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ABSTRACT

Previous approaches to systematic state-space exploration for test-
ing multi-threaded programs have proposed context-bounding [20]
and depth-bounding [6] to be effective ranking algorithms for test-
ing multithreaded programs. This paper proposes two new metrics
to rank thread schedules for systematic state-space exploration. Our
metrics are based on characterization of a concurrency bug using
v (the minimum number of distinct variables that need to be in-
volved for the bug to manifest) and ¢ (the minimum number of
distinct threads among which scheduling constraints are required
to manifest the bug). Our algorithm is based on the hypothesis
that in practice, most concurrency bugs have low v (typically 1-
2) and low ¢ (typically 2-4) characteristics. We iteratively explore
the search space of schedules in increasing orders of v and ¢. We
show qualitatively and empirically that our algorithm finds com-
mon bugs in fewer number of execution runs, compared with pre-
vious approaches. We also show that using v and ¢ improves the
lower bounds on the probability of finding bugs through random-
ized algorithms.

Systematic exploration of schedules requires instrumenting
each variable access made by a program, which can be very ex-
pensive and severely limits the applicability of this approach. Pre-
vious work [6, 20] has avoided this problem by interposing only on
synchronization operations (and ignoring other variable accesses).
We demonstrate that by using variable bounding (v) and a static
imprecise alias analysis, we can interpose on all variable accesses
(and not just synchronization operations) at 10-100x less overhead
than previous approaches.

Categories and Subject Descriptors

D.2.4 [Software Engineering]: Software/Program Verification —
formal methods, validation; F.3.1 [Logics and Meanings of Pro-
grams]: Specifying and Verifying and Reasoning about Programs
— mechanical verification, specification techniques; D.2.5 [Soft-
ware Engineering]: Testing and Debugging — debugging aids, di-
agnostics, monitors, tracing
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1. INTRODUCTION

Testing concurrent programs is notoriously difficult because of its
inherent non-determinism. An effective but expensive approach is
model-checking, where all possible schedules of a program are ex-
ecuted to ascertain the absence of a bug. Unfortunately, the space
of all schedules is huge, and exhaustively enumerating it is usu-
ally infeasible. For a multi-threaded program with n threads, each
executing k instructions, the total number of schedules (or thread
interleavings) is EZ'I;)"‘ . This space of schedules further explodes if
each instruction is not guaranteed to be atomic. For a very small
program with & = 100 and n = 2, the total number of interleav-
ings is around 10%!

As it is practically impossible to exhaustively explore the entire
state space of all schedules for any useful program, an alternative
is to try and maximize the probability of uncovering a bug rather
than trying to ascertain its absence. Many different approaches have
been proposed in this direction. Musuvathi and Qadeer proposed
using context-bound to rank schedules, and show that it is an effec-
tive method to uncover most common bugs [20]. A context-bound
is the number of pre-emptive context-switches required to execute
a schedule. The schedules are enumerated in increasing order of
their context-bound, i.e., all schedules with context bound ¢ — 1 are
executed before any schedule with context bound c. Musuvathi and
Qadeer report experiments on real-world applications, and show
that all known bugs in those applications were found at context-
bound values of 2 or less.

Iterative context bounding is an effective way of ranking sched-
ules. However, this metric is often too coarse-grained. For a multi-
threaded program with n threads, each executing k instructions, the
total number of schedules at context-bound ¢ grows with (nk)°.
For a small program with £ = 10, 000 instructions and n = 4,
the number of schedules at context bound 2 is on the order of
10°! Musuvathi et. al’s concurrency-testing tool based on this al-
gorithm, CHESS, reduces this search space by considering only
explicit synchronization operations as possible pre-emption points,
thus reducing k by at least 2-3 orders of magnitude. This simpli-
fication is justified by the assumption that most programs follow a
mutual-exclusion locking discipline, and hence all shared-memory
accesses will be protected by lock() and unlock() calls. Viola-
tion of this locking discipline can be separately checked using other
race-detection tools. This approach, though effective, is not com-




pletely general, as many systems deliberately avoid explicit syn-
chronization [28], often for performance reasons.

Another approach to testing multithreaded programs is random-
ization of scheduling decisions with probabilistic guarantees. Bur-
ckhardt et. al. [6] characterize a concurrency bug by its depth—
the minimum number of scheduling constraints required to find the
bug. They provide an algorithm that provides a lower bound on the
probability of finding a depth-d bug. Ranking on bug-depth d re-
stricts the search space of a multi-threaded program with n threads
and executing k instructions to nk¢~!. This, again, may be too
large for most programs.

Another recent tool, CTrigger [23], focuses on atomicity-
violation bugs and preferentially searches the space of schedules
that are likely to trigger these bugs. CTrigger first profiles execu-
tions of the program to determine the shared variables and their
unprotected accesses. It then attempts to generate schedules that
are likely to violate assumptions of atomicity (for example, by in-
serting a write to location M by some thread between two accesses
to the same location M by another thread). CTrigger is primarily
interested in atomicity-violation bugs and often overlooks other
concurrency bugs.

Our first contribution is to propose the use of number of vari-
ables to further classify and reduce the schedule search space. Our
algorithm is based on the hypothesis that in practice, most concur-
rency bugs can be uncovered by restricting our search to only a few
variables at a time. We search for bugs involving a small subset of v
variables. These variables may include synchronization operations.
We consider all such variable subsets in turn. For a given subset of
variables, we perform static alias analysis to identify all program
locations where these variables may be accessed. We instrumented
only these program locations. This selective instrumentation allows
us to run our program at near-native speed. Consequently, our ap-
proach can interpose on any variable accesses, and not just syn-
chronization variables as reported in previous work. We show that
using variable bounding, the search space reduces by a factor of
roughly (%)C’” when searching for bugs with context-bound ¢ and
variable bound v, where () is the total number of variables in the
program. We confirm this result experimentally by showing that
variable bounding reduces time to discovery of concurrency bugs.

Our second contribution is characterizing a concurrency bug by
the number of distinct threads that need to be order-constrained
to uncover the bug. A bug that can be uncovered by constraining
the order of ¢ threads is called a t-thread bug. In practice, most
bugs have a small ¢t. We provide a randomized algorithm with
guarantees on the probability of uncovering a t-thread bug, if any
exists. The search space decreases by a factor of Wl;q(n) when
using thread-bounding to search for bugs with thread-bound ¢ out
of a total of n program threads.

Our hypothesis that most bugs can be uncovered at low (v, t)
values conform with the observations made in previous work on
studying real-world concurrency bug characteristics [17].

The paper is organized as follows. Section 2 presents and ana-
lyzes variable bounding for exhaustive model-checking algorithms.
Section 3 discusses variable bounding for randomized algorithms
and analyzes the resulting probabilistic guarantees of finding a bug,
if one exists. Section 4 discusses thread bounding. Sections 5 and 6
discuss our implementation and empirical results. Section 7 dis-
cusses related work, and Section 8 concludes.

2. VARIABLE BOUNDING

Recent work on studying characteristics of real-world concurrency
bugs [17] concluded that 66% of the non-deadlock concurrency
bugs they examined involved only one variable. Perhaps, the most
common type of concurrency bug involving one variable access is a
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data race. i.e., simultaneous access of a shared variable (of which,
one is a write) by two or more threads without proper synchro-
nization. Also, among the remaining fraction of non-deadlock con-
currency bugs, most bugs involve only a few variables (typically
2 to 3). This observation motivates our ranking on the number of
memory locations involved. We first enumerate schedules that ex-
haustively check all thread interactions involving a single variable.
We then enumerate schedules that exhaustively check thread inter-
actions involving two variables, and so on.

We first discuss variable bounding in the context of a model-
checker. For a model-checker like CHESS [21], a custom priority
scheduler implements the exhaustive enumeration of schedules,
and context-bounding [20] is used to limit the number of schedules
executed. To implement variable bounding, we first identify all
program variables (or points in the program that generate new
variables) by parsing the program. These program variables include
globals and heap-allocated variables (allocated using malloc() or
new). A heap variable is identified and named by its allocation
statement and the number of times that statement has been invoked.
For example, if a particular new statement is called multiple times,
we will consider each return value as a separate variable. We call
this set of program variables ¥. Iteratively, we take all v-sized
subsets of variables in ¥} for v € {1,2,3,...}. For a subset V of
size v, we execute schedules that explore all interactions between
all variables in V.

To identify variables, we instrumented heap allocation state-
ments to generate a new variable name for each invocation of the
statement. As we explain later, we also prioritized the variables
which are generated in the first few loop iterations. To identify in-
teractions between a subset of variables, we instrumented accesses
to these variables. We used a lightweight and imprecise static alias
analysis [1, 16, 27] to identify program points at which each vari-
able in ¥ may be accessed. Our static analysis assumes that the pro-
gram is memory-safe. i.e., locations outside allocation boundaries
will not be accessed. Memory-safety can be separately checked us-
ing other available tools.

Without variable bounding, all accesses to all variables must be
instrumented with a call to the scheduler which implements exhaus-
tive schedule enumeration. With variable bounding, this instrumen-
tation can be significantly reduced. For a variable x; € ¥, we call
the set of program locations at which it may be accessed az;. With
variable bounding, we only checked interactions within a variable
subset V' = {xo, x1,...,Zv}, and instrumented all locations in the
set (az,Uagz, U- - -Uag, ). The instrumentation code includes a call
to a scheduler function, varaccess() that yields to the scheduler
which implements priority scheduling and systematic pre-emption.
varaccess () is inserted after the program has accessed and pos-
sibly updated the variable. To ensure that pre-emption occurs only
on accesses to the set of tracked variables, the instrumentation code
dynamically checks that the accessed memory address is one of the
tracked variables before calling varaccess (). The varaccess()
call serves as a potential yield point (or context-switch point), i.e.,
at this point, the scheduler can choose to run another thread. To al-
low a thread to be pre-empted before its first access to a variable,
we also inserted a fake varaccess () before the first instruction of
each thread. Our enumeration algorithm is similar to that used in
CHESS [21] and we discuss it in Section 5.

2.1 Bug Characterization

We call a concurrency bug a c context bug if at least ¢ pre-emptive
context switches are required for the bug to manifest. cis also called
the bug’s context-bound. This definition of context bound is taken
from previous work [20].

We call a concurrency bug a v-variable bug if the minimal set of
constraints required to manifest the bug involve preemption points



at accesses to v distinct variables. v is also called the bug’s variable
bound. By definition, v < ¢ for any ¢, v bug.

Figures 1, 2, 3, 4 show short programs with (¢ = 0,v = 0),
(c=1Lv=1),(c=2v=1),(c=2v=2) bugs respectively
for exposition. The numbers in comments give the order of exe-
cution for an assertion failure. In these short programs, we count
a pre-emption against the shared variable that was last accessed.
Also, we assume that a bug exists if the ASSERT statement can
fail.

a=0
Thread 2:
at++;// 1

Thread 1:
ASSERT(a==0);//2

Figure 1. A short program witha c = 0, v = 0 bug

a=0
Thread 1: Thread 2:
tl=a;//1 a++; //2
t2=a;//3

ASSERT(t1==t2); // 4
Figure 2. A short program withac =1,v =1 bug

a=0
Thread 1: Thread 2:
tl=a;//2 a=1;//1
t2=a;//4 a=0;//3

ASSERT(t1==t2);// 5
Figure 3. A short program withac = 2,v = 1 bug

a=0,b=0
Thread 1: Thread 2:
tl=a;//1 a=1;//2
t2=a;//3 b=1;//4
t3=b;//5 b=0;

ASSERT(t1==t2ort3 !=1);// 6
Figure 4. A short program withac = 2, v = 2 bug

2.2 Schedule Characterization

A schedule is characterized by c—the number of pre-emptive con-
text switches in it, and v—the number of distinct variables at which
a pre-emptive context switch was performed.

2.3 Search Space Reduction

We now discuss how variable bounding helps reduce the search
space. Let us assume that a multi-threaded program with ¢ threads
has @ distinct shared variables, represented as a set ) of variables,
i.e., [9] = Q. For simplicity, let us also assume that each thread
in the program accesses each variable in ¢ exactly d times. Hence,
the total number of variable accesses by a thread are d(). Assuming
that only accesses to these shared variables are interesting context-
switch points, and assuming n threads, k¥ = ndQ (k is the number
of steps in a program). Therefore, the number of schedules that
need to be explored at context bound ¢ are O((ndQ)°). Let us call
this expression A.

If we focus on a subset V' C ¢ of v variables, the num-
ber of schedules that need to be explored at context bound c are
(¢) (ndv)® (first choose a subset V C 9, then explore all sched-
ules with preemptions at accesses to variables in V). Assuming
v, ¢ < @, this expression is O(Q"(ndv)¢). Comparing with A,
we see that this expression is less than A if v < c¢. This reduction in
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the search space (number of execution runs) is significant for pro-
grams with a large number of variables (large Q). Apart from this
reduction in the number of execution runs, the time taken by each
execution run also decreases dramatically with variable bounding,
as only the accesses to variables being tracked need to be instru-
mented. We study both these improvements in detail in our experi-
ments in Section 6.

At v = ¢, variable bounding provides no improvement in the
size of the search space, but still provides a significant reduction in
runtime because of much lower instrumentation overhead (only the
tracked variables need to be instrumented). Effectively, by slicing
the program into accesses to a small subset of variables, we reduce
the number of program steps k. This is because only accesses to the
variable being tracked are considered valid context switch points.
As we discuss in our experiments (Section 6), this reduction is
significant for most programs. This method of reducing & is more
general than the approach used in previous tools (e.g., CHESS [21])
where all accesses to non-synchronization variables are ignored.

While we have used a simplified assumption of constant number
of accesses d to each variable by each thread, the result does not
change (although the analysis gets more involved) if we assume
varying number of accesses by each thread to different variables.
The same result can be obtained by replacing d with the average
number of accesses by a thread to a randomly-chosen variable, and
we skip this discussion for brevity. We analyze a more general
scenario in our discussion on probability bounds for randomized
bug-finding algorithms (Section 3).

2.4 Heap Allocated Variables and Arrays

Our set of tracked variables include heap-allocated variables. Heap-
allocated variables are named using the heap-allocation statement
and the number of times that statement was executed before this
variable was generated. A large number of heap allocations by one
statement can generate a large number of variables causing our
variable-bounding algorithm to get stuck at low v values.

In our experience, if the program contains a bug involving
a certain type of heap variable, the bug usually manifests while
tracking the first few variables of that type. For example, if the
program constructs and accesses a heap data structure (e.g., linked
list), it is very likely that a bug, if it exists, will be exposed by
exploring all interactions among the first few elements of that data
structure.

The challenge is to identify and group variables of a certain
type, so that only the first few variables of that type are considered.
We use a simple heuristic that we found to work well in practice.
The type of a variable is defined by the callstack at the time of al-
location of that variable. We expect that largely, variables allocated
with identical callstacks are of the same type. This heuristic is nei-
ther sound nor complete. For example, it is possible that variables
of the same type are allocated at different points in the program,
hence having different callstacks. This can cause our algorithm to
execute more than the required number of schedules. A more se-
rious problem is that two identical callstacks could generate com-
pletely different types of variables. This can cause our algorithm to
overlook certain bugs. Fortunately, in practice, such code is rare.

The algorithm works as follows. For each heap allocation, we
generate a new variable ID labeled by the location of the allocation
statement and the number of times that statement was executed.
With each variable ID, we also associate the number of times this
allocation statement has previously been executed with an identical
callstack. We call this latter number, the loop iteration number (be-
cause the allocations with identical callstacks must be happening
through a loop) of that variable. We first search for bugs involving
variables with lower loop iteration numbers before searching for
bugs involving variables with higher loop iteration numbers. We



call this algorithm loop-iteration bounding and denote the current
loop-iteration number being searched with letter /. Figure 5 shows
our logic for implementing loop iteration numbers. Note that, by
design, variables allocated by recursive calls with different recur-
sion depth will be named differently (because they will have differ-
ent call stacks).

<instrumentation code for new()>
callstack := get_current_callstack();
v <heap-allocation-statement, alloc#>;
lin := loop_iteration_number (callstack);
increment_loop_iteration_number (callstack) ;
if (lin <= 1) {
add v to the set () of the variables to be tracked;

}

Figure 5. Instrumentation code for heap-allocation statements
that considers only variables with loop-iteration number < I

We also need special handling for array variables. Whenever
possible, we treat each location in the array as a separate variable. If
the search space size becomes unmanageably large (for high values
of v), we use a less precise but sound approach of considering the
whole array as a single variable.

3. VARIABLE BOUNDING ON RANDOMIZED
ALGORITHMS

Apart from exhaustive state space exploration to ascertain the ab-
sence of certain bugs, randomized schedulers that provide proba-
bilistic guarantees of finding certain types of bugs have also been
proposed. Depth-bounding [6] (also called Probabilistic Concur-
rency Testing in the paper) is one such approach. The primary ad-
vantage of randomized approaches over exhaustive search is that
the former can cover a large part of the program in relatively fewer
runs. Exhaustive search, on the other hand, can get stuck in local
regions of the program for long periods of time causing bugs in
other regions to go undetected. In this section, we discuss variable
bounding in the context of randomized search.

In particular, we study Probabilistic Context Bounding (PCT) [6]
that proposed the bug-depth metric. While we analyze only PCT,
similar arguments will hold for other randomized algorithms. For
a program spawning at most n threads and executing at most k
total instructions, PCT algorithm works as follows (for an input
parameter d, denoting the depth of the bug being searched):

1. Assign n priority values d, d + 1,..., d + n randomly to the n
threads.

. Pick d — 1 priority change points k1,. .., kq—1 randomly in the
range [1, k]. Each k; has an associated priority value of .

. Schedule the threads by honoring their priorities, i.e., always
execute an enabled thread with the highest priority. When a
thread reaches the i-th change point (i.e., executes the k;-th
instruction), change the priority of that thread to <.

Burckhardt et. al. [6] proved that this algorithm finds a bug of depth
d with probability at least 1/nk? .

We implemented variable bounding on PCT by first randomly
choosing a set of v variables, and then randomly choosing d — 1
priority change points at one of the accesses to the chosen variables
(other instructions in the program are not considered as potential
priority change points). For heap-allocated variables, we simply
choose a heap allocation statement (new and malloc) in lieu of
a variable. Accesses to any of the variables allocated at the chosen
heap-allocation statement are considered potential priority change
points.
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Notice that using a heap-allocation statement as one “variable”
in the randomized algorithm is a departure from the strategy used
in the exhaustive-search strategy, where each heap allocation is
considered a separate variable. This is done to ensure that we
know the number of these variables at compile time, and hence
can appropriately choose a variable set to provide probabilistic
guarantees. Under this new definition of a variable, a v-variable
bug is a bug that involves memory locations allocated at at most v
distinct heap-allocation statements (or globals). This new definition
performs a coarser classification of program’s memory locations.
This could potentially cause higher number of required executions
for effective state space search for the same v value. However, this
is still a significant improvement over not using variable bounding
at all. Also, this definition of variable bounding does not make our
argument on most bugs having low variable bounds any weaker.

Assume that the total number of global variables and heap
allocation statements in a program is (). We changed the PCT
algorithm to implement variable bounding as follows:

0. Choose a set of v variables qi.,. ..,q, representing the minimal
set of variables involved in the bug being searched (v < d).

1. Assign n priority values d, d + 1,..., d + n randomly to the n
threads.

. Let kg, ,...,kq, denote upper-bounds on the number of instruc-
tions accessing q1.,. . . ¢, respectively in any run of the program.
Hence, variable g, is accessed at most kg, times in any ex-
ecution of the program. Construct a set S of elements of the
form (g, 7), where r is in the range [1, v] and j is in the range
[1,kq,.]. The set S willhave k = >~ _, kg, elements. Pick
d — 1 random elements from S to represent the priority change
points.

. Schedule the threads by honoring their priorities. For i-th
chosen element (g, , j;) in the previous step, force a priority
change point at the j;th access of the g, th variable. i.e., change
the priority of the thread at this point to .

We call this modified algorithm PCTVB (PCT with Variable
Bounding). Unlike PCT, where the priority change points k;s are
chosen randomly from 1, ..., &k, PCTVB first picks a set of vari-
ables (or heap-allocation statements), and then chooses priority
change points among the accesses to this set. PCTVB has two ad-
vantages over PCT:

1. As we show below, PCTVB improves the probability bound on
finding a bug with depth d and variable-bound v. Because most
bugs have low v, this results in overall improvement in the bug-
finding probability.

. Choosing a set of variables apriori allows us to instrument
only the program points that can potentially access these vari-
ables. These program points are identified using static (impre-
cise) alias analysis. This is a significant improvement over PCT
where all variable accesses need to be instrumented.

3.1 Probabilistic Guarantees of PCTVB

The analysis of the probabilistic guarantees of PCTVB is identical
to that of PCT, as presented in the original paper [6] and we omit
it for brevity. We simply revisit Theorem 9 (without proof) of the
original paper with our new variable bounding enhancement.

THEOREM 3.1. Let P be a program with a bug B of depth d
and qi,...,qv be the minimal set of unique variables, accesses to
which need to be preempted to trigger B. For a variable g;, let
kq, > mazaccesses(P, ¢;). Assuming n > maxthreads(P),

1

Pr[PCTVB(n, k,d,q1, . .. —_——
[ (s )

7qU) GB] 2



Here, B is the set of schedules that expose the d-depth bug in
the program. mazaccesses(P,q;) returns the maximum num-
ber of accesses made by P to variable ¢; in any single run.
maxthreads(P) is the maximum number of threads spawned
in P. The proof is identical to that of the original theorem, and is
obtained by simply replacing k with 3~ _

For a program with @) total global varlables and heap allocation
statements, the probability that we pick the correct v variables
(q1,. . -,qv) to trigger the v-variable bug (if it exists) is (7{7) Hence,

the probability of finding the v-variable bug is
o
(Q) n(X iy, ke )4t

v

Pr[PCTVB(n, k,d,v) € B] >

This expression depends on the sum of the access frequencies
Kqy .. kq, of the variables qi.,...,q,. Given that the total number
of variables is ), and the total number of variable accesses in any
single run is at most £k = Zq_ kq;, we expect this sum to be
less than £ on average (averaged over all v-sized sets of global
variables and heap allocation statements). Let us assume that the
sum is f % where f < 1 on average but could be higher depending
on the set of chosen variables. Upper-bounding (Cg) with O(Q")
for small values of v, this expression evaluates to

Qdfvfl
n(kvf)d-1

Comparing this with PCT’s original bound of W{l, variable
bounding helps if

Pr[PCTVB(n, k,d,v) € B] >

Qdfvfl 2 (”Uf)d71
Assuming v < (@, variable bounding significantly improves the
lower bound on probability if v < d — 1 and f is small. In other
words, variable bounding helps if the bug being searched involves
fewer variables than its bug depth, and these variables are accessed
less than average access frequencies.

A case of particular interest are bugs with variable bound v = 1,
as they are by-far the most common. The inequality shows that
the probability of finding a 1-variable bug of depth 2 or higher
improves significantly if f < 1. In other words, the probability
of finding bugs involving “corner variables” (variables used rarely
compared to others) improves with variable bounding. Intuitively,
variable bounding gives all variables an equal chance, while plain
depth-bounding (or context-bounding) gives higher chance to more
frequently-accessed variables. We confirmed this experimentally
by writing a small program with two variables and varied the rel-
ative access frequencies of the variables. One of the two variables
was involved ina ¢ = 1,v = 1,¢ = 2 concurrency bug. Figure 6
shows that as the frequency of access to the variable containing the
bug is decreased, PCTVB requires fewer executions to find the bug
compared to PCT.

We profiled the access frequencies of variables listed in Table 1.
Some of the detailed graphs can be found in Figure 7 and other can
be found in our technical report [4]. The number of accesses varies
widely across different variables for almost all benchmarks. Typi-
cally, we expect variables with fewer accesses to undergo relatively
less testing and thus have higher likelihood of having bugs. Even if
we assume that all variables are equally likely to contain bugs, we
see that variable bounding improves the overall probability of find-
ing a bug (if one exists). We present a simple example. Consider a
program with av = 1, d = 2 bug that manifests if a certain priority
sequence is followed and priority change point occurs on a certain
access agq, to variable g,. Assume there are () different variables in
the program, and each variable g; is accessed at most k,, number of
times in any one run of the program. Hence the probability of un-
covering the bug is the probability that we pick the correct priority
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Figure 6. Figure represents the number of executions required
(on average) to trigger the bug for PCT and PCTVB as the
access frequency of the buggy variable is changed.

sequence, and the probability that we choose ag, as the lone prior-
ity change point. The former is independent of variable bounding.
Below, we compare the latter, with and without variable bounding.

Without variable bounding, the probability of picking aq, as a
priority change point is at least Z—k (let’s call this expression

FE1). This expression is simply the probability of choosing ag,
among Z kg, potential priority change points. Notice that E1
is independént of kg, .

With variable bounding, we first choose a variable and then
choose an access point of that variable. Hence the probability that
we pick agq, as a priority change point is B — (the probability
that we pick g, multiplied by the probablhty that we pick ag, ).
This expression depends on ¢, and kg, . Assuming each variable
is equally likely to contain a bug, further computing the expected
value of this expression over all g, we get % > (let’s call
this expression E2).

Comparing E'1 and E2, and using Jensen’s inequality, we get

1 < 1

1
9y qub

or 1 < E2 with the equality happening only at kg, = kq; =. ..
kqq, - For typical access patterns to variables in common programs
(see Figure 7), E2 is expected to be significantly higher than E'1.
Hence, assuming all variables are equally likely to have a bug,
variable bounding provides a tighter bound (£2) on the probability
of finding the bug at v = 1,d = 2. A similar argument holds for
higher values of v and d, and we omit the discussion for brevity.

4. THREAD BOUNDING

Previous work on studying concurrency bugs found that most con-
currency bugs can be discovered by enforcing ordering constraints
between a small number (typically two) of threads [17]. This is
our inspiration for using thread-bounding while searching for con-
currency bugs. We call a bug that requires ordering constraints be-
tween at-least ¢ distinct threads to be uncovered, a ¢-thread bug. ¢ is
also called the thread-bound of the bug. By definition, the thread-
bound of a concurrency bug is always 2 or higher. Notice that our
definition of thread-bound also counts the threads that should not
be executed for a bug to manifest. For example, a bug that man-
ifests only if thread A is executed after thread B and thread C is
not executed in between, will be called a 3-thread bug, and not a 2-
thread bug. Also, ¢ is independent of ¢ and v. i.e., a ¢ context-bound
bug and a v variable-bound bug, can have any thread bound ¢ > 2.
Figures 8, 9, 10 show short programs with (¢ = 0,v = 0,¢ = 3),
(c=1,v=1,t = 3),and (¢ = 2,v = 2,t = 3) bugs, respec-
tively.
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Figure 7. This figure plots the variable access frequency profile for six of our benchmarks. The values on the x-axis represent the
frequency of access of a variable, and the y-axis plots the number of variables that are accessed at that frequency. For example, in tsp,
19 variables are accessed between 0 to 100 times (first vertical bar), and only 1 variable is accessed between 200 to 300 times. These
access frequencies were determined after running our benchmarks multiple times on different inputs and averaging the results.

a=0
Thread 1:
at++;

Thread 2:
a++;

Thread 3:

Figure 8. A short program withac =0,v=0,t = 3 bug

a=0
Thread 1: Thread 2: Thread 3:
tl =a; a++; a++;
t2 = a;

ASSERT(t1 < t2+1);
Figure 9. A short program withac=1,v =1,t = 3 bug

a=0
Thread 1: Thread 2: Thread 3:
tl = a; at++; b++;
t2=a;
t3 =b;
t4 =b;

ASSERT(t1==t2 or t3==t4);
Figure 10. A short program withac =2,v =2t = 3 bug

We posit that the number of schedules required to uncover
a t-thread bug increases with ¢. For example, for a program
with n threads 74,---,7T,, at context-bound c 0, all 2-
thread bugs can be uncovered by only two schedules, namely
{T1,T2,T3, e ,Tnfl,Tn} and {Tn,Tnthnfz, ceey TQ,T1}.
This is because for any subset of 2 threads {7}, 7}, both orders
between T; and T (i.e., {T3,T;} and {T},T;}) are covered by
these two schedules. In other words, if we arrange the threads in an
arbitrary permutation, enumerating two orders (increasing and de-
creasing) are enough to uncover all 2-thread bugs at context bound

A similar argument holds for ¢-thread bugs where ¢ > 2. At
¢ = 0, it suffices to enumerate enough schedules to explore all ¢!
relative orderings of all ¢-sized subsets of the n threads, to uncover
a t-thread bug. To do this, we require an algorithm that generates
enough permutations of n numbers, such that all ¢! permutations of
all t-sized subsets of the n numbers are exhaustively covered.

ASSERT(a!=2);
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Based on the following lemma (lemma 4.1), we present a ran-
domized algorithm to enumerate all ¢! permutations of all t-sized
subsets of n numbers using less than O((t 4+ 1)!log(n)) permuta-
tions of n numbers with a high probability. Notice that the algo-
rithm has only logarithmic growth with n, as opposed to n! growth
without thread bounding.

LEMMA 4.1. The number of independent random permutations of
n numbers that need to be generated to observe all t! relative
orderings of all () subsets of size t with probability at least (1—e),

is (t + 1)!(log(nt) + log(1)).

Proof Let N be a set of n distinct elements. Consider a fixed subset
S C N of t elements and let 7 be some arbitrary permutation of S.
For any random permutation o of n elements, the probability that 7
is a subsequence of o is % (by argument of symmetry). Hence, the
probability of 7 not appearing in o is (1 — —) If we enumerate P
independent random permutations of n numbers the probability
of 7 not appearing in any of the P permutations is (1 — %)P .
For a fixed permutation 7, let us denote this probability of 7 not
appearing in any of the P permutations by F.

There are ('}) subsets of N of size ¢, each having ¢! permuta-
tions. Let us denote this set of t'( ) permutatlons by ©. The prob—
ability that any one of the permutations in © is not observed in P
random permutations of n numbers is at most the sum of individ-
ual probabilities Y~ Fi = t!(’}) Fxr. We require this quantity to be

TEO
n 1
| J—
t'<t>(1 t!

Writing P as (t!M), and approximating (1 —

less than e.

7)) by ¢

t! e’

Approximating ¢! by t*, and (7}) by n’,
M > tlog(nt) + log(l)
€
Replacing M with P,

P> (t+ 1)!(log(nt) + 109(%))



Even if ¢ is inverse-exponential in n, P is still linear inn. |

As an example, given a maximum of n threads, at ¢ = 3, it
suffices to enumerate (24log(n)) random permutations of the n
numbers to observe all 3! relative orderings of all (';) subsets with
high probability. For n = 600, we found using simulations that
70, 360 and 2000 random permutations were enough to generate
all relative orders of all (%) (t = 3), (}) (t = 4)and (}) (t =5)
subsets respectively, with more than 99% probability.

To generalize to higher context-bounds, we consider a pre-
empted thread as two distinct threads (thread fragments) in this
algorithm. Hence, for context-bound c bugs on a program with
at most n threads, we consider n + c distinct thread fragments.
To cover all t-thread bugs at ¢ context-bound, it suffices if we
enumerate all (¢+c)! permutations of all (¢+c)-sized subsets of the
n + c thread fragments. (This is more than what is strictly required
because here we are also enumerating orderings between thread
fragments belonging to the same thread). Hence, using Lemma 4.1,
the number of schedules that need to be executed before all ¢-thread
bugs have been tested at context bound ¢ with high probability is
O((t+ c+ Dllog(n + ¢)).

To summarize, the exploration algorithm works as follows. A
random permutation of 1, ..., (n 4 ¢) numbers is generated at the
start of each execution run. Let us label the generated permutation
Pi,..., Pytc. The scheduler uses strict priority scheduling using
P, ..., P, asthe priorities of threads 1, . . . , n respectively. On the
ith pre-emptive context switch, the priority of the running thread
is changed to Pp4i. If (t + ¢ + 1)log(n + ¢) such executions
are performed, each time with a new random permutation, we
expect all ¢ thread bugs at context bound c to be covered with
a high probability. (If variable bounding is also being used, then
this is repeated for each set of variables). Notice that the algorithm
is independent of ¢; we only provide probabilistic guarantees on
the absence of bugs with thread-bound less than ¢ after a certain
number of schedules have been executed.

5. IMPLEMENTATION

We implemented variable and thread bounding in a concurrency
testing tool for Java, called RankChecker. RankChecker instru-
ments the binary class code of a Java program and associated li-
braries to insert appropriate schedule points. It does not require any
source-level annotations. We instrumented Java bytecode using the
Javassist library [7]. The instrumented test program is linked with
a RankChecker library that implements a scheduler to dictate the
thread interleavings. We implemented static alias analysis using
BDDs, similar to that used in [22, 27]. Like previous approaches
on systematic and probabilistic testing [6, 21], the program under
test is required to be terminating, so that it can be run repeatedly to
explore different schedules. It is usually straightforward to convert
a non-terminating program to a terminating program.

We implemented two different algorithms: exhaustive and ran-
domized. The exhaustive algorithm searches the state space of all
schedules systematically. The randomized algorithm searches the
state space randomly, with probabilistic guarantees on the proba-
bility of finding a bug of certain type (e.g., depth).

We first discuss the implementation of the exhaustive search
strategy. The pseudo-code is shown in Algorithm 1. The algo-
rithm is invoked for each set of variables (determined using variable
bounding). For each set of variables, a set of thread priority orders
threadPrios are generated and executed. Strict priority schedul-
ing is followed (line 28) and priorities are changed at variable ac-
cesses using the thread bounding algorithm (line 37).

A program state s is identified by the partial thread schedule that
was executed. We implemented a simple record-replay mechanism,
whereby a thread schedule is recorded and later replayed to recon-
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Algorithm 1 Iterative context bounding algorithm for ¢-thread
bugs
Input: initial state so € State.
1 struct Workltem { State state; Priorities prio; }
2 Queue<Workltem> WorkQueue;
3 Queue<Workltem> nextW orkQueue;
Workltem w;
Queue<Priorities> threadPrios;
threadPrios.init(t);
int curr Bound:= 0;

~N o O

8 for prio € threadPrios do
9  workQueue.Add(Workltem (so, prio));

10 end for

11 while true do

12 while —workQueue.Empty() do
13 w = workQueue.PopFront();
14 Search(w);

15  end while

16  if nextWorkQueue.Empty() || curr Bound == c then
17 Exit();

18 end if

19 curr Bound := currBound + 1,
20  workQueue := nextWorkQueue;
21 nextWorkQueue.Clear();

22 end while

23 function Search(Workltem w) begin

24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41

Workltem z; State s;

TID effTid,

bool tidenabled, varaccess;

if w has no successors then return;

Thread tid := highestPriorityEnabled Thread(w.prio);

s := w.state.Execute(tid);

tidenabled := (tid € enabled(s));

varaccess := (tid returned due to varaccess());

x := Workltem(s, w.prio);

Search(z);

if (tidenabled && varaccess) then
// pre-emptive cswitch. gen a schedule
effTid := effTidOfCurrentThread();
changeEffTidOfCurrentThread(effTid+M azT hreads);
z := Workltem(s, prio);
nextW orkQueue.Push(z);

end if

end

struct the same state. As noted in [21], replays may not result in
identical states due to other sources of non-determinism (e.g., envi-
ronment, non-deterministic calls, etc.). Our current implementation
deals with these issues by enforcing a deterministic input at all of
these non-deterministic points through bytecode instrumentation.

We instrument the target program separately for each subset of
variables being tracked. For a fixed (v, t) value, the enumeration
algorithm iteratively explores the schedules with context bound
0,1,...,c(cisthe maximum desired context-bound value). While
enumerating schedules for context bound currBound, schedules
are generated for context-bound currBound + 1. Our algorithm
is very similar to that presented in [20], with the following differ-
ences:

1. The instrumented program points include memory accesses to
the variables being tracked, and not just explicit synchroniza-
tion points. As we show later, variable-bounding allows us to



do this without significant increase in running times. Each in-
strumented program point yields control to our scheduler.

2. When a thread yields control to the scheduler (1ine 29), the
address of the currently accessed variable is compared with the
set of variables being tracked (variable bounding). Recall that it
is possible that even though the variable access is instrumented,
the accessed variable does not belong to the set of variables
being tracked. This can happen either due to the imprecision
of the static alias analysis or in cases where multiple variables
are allocated by the same heap-allocation statement. If the ac-
cessed variable belongs to the set of variables being tracked,
the priority of the executed thread is re-assigned, as discussed
in Section 4.

We also instrumented all entries and exits from synchronized
blocks, calls to wait and notify, and other thread library
functions like Thread.create, Thread.join, Thread.yield,
Thread.suspend and Thread.resume. We replace all synchro-
nization function calls with calls to the appropriate scheduler
functions, through instrumentation. The scheduler function emu-
lates the requested operation and returns to the enumeration algo-
rithm (at line 29). The enumeration algorithm then selects the
highest-priority active thread (which could have changed due to
the synchronization operation) and executes it. For illustration, Fig-
ure 11 shows the scheduler’s emulation functions for wait () and
notify (). All calls to wait() and notify() in the target pro-
gram are replaced with calls to wait_s() and notify_s() respec-
tively.

void wait_s(cond, mutex) {
curthread.waitingOn = cond;
curthread.status = BLOCKED;
add_to_blocked_threads (curthread) ;
wakeup_threads_blocked_on(mutex) ;
return to scheduler

}

void signal_s(cond, mutex) {
wakeup_threads_blocked_on(cond) ;
return to scheduler

}

Figure 11. The scheduler’s wait() and notify() functions

All program instructions, where one of the variables being
tracked is accessed, are also instrumented with a call to sched-
uler function varaccess(). The varaccess() function simply
returns to the enumeration algorithm (at 1ine 29). The instruc-
tions that could potentially access a tracked variable are identified
using static alias analysis.

Here, we also point out that our definition of context-bound
differs from previous work [20] in a subtle way. While the previous
work counts all pre-emptive context switches towards the context-
bound, we only count the pre-emptive context switches that violate
the current priority order. For example, in our scheme, it is possible
for a low-priority thread to be pre-empted in favor of a high-priority
thread after thread creation, even at ¢ = 0. We do not count such
pre-emptions towards the context-bound.

Usually, priority-based schemes suffer from issues like prior-
ity inversion and starvation. Because we require all threads to be
terminating, this is not an issue in our implementation. A priority-
based scheme also violates any assumptions of strong fairness [2]
which says that every thread will eventually be run. As also noted
in [21], many programs implicitly make this assumption. For ex-
ample, while-flags (or spin-loops) are a common synchronization
construct that assume strong fairness. These loops will never termi-

nate if the thread that sets the condition of the loop starves. CHESS
avoids this situation by assuming that a thread yields when it is
not able to make progress, and assigning lower priority to threads
calling thread_yield(). In our enumeration scheme, lowering
the priority of a thread on a call to yield() may cause certain
schedules to never get enumerated, because unlike CHESS, we enu-
merate only a small set of priority orders among threads (thread-
bounding). To guard against the possibility of infinite loops, we
lower the priority of a thread if we observe that thread to yield ()
more than a 100 times. This threshold avoids infinite loops, and
yet is reasonably large to not cause interference with our thread-
bounding algorithm.

Similar to CHESS [21], we use happens-before relations to con-
struct a happens-before graph to prune the schedules. The happens-
before graph characterizes the partial order of related operations
in a program execution. The nodes of the happens before graph
are the executed instructions. A happens-before directed edge is
drawn between two instructions iff the two instructions execute in
different threads, the first instruction executes before the second in-
struction in the given schedule, and the two instructions access the
same variable of which at-least one access is a write. The pruning is
based on the observation that two schedules with identical happens-
before graphs result in the same program state. For a given vari-
able set, if one schedule has an identical happens-before graph to
another previously enumerated schedule, this schedule (and all its
derivative schedules) need not be enumerated. Pruning is not per-
formed across distinct variable sets. Because our thread-bounding
algorithm is randomized, our exhaustive search algorithm is not
strictly exhaustive. But as stated in Lemma 4.1, the probability that
we have not exhausted the search space can be made arbitrarily
small by executing a sufficiently large number of random priority
orders.

We also implemented a randomized testing algorithm in
RankChecker to test variable and thread bounding. The random-
ized algorithm simply picks a set of v variables (globals and heap-
allocation statements) randomly, and then picks priority change
points at accesses to these variables. The values of the maxi-
mum number of accesses, kg ... ,k:qQ, to variables, qi,...,qq re-
spectively, are estimated by running the program without priority
scheduling multiple times and counting the average number of ac-
cesses to each variable in these runs. The priority change points are
picked uniformly over the interval [1, kg, ]. Our randomized algo-
rithm is modeled after PCT’s depth-bounding. The only difference
between our algorithm and PCT is in the assignment of priorities.
PCT generates a set of random priority orders, such that each thread
gets to be the lowest priority thread in at least one of the priority
orders. Also, on a priority change point, PCT decreases the prior-
ity of the current thread to become lower than the priority of all
currently-executing threads. Our priority orders are instead chosen
using the thread-bounding algorithm given in Section 4.

6. EXPERIMENTAL RESULTS
We perform experiments to answer the following questions:

e What are the typical values of variable-bound and thread-bound
in common concurrency bugs?

e What is the runtime improvement due to variable bounding?

e For exhaustive search strategy, do variable and thread bounding
improve the number of executions required to expose a bug?

e For randomized search strategy, do variable and thread bound-
ing improve the number of executions required to expose a bug?

We picked a variety of small and large Java programs and one
C# program as test programs to evaluate our algorithms. The details
of these programs are given in Table 1. The first 13 programs are



from the ConTest Concurrency Benchmark Suite [10]. All these
programs contain a concurrency bug. The next 8 benchmarks are
multi-threaded Java programs commonly used to evaluate concur-
rency testing and verification tools. Some of these programs contain
bugs. The last program (RegionOwnership) is a C# program con-
taining a reasonably complex concurrency bug. This program has
been previously analyzed using CHESS [9]. As we discuss later,
we have also implemented variable and thread bounding in the
CHESS tool to test C# programs. We report our experiences with
variable bounding on the RegionOwnership benchmark. Within a
variable and thread bound, we further rank our schedules based on
the loop iteration number (recall Section 2). For exhaustive search
experiments, while choosing our variable set, we give priority to
shared variables. i.e., variables known to be shared are chosen be-
fore other variables. A variable is known to be shared if in one of
the preparatory runs, we found a variable being accessed by at least
two threads.

We ran RankChecker on the programs containing known bugs
with variable bounding to check the bug characteristics. Table 1
lists the (c, v, t) values at which these bugs were uncovered using
the exhaustive algorithm. We found that all of these bugs were
c < 2,v < 2,t = 2 bugs. We surveyed past papers on studying
concurrency bugs and also inspected many bugs reported in bug
databases of popular applications. We found that all of these bugs
were also of type ¢ < 2,v < 2/t = 2.

We provide pseudo-code of the c = 2,v = 1,¢ = 2 bug found
in AllocationVector in Figure 12.

Block b = FindFreeBlock();
Block b = FindFreeBlock();| first context switch
ASSERT (IsBlockFree(b));
MarkBlockAllocated(b);
second context switch ASSERT (IsBlockFree(b)); !FAILS!
MarkBlockAllocated(b) ;
FreeAllBlocks();

FreeAllBlocks();

Figure 12. Pseudo-code showing the c = 2)v = 1,t = 2
bug in AllocationVector. The routines FindFreeBlock(), Mark-
BlockAllocated(), and IsBlockFree() are all synchronized (i.e.,
protected by a monitor lock). FindFreeBlock() searches a global
vector to find an unallocated block. MarkBlockAllocated() sets
a flag in block b and IsBlockFree() checks that flag.

We next discuss the improvements in running time due to vari-
able bounding. Table 2 shows our results on some of our Java pro-
grams. The other Java programs were too small to show any mean-
ingful improvements. The runtime statistics have been averaged
over several runs of the programs. With variable bounding, there
is up to 100x improvement in the runtime cost of instrumentation.
The runtime improvement depends on the proportion of compu-
tation and I/O in the test program. Variable bounding results in
improvement because only program statements identified by alias
analysis as potential accesses to our set of tracked variables need to
be instrumented. The performance of an instrumented run is now
comparable to that of a native run, which makes it practical to im-
plement systematic testing algorithms where all variables are con-
sidered as potential pre-emptions points. (The native run is some-
times slower than the instrumented run; this happens due to the
overhead of process creation in the native run which does not exist
in our instrumented run.). This is a significant improvement over
previous work, where only synchronization operations have been
considered as potential pre-emption points [6, 21].

Previously, a tool called RaceFuzzer [25] reported ac = 1,v =
1,7 = 2 concurrency bug (data race) in cache4j. Our tool could
not find this bug even after exhaustively enumerating all schedules
up to ¢ < 2,v < 2,¢t = 2. On deeper inspection, we found that
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the bug did not exist. It turned out that RaceFuzzer had generated
a false bug report due to an error in the modelling of the semantics
of the Java interrupt exception in the tool. We reported this to the
author of RaceFuzzer [25], and he did not object to our findings.
Because RankChecker actually runs a schedule to try and trigger
assertion failures, a bug report and the associated schedule reported
by it also serve as a proof of the bug’s existence.

6.1 Variable and Thread Bounding in CHESS

We further validated the effectiveness of variable and thread bound-
ing in practice by implementing it inside CHESS[21] and testing
it on C# benchmarks that were previously used with CHESS [9].
However, we did not have an alias analysis readily available for
C#, thus, we only implemented a simple form of variable bound-
ing that works as follows. Let VT-CHESS refer to our extension of
CHESS with variable bounding. Suppose VI-CHESS is executed
on program P with variable bound v and pre-emption bound c. If
v > c then VI-CHESS behaves exactly like CHESS. When v < c,
then during an execution of P, VI-CHESS records the shared vari-
ables accessed just before the first v pre-emptions in the execution.
Subsequent pre-emptions (v 4+ 1™ to ¢™) are constrained to occur
only after an access of one of these v variables. In other words, the
v variables for variable bounding are chosen dynamically.

The deepest reported bug found using CHESS is in a program
called RegionOwnership. It is a C# library that manages con-
currency and coordination for objects communicating via asyn-
chronous procedure calls. The library is accompanied by a single
test case comprising of a one-producer one-consumer system. The
library is 1500 lines of code, and an execution access a synchro-
nization variable at most 280 times. The test reveals a bug that re-
quires at least 3 pre-emptions.

Table 3 shows the number of executions and time taken before
VT-CHESS either reported a bug or finished exploring all behaviors
under the given bound. We used ¢ = 3,¢ = 2 in all invocations of
VT-CHESS. VT-CHESS was able to find the bug about 6 times
faster then CHESS while using a variable bound of 2. Using a
variable bound of 1 does not expose the bug, but Table 3 shows
a further reduction in search space when this bound is imposed.

Table 3. Experiments with the RegionOwnership benchmark.

Bug found? | # Executions | Time (sec)
No VBt = 2 Yes 132507 6897.3
v=2t=2 Yes 47248 1224.4
v=1t=2 No 30437 581.0

6.2 Variable and Thread Bounding in
Randomized Algorithms

All the bugs found in our test programs, except RegionOQwnership,
were of type v < 1. As seen in Tables 2 and 3, variable bounding
improves both runtime and the number of schedules explored while
systematically testing concurrent programs. To further study the
effect on bugs with higher v, ¢ values, we modified one of our
test programs such that it had a bug of the required type and ran
RankChecker on it. Table 4 presents our results.

As expected, the time required to find the bug decreases dramat-
ically with variable bounding. The number of executions required
to find a v = 0 bug is roughly the same with and without vari-
able bounding, but increases with the thread-bound of the bug. The
number of executions required to find the bug improves with vari-
able bounding at v > 1, for the reasons discussed in Section 3.

7. RELATED WORK

There is a large body of work on static [3, 22] and dynamic [8,
14, 18, 23, 24] techniques to uncover concurrency bugs. While



Table 1. Test programs and their details. The last two columns list, for each buggy program, the number of schedules explored until
we found the first bug and tuple (c, v, t) at which the bug occurs.

Benchmark SLOC ‘ # Threads | # Variables | Bug? | Description Schedules| (c, v, t)
Explored

ConTest Benchmarks
MergeSort 376 100 564 Yes|Sorts a set of integers using mergesort 651](1,1,2)
Producer Consumer| 279 7 61| Yes|Simulates producer-consumer behavior 1](0,0,2)
LinkedList 420 3 60| Yes|LinkedList’s implementation with test-harness 23((1,1,2)
BubbleSort 365 54| Yes|Sorts a set of integers using bubblesort 1[(0,0,2)
BubbleSort2 129 101 105] Yes|Sorts a set of integers using bubblesort 21(0,0,2)
Piper 210 9 33| Yes|Manages airline reservations 64[(1,1,2)
Allocation Vector 288 3 4010| Yes|Manages free and allocated blocks in a vector 113](2,1,2)
BufWriter 259 5 27| Yes|Reads and writes to a buffer concurrently 12](0,0,2)
PingPong 276 18 25| Yes|Simulates the behavior of ping-pong game 234[(1,1,2)
Manager 190 6 25| Yes|Manages free and allocated blocks 33[(1,1,2)
MergeSortBug 258 29 52| Yes|Sorts a set of integers using mergesort 89((1,1,2)
Account 169 3 26| Yes|Manages a bank account 19](1,1,2)
AirLineTickets 99 11 5| Yes|Simulates selling of airline tickets 21(0,0,2)
Java’s Library in JDK 1.4.2
HashSet [ 7086] 200] 4777] Yes| Thread-safe implementation of HashSet [ 813[(1,1,2)
TreeSet | 7532] 200 6140| Yes | Thread-safe implementation of TreeSet | 813[(1,1,2)
Other Java Benchmarks
Cache4j 3897 12 251,469 No|Cache implementation for Java objects - -
Molydn 1410 8 121,371 No|Benchmark from Java Grande Forum - -
Montecarlo 3630 8 452,700| No|Benchmark from Java Grande Forum - -
TSP 719 18 84| No|Travelling Sales Problem’s implementation - -
Blocking Queue 57 3 38,828 | No | Tests BlockingQueue library implementation - -
Sor 17,738 6 53| No|Successive Order Relaxation method’s implementation - -
C# Benchmark

Yes

RegionOwnership ‘ 1500 ‘

41‘

communicating using async calls

Manages coordination for objects ‘ 47248 ‘ (2,2,2)

Table 2. The different columns in this table represents the name of the program, the (average) number of byte code instructions
executed by the program, total number of different instrumentation sites, which includes heap-allocation statements and global
variables, total number of accesses, native execution time, the average amount of time taken for one execution when we are tracking
0, 1, 2, and all variables, respectively, and the last column represents the ratio of the v-all and v1 columns.

Program Name

BCI | var sites | # of accesses | Native time(sec) | vO(sec) | vl(sec) | v2(sec) | v-all(sec) | v-allivl

Cache4;j 231.1m 101 21.4m 0.34 0.47 1.23 2.76 26.38 21.3
Molydn 2.33b 209 1.4b 0.39 3.15 11.59 19.86 1239.76 106.3
Montecarlo 577.7Tm 235 446.96m 0.48 1.94 4.74 5.21 323.12 68.08
TSP 8.76b 65 2.55b 4.2 4.23 32.64 109.72 1180.28 36.15
Blocking Queue 3.4m 13 0.65m 0.17 0.18 0.194 0.202 1.386 7.14
Sor 0.2m 46 0.68m 0.07 0.25 0.249 0.348 0.392 1.57
HashSet 157.4k 137 16889 0.07 0.0775 0.0901 0.0976 0.2687 2.98
TreeSet 113k 146 16273 0.69 0.078 0.089 0.09 0.259 291
’l.“able 4. '!’his tabl? represents the average number of execu- 2. Most tools target a small class of bugs. For example, some tools
tions and time required to capture a bug of type (c, v, t) intro- target only dataraces, others target only atomicity-violation
duced in the Montecarlo benchmark. Without variable bound- bugs, and yet others target only deadlocks. It is confusing for
ing, our tool timed out after executing for more than 3 days for a developer to understand the function of each tool and apply
c> 1, v > 1, without ﬁnding the bllg. them Separately.
Bug Type|  With v,t bounding Without v,t bounding 3. Many tools have false positives. Spending time and energy on a
(c, v, t) |#Bxecutions | Time (sec) | # Executions | Time (sec) false-positive bug report is annoying and counter-productive.
(0,0,2) 3.1 10.9 2.7 768.9 4 1 . 1 1 . 1 1
(0.0.3) 37 1 35 10107 . Many tools require source-level annotations. Many tools rely
(0,0,4) 19 14.9 38 11017 on certain programming disciplines. e.g., all shared memory
(1,1,2) 1636.2]  6409.9 -| TimedOut accesses must be protected by a lock. At places where the
(1,1,3) 4889| 20371.2 - | TimedOut programmer deliberately violates this discipline, source code
2,1,2) 28121] 1129503 -| TimedOut annotations are required. Most developers are usually reluctant

many of these techniques are very effective and have uncovered
a variety of previously-unknown bugs in well-tested software, the
current dominant practice in the software industry still remains
stress testing. There are a few important likely reasons for this

(apart from plain inertia):

1. Plain testing is more natural.

to annotate their source code for better testing.

5. High-Runtime, Low Coverage: Many tools have a high runtime
cost, and provide low coverage.

Model checking approaches [5, 11, 12, 15, 21, 26] are closer to
the familiar idiom of testing. Our model checker targets all types
of concurrency bugs, has no false positives, and requires no source-
level annotations. We address the state explosion problem by rank-
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ing the schedules using v, ¢ to maximize coverage in the first few
schedule executions. Previous approaches have reduced this search
space by either limiting context switches only at synchronization
operations [21] (resulting in potential false negatives), or using an
offline memory trace of the program to identify and rank unserial-
izable interleavings [23] (primarily to identify atomicity-violation
bugs). We believe that variable and thread bounding are more gen-
eral methods of ranking (or reducing) the search space.

CHESS [21] uses iterative context bounding to rank schedules.
We borrow many ideas from CHESS, including iterative context
bounding [20], using a happens-before graph for stateless model
checking, and fair scheduling. We provide further ranking of sched-
ules to uncover most bugs with a smaller number of schedules.
While we consider all shared memory accesses as potential context-
switch points, CHESS only allows pre-emptible context switches
at explicit synchronization primitives. This restriction (first used in
ExitBlock [5]) is justified if all shared memory accesses are pro-
tected by explicit synchronization (e.g., lock/unlock). CHESS
relies on a data-race detector to separately check this property. Even
if we assume a precise and efficient data-race detector, this ap-
proach still overlooks “adhoc” synchronization that do not involve
known synchronization primitives [28].

VeriSoft [11-13] also uses an exploration strategy to model-
check “distributed” systems using a state-less search (i.e., storage
of previously-visited states are not required). Verisoft uses partial-
order methods to reduce redundancy, similar to happens-before
graph pruning used in CHESS and in our tool. S. Stoller [26] uses
a similar approach to model-check multi-threaded distributed Java
programs. We believe that variable and thread bounding ideas are
equally relevant to these model checking approaches as well.

Our work is complementary to race-detection tools [19, 22,
24, 25, 29], deadlock-detection tools [14], and atomicity-violation
detection tools [18, 23]. We do not focus on a particular class of
bugs, but rather drive a model checker into exploring interesting
schedules that are likely to uncover all of these bugs early. In
practice, small v, ¢ values uncover most data races, deadlocks, and
atomicity-violation bugs.

8. CONCLUSION

We present variable and thread bounding to rank thread sched-
ules for systematic testing of concurrent programs. Through ex-
periments on a variety of Java and C# programs, we find that the
ranking significantly aids early discovery of common bugs.
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