the file is closed, the cache copy is transmitted to the

appropriate custodian. Note that all interactions with Vice are

transparent to application programs. Other than performance,

there is no difference between accessing a local file and a file in

the shared name space.

Cache validation involves communication between the custodian

of a file and the workstations which have that file cached. This

may either be initiated by Virtue before each use of the cached

copy, or by Vice whenever the file is modified. The choice trades

longer file open latencies and increased server loads in the

former case, for larger server state and slower updates to files in

the latter case. Since files~ tend to be read much more frequently

than written, better performance is likely with the latter. Our

current design uses check-on-open to simplify implementation

and #educe server state. However, experience with a prototype

has convinced us that the cost of frequent cache validation is

high enough to warrant the additional complexity of an invalidate-

on-modification approach in our next implementation.

Changes to a cached file may be transmitted on close to the

corresponding custodian or deferred until a later time. In our

design, Virtue stores a file back when it is closed. We have

adopted this approach in order to simplify recovery from

workstation crashes. It also results in a better approximation to a

timesharing file system, where changes by one user are

immediately visible to all other users.

The caching mechanism allows complete mobility of users. If a

user places all his files in the shared name space, he can move to

any other workstation attached to Vice and use it exactly as he

would use his own workstation. The only observable differences

are an initial performance penalty as the cache on the new

workstation is filled with the user's working set of files and a

smaller performance penalty as inter-cluster cache validity

checks and cache write-throughs are made.

The caching of entire files, rather than individual pages, is

fundamental to our design. It has a strong positive influence on

performance for a number of reasons. First, custodians are

contacted only on file opens and closes, and not on individual

reads and writes. Second, the total network protocol overhead in

transmitting a file is lower when it is sent e n m a s s e rather than in

41

a series of responses to requests for individual pages. Finally,

disk access routines on the servers may be better optimized if it is

known that requests are always for entire files rather than for

random disk blocks.

The use of whole-file transfer may also simplify the support of

heterogeneous workstations. It is likely to be easier for Virtue to

transform a file from the form in which it is stored in Vice to a form

compatible with the native file system of the workstation when the

entire file is available in the cache. For instance, a directory

stored as a Vice file is easier to interpret when the whole file is

available.

In addition to caching, Vice also supports read-only replication of

subtrees at different cluster servers. Files which are frequently

read, but rarely modified, may be replicated in this way to

enhance availability and to improve performance by balancing

server loads. The binaries of system programs are a typical

example of this class of files.

In our prototype, described in Section 5, the updating of a read-

only subtree is performed asynchronously by its custodian. Our

revised implementation will make read-only subtrees truly

immutable. The creation of a read-only subtree is an atomic

operation, thus providing a convenient mechanism to support the

orderly release of new system software. Multiple coexisting

versions of a subsystem are represented by their respective read.

only subtrees. Caching of files from read-only subtrees is

simplified since the cached co~ies can never be invalid.

3.3. Functionality of In ter faces

There are two distinct programming interfaces in this design: the

Vice-Virtue interface, which is primarily of concern to

implementors wishing to attach new types of workstations to Vice,

and the Virtue file system interface, which is visible to application

programs.

Vice provides primitives for locating the custodians of files, and

for fetching, storing, and deleting entire files. It also has

primitives for manipulating directories, examining and setting file

and directory attributes, and validating cached copies of files.

The interface provided by Virtue is workstation-specific. In the

prototype discussed in Section 5, the primitives supported are the

standard Unix file system primitives, supporting directory

manipulation and byte-at-a-time access to files.

In an ideal implementation, Virtue will provide identical interfaces

for shared and local files. The degree to which this ideal is met is

one measure of quality of workstation attachment software. We

are highly encouraged by our experience in attaching Unix

workstations to Vice. Though we have no experience as yet in

attaching other kinds of workstations, we do not forsee any

fundamental problems on account of our design.

Besides the need to bridge the semantic gap between the file

system interfaces of Vice and Virtue, there is also an assumption

in our design that workstations possess adequate resources to

effectively use Vice. For example, workstations need to have

disks (real or virtual) large enough to cache a typical working set

of files. They also need a high-performance hardware interface

to the campus-wide LAN. It would be desirable to allow

workstations that fail to meet these minimal resource

requirements to access Vice, perhaps at lower performance or

convenience.

An approach we are exploring is to provide a Surrogate Server

running on a Virtue workstation. This surrogate would behave as

a single-site network file server for the Virtue file system. Clients

of this server would then be transparently accessing Vice files on

account of a Virtue workstation's transparent Vice attachment.

The software interface to this server would be tailored to meet the

specific needs of the low-function workstations in question and it

could run on a machine with hardware interfaces to both the

campus-wide LAN and a network to which the low-function

workstations could be cheaply attached. Work is currently in

progress to build such a surrogate server for IBM PCs. We

believe that this approach is also applicable to machines such as

the Apple Macintosh.

3.4. Security

Voydock and Kent [18] classify breaches of security in a network

as the unauthorized release of information, modification ot

information, or denial of resource usage. In this design we only

address release and modification of information. Resource

denial is trivial when a user can modify the hardware and

software of a workstation. For example, a workstation on an

Ethernet can be made to generate collisions whenever a packet is

transmitted by any other workstation. This would effectively deny

network services to all other workstations. We believe that peer

pressure and social mores are the only effective practical

weapons to deal with such situations in our environment.

Fortunately, most cases of resource denial are relatively easy to

detect.

In this section we describe how our design provides

authentication, access control and secure network transmission.

These components jointly provide the mechanism needed to

42

prevent the unauthorized release or modification of files stored in

Vice.

Vice uses encryption extensively as a fundamental building block

in its higher level network security mechanisms. To build a truly

secure distributed environment, we are convinced that encryption

should be available as a cheap primitive at every network site.

Fortunately, VLSI technology has made encryption chips

available at relatively low cost.

The authentication and secure transmission functions are

provided as part of a connection-based communication package,

based on the remote procedure call paradigm. At connection

establishment time, Vice and Virtue are viewed as mutually

suspicious parties sharing a common encryption key. This key is

used in an authentication handshake, at the end of which each

party is assured of the identity of the other. The final phase of the

handshake generates a session key which is used for encrypting

all further communication on the connection. The use of per-

session encryption keys reduces the risk of exposure of

authentication keys.

When a user initiates activity at a workstation, Virtue

authenticates itself to Vice on behalf of that user. Since the key

used for this is user-specific it has to be obtained from the user.

One way to do this is by transformation of a password. Note that

the password itself is not transmitted, but is only used to derive

the encryption key. Alternative approaches, such as equipping

each workstation with a peripheral to read encryption keys from

magnetically encoded cards carried by users, are also possible.

In addition to authentication, a mechanism to control access is

needed within Vice. Sharing in a large user community implies

that such a mechanism must allow the specification of a wide

range of protection policies and must provide for easy revocation.

Our design uses access lists for this purpose.

Entries on an access list are from a protection domain consisting

of Users, who are typically human beings, and Groups, which are

collections of users and other groups. The recursive membership

of groups is similar to that of the registration database in

Grapevine [1]. It simplifies administr~'ion and leads to shorter

access lists at the cost of complicating the implementation of

group manipulation primitives.

Information about users and groups is stored in a protection

database which is replicated at each cluster server. Manipulation

of this database is via a protection server, which coordinates the

updating of the database at all sites.

The rights possesed by a user on a protected object are the union

of the rights specified for all the groups that he belongs to, either

directly or indirectly. This subset of groups is referred to as the

Current Protection Subdomain (CPS) of the user. A user may be

given access to an object either by making him a member of a

group that already has appropriate access rights on that object,

or by explicitly adding that user to the access list.

Access is revoked by removing a user from all groups which have

access to the object in question. Because of the distributed

nature of the system and the recursive membership of groups,

this operation may be unacceptably slow in emergencies. We

therefore support the concept of Negative Rights in access lists.

The union of all the negative rights specified for a user's CPS is

subtracted from his positive rights. To revoke a user's access to

an object, he can be given negative rights on that object.

Negative rights are intended as a rapid revocation mechanism for

limiting the damage caused by a user who has been discovered

to be untrustworthy,

In our prototype the protected entities are directories, and all files

within a directory have the same protection status. Per-directory

protection reduces the storage overheads of access lists and also

reduces the amount of protection state that users have to keep

track of mentally. The rights associated with a directory control

the fetching and storing of files, the creation and deletion of new

directory entries, and modifications to the access list. For

reasons discussed in Section 5, we will incorporate a hybrid

scheme with access lists on directories and additional per-file

protection bits in our reimplementation of the file system.

3.5. Implementation Strategy

Since this paper focuses on high-level issues, we only briefly

touch upon how this design is implemented. The description in

this section is organized around three basic questions pertaining

to implementation:

1. How does Virtue transparently interpose cached
copies of files to application programs?

2. What is the structure of a server?

3. How do servers and clients communicate?

As we will be making some changes on the basis of experience

with a prototype, we indicate both our original approach and the

modifications.

3.5.1. File Intercept and Cache Management

Virtue is implemented in two parts: a set of modifications to the

wotkstation operating system to intercept file requests, and a

user-level process, called Venus. Venus handles management of

the cache, communication with Vice and the emulation of native

43

file system primitives for Vice files. The modifications to the

operating system are minimal since Venus provides much of the

needed functionality.

It is possible to implement the interception of file system calls by

recompiling or relinking application programs with a special

library of input-output subroutines. Such a mechanism avoids

modifications to the workstation operating system. We have not

adopted this approach because of our desire to support

proprietary software for which only the executable binaries may

be available. Further, new releases of the file system software do

not require us to retink any user or system software. This saves

us from a potential administrative nightmare in a 5000 node

network.

In our prototype, Venus uses a simple LRU cache management

algorithm with a directory in a workstation's local Unix file system

as cache storage. Since files are cached in their entirety, the

amount of state needed to represent the cache contents is

significantly smaller than in a typical virtual memory cache or in a

file cache where pages of files are individually cached. Venus

limits the total number of files in the cache rather than the total

size of the cache, because the latter information is difficult to

obtain from Unix. In view of our negative experience with this

approach, we will incorporate a space-limited cache

management algorithm in our reimplementation.

3.5.2. Server Structure

Our prototype implements a cluster server with a collection of

Unix processes. On each server there is one Unix process to deal

with each user on each client workstation communicating with

that server. Due to the limitations imposed by Unix, these per-

client processes cannot share data structures in virtual memory.

File server functions which require such sharing are implemented

using a single dedicated Unix process for each such function.

For example, there is a single lock server process which

serializes requests and maintains lock tables in its virtual memory.

Experience with the prototype indicates that significant

performance degradation is caused by context switching

between the per-client Unix processes. In addition, the inability

to share data structures between these processes precludes

many strategies to improve performance. Our reimplementation

will represent a server as a single Unix process incorporating a

lightweight process mechanism to provide independent per-client

threads of control. Global data in that Unix process will be used

to represent data structures shared by the lightweight processes.

The prototype file server uses the underlying Unix file system for

storage of Vice files. Each Vice file is physically represented as

two Unix files: one containing uninterpreted data and the other,

the .admin file, containing Vice status information. The location

database in our prototype is not explicit lout is r(-)resented by

stub directories in the Vice file storage structure.

The reimplementation will use a separate data structure for the

location database. We will still use the Unix file system to store

Vice files, but will modify Unix on the servers to allow us to access

files via their low-level identifiers rather than their full Unix

pathnames. Our observations of the prototype indicate that this

modification is likely to yield significant performance

improvement.

The prototype does not have a protection server, but relies on

manual updates to the protection database by the operations

staff. The reimplementation will incorporate a protection server.

3.5 .3 . Client-Server Communication

Virtue and Vice communicate by a remote procedure call

mechanism (RPC) [2]. The prototype RPC implementation uses a

reliable byte-stream protocol supported by Unix. Whole-file

transfer is implemented as a side effect of a remote proced0re

call.

To overcome Unix resource limitations and thus allow large

client/server ratios, the revised RPC implementation uses an an

unreliable datagram protocol supported by Unix. This

implementation closely integrates RPC with the lightweight

process mechanism mentioned in Section 3.5.2. This allows a

Unix processs to concurrently perform and service multiple

remote procedure calls, while still maintaining the synchronous

semantics of RPC with respect to individual lightweight threads of

control within that Unix process. Generalized side.effects are

supported, whole-file transfer being a particular kind of side-

effect.

Mutual client/server authentication and end-to-end encryption

facilities are integrated into the RPC package. These functions

are an integral part of the overall security of Vice and Virtue.

3.6. Other Design Issues

Vice provides primitives for single.writer/multi-reader locking.

Such locking is advisory in nature, and it is the responsibility of

each application program to ensure that all competing accessors

for a file will also perform locking. This decision is motivated by

our positive experience with Unix, which does not require files to

be locked before use. Action consistency for fetch and store

operations on a file is guaranteed by Vice even in the absence of

44

locks. A workstation which fetches a file at the same time that

another workstation is storing it, will either receive the old version

or the new one, but never a partially modified version.

An unfortunate side.effect of trying to emulate the timesharing

paradigm is the need to provide mechanisms to restrict and

account for the usage of shared resources. The resource we are

most concerned with is disk storage on the cluster servers. We

intend to provide both a quota enforcement mechanism and a file

migration facility in our reimplementation; these facilities are not

available in our prototype. As use of this system matures, it may

become necessary to account for other resources, such as server

CPU cycles or network bandwidth. Until the need for such

accounting is convincingly demonstrated, however, we intend to

treat these as free resouces.

Another area, whose importance we recognize, but which we

have not had the opportunity to examine in detail yet is the

development of monitoring tools. These tools will be required to

ease day-to.day operations of the system and also to recognize

long-term changes in user access patterns and help reassign

users to cluster servers so as to balance server loads and reduce

cross-cluster traffic.

4. Design Principles

A few simple principles underlie the design presented in this

paper. It should be emphasised these are being presented a

posteriori, and that the design did not proceed by stepwise

refinement of these principles. Rather, the principles evolved

during the course of the design. In the rest of this section we

discuss each of these principles and point out instances of their

application in our design.

• Workstations have the cycles to burn.

Whenever there is a choice between performing an
operation on a workstation and performing it on a
central resource, it is preferable to pick the former.
This will enhance the scalability of the design, since it
lessens the need to increase central resources as
workstations are added.

Vice requires that each workstation contact the
appropriate custodian for a file before operating on it.
There is no forwarding of client requests from one
cluster server to another. This design decision is
motivated by the observation that it is preferable to
place the burden of locating and communicating with
custodians on workstations rather than servers.

We will further exploit this principle in the second
implementation of the system. Currently,
workstations present servers with entire pathnames
of files and the servers do the traversing of

45

pathnames prior to retrieving the files. Our revised
implementation will require workstations to do the
pathname traversal themselves.

• Localize if possible

If feasible, use a nearby resource rather than a
distant one. This has the obvious advantage of
improved performance and the additional benefit that
each part of the distributed system is less susceptible
to events such as overloading in other parts.
Potentially in conflict with this principle is the goal of
user mobility, which requires data to be easily
Iocatable. A successful design has to balance these
two considerations.

The decomposition of Vice into clusters is an
instance where we have tried to localize resource
usage. Another example is the replication of read-
only subtrees, thereby enabling system programs to
be fetched from the nearest cluster server rather than
its custodian. Caching obviously exploits locality, but
we discuss it separately because it is so fundamental
to our design.

One may view the decision to transfer entire files
rather than individual pages as a further application
of this principle. Read and write operations are much
more frequent than opens and closes. Contacting
Vice only on opens and closes reduces our usage of
remote resources.

• Exploit class-specific file properties.

It has been shown [13] that files in a typical file
system can be grouped into a small number of easily-
identifiable classes, based on their access and
modification patterns. For example, files containing
the binaries of system programs are frequently read
but rarely written. On the other hand temporary files
containing intermediate output of compiler phases
are typically read at most once after they are written.
These class-specific properties provide an
opportunity for independent optimization, and hence
improved performance, in a distributed file system
design.

The fact that system binaries are treated as
repticatable, read-only files is a case where this
priniciple is being used. We may further exploit this

principle by allowing a subset of the system binaries
to be placed in the local file systems of individual
workstations. Since such files change infrequently,
explicit installation of new versions of these files by
users is acceptable. The storage of temporary files in
the local, rather than shared, name space of a
workstation is another instance of a file-specific
design decision.

• Cache whenever possible.

Both the scale of the system and the need for user
mobility motivate this principle. Caching reduces
contention on centralized resources. In addition, it
transparently makes data available wherever it is
being currently used.

Virtue caches files and status information about
them. It also caches information about the
custodianship of files. Though not discussed in this
paper, our reimplementation will use caching
exten.~ively in the servers.

• Avoid frequent, system-wide rapid change.

The more distributed a system is, the more difficult it
is to update distributed or replicated data structures
in a consistent manner. Both performance and
availability are compromised if such changes are
frequent. Conversely, the scalability of a design is
enhanced if it rarely requires global data to be
consistently updated.

As discussed earlier, the replicated custodian
database in Vice changes slowly. Caching by Virtue,
rather than custodianship changes in Vice, is used to
deal with rapid movement of users.

Another instance of the application of this principle is
the use of negative rights. Vice provides rapid
revocation by modifications to an access list at a
single site rather than by changes to a replicated
protection database.

5. The Prototype

Our intent in implementing a prototype was to validate the design

presented in this paper. The implementation was done by 4

individuals over a period of about one year. In this section we

describe the current status of the system, its performance, and

the changes we are making in the light of our experience.

5 , 1 . Status

The prototype has been in use for about a year, and has grown to

a size of about 120 workstations and, 6 servers. More than 400

individuals have access to this system at the present time. The

prototype meets the goals of location transparency and user

mobility unequivocally. Our initial' apprehensions about relying

solely on caching and whole-file transfer have proved baseless.

Application code compatibility has been met to a very high

degree, and almost every Unix application program is able to use

files in Vice. None of these programs has to be recompiled or

relinked to work in our system.

The mechanisms for authentication and secure transmission are

in place, but await full integration. We are awaiting the

incorporation of the necessary encryption hardware in our

workstations and servers, since software encryption is too slow to

be viable.

The access list mechanism has proved to be a flexible and

convenient way to specify protection policies. Users seem quite

comfortable with per-directory access list protection. However,

we have encountered certain difficulties in mapping the per-file

protection supported by Unix to the per-directory protection

semantics of Vice. A few programs use the per.file Unix

protection bits to encode application-specific information and a r e

hence unable to function correctly with files in Vice. T h e

reimplementation will have per-file protection bits in addition to

access lists on directories.

The prototype fails to emulate Unix precisely in a few other areas

too. Two shortcomings that users find particularly irksome are

the inability to rename directories in Vice, and the fact that Vice

does not support symbolic links 2. These limitations are subtle

consequences of the implementation strategy we chose in the

prototype, and will be rectified in our revised implementation.

5.2. Per formance

For a rapid prototyping effort, performance has been surprisingly

good. The prototype is usable enough to be the system on which

all further development work is being done within our user

community.

Measurements indicate an average cache hit ratio of over 80%

during actual use. Server CPU utilization tends to be quite high:

nearly 40% on the most heavily loaded servers in our

environment. Disk utilization is lower, averaging about 14% on

the most heavily loaded servers. These figures are averages over

an 8-hour period in the middle of a weekday. The short-term

resource utilizations are much higher, sometimes peaking at 98%

server CPU utilization! It is quite clear from our measurements

that the server CPU is the performance bottleneck in our

prototype.

A histogram of calls received by servers in actual use shows that

cache validity checking calls are preponderant, accounting for

65% of the total. Calls to obtain file status contribute about 27%,

while calls to fetch and store files account for 4% and 2%

respectively. These four calls thus encompass more than 98% of

the calls handled by servers. Based on these observations we

have concluded that major performance improvement is possible

if cache validity checks are minimized. This has led to the

alternate cache invalidation scheme mentioned in Section 3.2.

To assess the performance penalty caused by remote access, we

ran a series of controlled experiments with a benchmark. This

benchmark operates on about 70 files corresponding to the

source code of an actual Unix application. There are five distinct

2Note that symbolic links from the local name space into Vice are supported.

46

phases in the benchmark: making a target subtree that is identical

in structure to the source subtree, copying the files from the

source to the target, examining the status of every file in the

target, scanning every byte of every file in the target, and finally

compiling and linking the files in the target. On a Sun workstation

with a local disk, the benchmark takes about 1000 seconds to

complete when all files are obtained locally. Our experiments

show that the same benchmark :take about 80% longer when the

workstation is obtaining all its files from an unloaded Vice server.

In actual use, we operate our system with about 20 workstations

per server. At this client/server ratio, our users perceive the

overall performance of the workstations to be equal to or better

than that of the large timesharing systems on campus. However,

there have been a few occasions when intense file system activity

by a few users has drastically lowered performance for all other

active users.

5.3. C h a n g e s

Based on our experience, a redesign and reimplementation effort

is currently under way. While retaining the design at the level of

abstraction presented in this paper, we will introduce many lower-

level changes to enhance performance and scalability, and to

allow a more accurate mapping of Unix file system semantics on

Vice.

Some of these changes have been mentioned in Sections 3.5 and

3.2. These include:

• a modified cache validation scheme, in which servers
notify workstations when their caches become
invalid.

• a single-process server structure, with a low.level
interface to Unix files.

• a revised RPC implementation, integrated with a
lightweight process mechanism.

e a space-limited cache management algorithm in
Venus.

Another noteworthy change is the use of fixed-length unique file

identifiers for Vice files. In the prototype, Venus presents entire

pathnames to Vice. In our revised implementation, Venus will

translate a Vice pathname into a file identifier by caching the

intermediate directories from Vice and traversing them. The

offloading of pathname traversal from servers to clients will

reduce the utilization of the server CPU and hence improve the

scalability of our design. In addition, file identifiers will remain

invariant across renames, thereby allowing us to support

renaming of arbitrary subtrees in Vice.

In order to simplify day-to-day operation of the system, we will

introduce the concept of a Volume in Vice. A volume is a

complete subtree of files whose root may be arbitrarily relocated

in the Vice name space. It is thus similar to a mountable disk

pack in a conventional file system. Each volume may be turned

offline or online, moved between servers and salvaged after a

system crash. A volume may also be C/oned, thereby creating a

frozen, read-only replica of that volume. We will use copy-on-

write semantics to make cloning a relatively inexpensive

operation. Note that volumes will not be visible to Virtue

application programs; they will only be visible at the Vice-Virtue

interface.

Finally, the revised implementation will allow closer emulation of

Unix by providing features such as symbolic links, directory

rename and per-file protection.

6. Relationship to Other Systems

A number of different network file system designs have been

proposed and implemented over the last few years. We consider

a representative sample of such systems here and contrast their

design with ours. Due to constraints of space we provide only

enough detail to =hake the differences and similarities apparent.

The survey by Svobodova [16] provides a more comprehensive

and detailed comparative discussion of network file systems.

The systems we compare are:

• Locus[g, 19], designed and implemented at the
University of California at Los Angeles.

• The Newcastle Connection [3], from the University of
Newcastle-upon-Tyne.

• The ROE file system [5], currently being implemented
at the University of Rochester.

• IBIS [17], which has been partially implemented at
Purdue University.

• The Apollo system [7], which is a commercial system
marketed by Apollo Computers, Inc.

eThe Cedar File System[15], implemented at the
Xerox Pal• Alto Reseach Center.

We compare Vice-Virtue to these systems by presenting their

approach to each of the fundamental design issues mentioned in

Section 3. Such a comparison brings into focus the position that

Vice-Virtue occupies in the distributed file system design space.

We do realize, however, that a comparison along specific

attributes may omit other interesting features of the systems

being compared.

4'7

6.1. Naming and Location

All the systems in question support a hierarchical name space,

both for local and remote files. In many cases the naming

structure is identical to Unix. Roe and the Cedar File System

provide, in addition, a version number component to names.

Vice-Virtue and Roe provide a Unix-like name structure at the

client-server interface and leave open the naming structure on

the workstations.

Location transparency is a key issue in this context. In Locus,

Vice-Virtue, Apollo and Roe it is not possible to deduce the

location of a file by examing its name. In contrast, the Cedar File

System and the Newcastle Connection embed storage site

information in pathnames. IBIS intends to eventually provide

location transparency, though it currently does not do so.

Location transparent syst, ms require a mechanism to map

names to storage sites. In Vice-Virtue, there is clear distinction

between servers and clients. Every server maintains a copy of a

location database which is used to answer queries regarding file

location. Clients use cached location information as hints. Roe

logically provides a single server which maps names to storage

sites, but this server may be implemented as a collection of

processes at different nodes. The Apollo system uses a

collection of heuristics to locate objects. Looking up a pathname

in a directory yields a low-level identifier which contains a hint

regarding the location of the object. Locus does not distinguish

between servers and clients, and uses a location database that is

replicated at all sites.

6.2. Repl icat ion

The replication of data at different sites in a distributed system

offers two potential benefits. First, it offers increased availability,

by allowing alternate copies to be used when the primary copy is

unavailable. Second, it may yield better performance by enabling

data to be accessed from a site to which access time is lower.

The access time differential may arise either because of network

topology or because of uneven loading of sites.

The Cedar File System and Vice-Virtue use transparent caching

of files at usage sites to improve performance. In Vice-Virtue

caching is also important in meeting the goat of user mobility.

ROE and a proposed extension of IBIS support both caching and

migration of files. Migration differs from caching in that it is

explicitly initiated by users and involves only data movement, not

replication. IBIS views cachability as a file property, thereby

providing the opportunity for users to mark frequently updated

shared files as being not cachable. Apollo integrates the file

system with the virtual memory system on workstations, and

hence caches individual pages of files, rather than entire files.

Systems which cache data need to ensure the validity of their

cache entries. In the Cedar File System cached data is always

valid, because files are immutable. Higher-level actions by a

workstation user, such as an explicit decision to use a new

version of a subsystem, are the only way in which a set of cached

files is rendered obsolete, in the Vice-Virtue prototype, a cache

entry is validated when a file is opened, by comparing its

timestamp with that of the copy at the custodian. Apollo uses a

similar approach, comparing timestamps when a file is first

mapped into the address space of a process. No validation is

done on further accesses to pages within the file, even though

these may involve movement of data from the site where the file is

stored. For reasons mentioned earlier, Vice-Virtue intends to

reverse the order of cache validation, requiring servers to

invalidate caches on updates.

Replication can take forms other than caching. In Locus, for

instance, entire subtrees can be replicated at different sites.

Updates are coordinated by only one of these sites. In case of

network partition, updates are allowed within each of the

partitioned subnets. A conflict resolution algorithm is used to

merge updates after the partition is ended. Vice-Virtue also

provides read-only replication of subtrees, but (foes not allow

replicated copies to be updated during partition.

ROE uses weighted voting to verify the currency of replicated

data and to determine whether a copy of a file can be updated in

the presence of network or server failure. IBIS supports

replication, but the published literature does not provide details

of the mechanism.

6.3. Funct ional i ty of In ter faces

All the systems being compared provide application programs

with the same interface to local and remote files. One may, in

fact, view this as the defining property of a distributed file system.

There is considerable latitude, however, in the manner in which

this interface is mapped into the inter-machine interface.

In systems such as Locus and the Newcastle Connection, the

inter-machine interface is very similar to the application program

interface. Operations on remote files are forwarded to the

appropriate storage site, where state information on these files is

maintained. The current implementation of IBIS is similar.

The Apollo system maps files into virtual memory. Its remote

interface is essentially a page fault /replace interface, with

additional primitives for cache validation and concurrency

control. ROE's intermachine interface support caching and

48

migration, but it is also possible to have a file opened at a remote

site and have individual bytes from it shipped to the local site.

Cedar and Vice-Virtue are similar in that their inter.machine

interfaces are very different from their application program

interface. Cedar uses a predefined file transfer protocol to fetch

and store files on network servers. This has the advantage of

portability, and allows existing file servers to be used as remote

sites. Vice-Virtue has a customized interface at this level.

6.4. Secur i t y

With the exception of Vice-Virtue, all the systems discussed here

trust the hardware and system software on the machines they run

on, User processes authenticate themselves at remote sites

using a password. The acquisition and forwarding of the

password is done by trusted software on the client sites. The

remote site is trusted without question by the client.

The IBIS description mentions a connection setup procedure that

prevents stealing of connections by malicious processes.

However, the procedure assumes the presence of a trusted

process at each end, with an existing secure channel of

communication between them.

Since workstations are not trusted in Vice-Virtue, mutual

authenticity is established by an ~.ncryption-based handshake

with a key derived from user-sup lied information. Once a

connection is established, all further communications on it is

encrypted.

For access control, Locus, the Newcastle Connection and IBIS

use the standard Unix protection mechanism. Apollo, Vice-

Virtue, Cedar and ROE use more general access lists for

specifying protection policies.

6.5. Implementation Strategy

In IBIS and the Newcastle Connection the interception of file

system calls is done by linking application programs with a

special library of routines. The intercepted calls are forwarded to

user-level server processes at remote sites.

In contrast, Locus is implemented as an extensive modification of

a standard Unix system. The operating system itself does the

interception of remote file system calls and handles file requests

from remote sites. Apollo uses a customized operating system,

with builtin remote access capability. The available literature on

ROE does not provide implementation details.

File system interception in Virtue is done by the kernel, but most

of the functionality needed to support transparent remote access

is provided by a user-level cache manager process. Vice is

implemented with user-level server processes. As mentioned

earlier, the reimplementation will have a small number of kernel

modifications, solely for performance reasons.

7. Conclusion

The highlights of this paper are as follows:

• Our primary concern is the design of a sharing
mechanism for a computing environment that is a
synthesis of the personal computer and timesharing
paradigms.

• We support sharing via a campus-wide location
transparent distributed file system which allows users
to move freely between all the workstations in the
system.

• Scale, security and performance are the hardest
problems in this system. The need to retrofit our
mechanisms into existing operating system
interfaces and the need to support a heterogeneous
environment are additional constraints on our design.

• Whole-file transfer and caching are important design
features that jointly address the issues of
performance and scale. Clustering to exploit locality
of usage and the replication of read-only system files
are two other design features motivated by the same
issues.

• The design incorporates mechanisms for
authentication and secure transmission that do not
depend on trusted workstations or a secure network.
A flexible access control mechanism is also provided.

• We have implemented a prototype of this design and
it is in day-to-day use by a small user community.
Experience with the prototype has been positive, but
has also revealed certain inadequacies. These
shortcomings arise on account of certain detailed
implementation decisions in our prototype rather
than fundamental design deficiencies.

• A comparison with other distributed file systems
reveals that although this desig~l has individual
features in common with some of the other systems,
it is unique in the way it combines these features to
produce a total design. It is further distinguished
from all the other systems in that it does not rely on
the trustworthiness of all network nodes.

The success of our prototype has given us confidence in the

viability of the design presented in this paper. Our current

reimplementation effort is essentially a refinement of this design.

We anticipate our user population to grow by an order of

magnitude and span the entire CMU campus in the next two

years.

49

Acknowledgements

Dave Gifford and Rick Rashid played an

important role in the early discussions

that led to the design described here.

Dave King was part of the team that

implemented the prototype. Richard

Snodgrass provided valuable comments

on an initial draft of this paper.

This work was funded by the IBM

Corporation.

References

[1] Birrell, A., Levin, R., Needham, R. and Schroeder, M.
Grapevine: An Exercise in Distributed Computing.
In Proceedings of the Eighth Symposium on Operating

System Principles. December, 1981.

[2] Birrell, A.D. and Nelson, B.J.
Implementing Remote Procedure Calls.
ACM Transactions on Computer Systems 2(1):39-59,

February, 1984.

[3] Brownbridge, D.R., Marshall, L.F. and Randell, B.
The Newcastle Connection.
Software Practice and Experience 12:1147-1162, 1982.

[4] Cheriton, D.R. and Zwaenepoel, W.
The Distributed V Kernel and its Performance for Diskless

Workstations.
In Proceedings of the Ninth Symposium on Operating

System Principles. October, 1983.

[5] Ellis, C.A. and Floyd, R.A.
The ROE File System.
In Proceedings of the 3rd Symposium on Reliability in

Distributed Software and Database Systems. October,
1983.

[6] Jones, A.K. and Gehringer, E.F. (Editors).
The Cm ° Multiprocessor Project: A Research Review.
Technical Report CMU-CS-80-131, Department of

Computer Science, Carnegie-Mellon University, July,
1980.

[7] Nelson, D.L. and Leach, P.J.
The Architecture and Applications of the Apollo Domain.
IEEE Computer Graphics and Applications, April, 1984.

[8] The Task Force for the Future of Computing, Alan Newell
(Chairman).
The Future of Computing at Carnegie-Mellon University.
February 1982.

[9] Popek, G., Walker, B., Chow, J., Edwards, D., Kline, C.,
Rudisin, G. and Thiel, G.
LOCUS: A Network Transparent, High Reliability

Distributed System.
In Proceedings of the Eighth Symposium on Operating

System Principles. December, 1981.

[10] Rashid, R.F. and Robertson, G.R,
Accent: A communication oriented network operating

system kernel.
In Proceedings o! the Eighth Symposium on Operating

System Principles. December, 1981.

[11] Ritchie, DM. and Thompson, K,
The UNIX Time-Sharing System.
Bell System Technical Journal 57(6), July-August, 1978.

[12] Satyanarayanan, M,
A Study of File Sizes and Functional Lifetimes.
In Proceedings of the Eighth Symposium on Operating

System Principles. December, 1981.

[13] Satyanarayanan, M.
A Synthetic Driver for File System Simulation.
In Proceedings of the International Symposium on

Mode/ring Techniques and Performance Analysis,
INR/A, Paris. North-Holland, 198.4.

[14] Satyanarayanan, M.
The ITC Project: A Large-Scale Experiment in Distributed

Personal Computing.
In Proceedings of the Networks 84 Conference, Indian

Institute of Technology, Madras, October 1984. North-
Holland, 1985 (to appear).

Also available as ITC tech report CMU-ITC-035.

[15] Schroeder, M.D., Gifford, D.K. and Needham, R.M,
A Caching File System for a Programmer's Workstation.
In Proceedings of the Tenth Symposium on Operating

System Principles. December, 1985.

[16] Svobodova, L.
File Servers for Network-Based Distributed Systems.
Computing Surveys 16(4):353-398, December, 1984.

[17] Tichy, W.F. and Ruan, Z.
Towards a Distributed File System.
Technical Report CSD*TR-480, Computer Science

Department, Purdue University, 1984.

[18] Voydock, V.L. and Kent, S.T.
Security Mechanisms in High-Level Network Protocols.
Computing Surveys 15(2):135-171, June, 1983.

[19] Walker, B., Popek, G., English, R., Kline, C. and Thiel, G.
The LOCUS Distributed Operating System.
In Proceedings of the Ninth Symposium on Operating

System Principles. October, 1983.

50

