
A Solver for Reachability Modulo Theories

Akash Lal, Shaz Qadeer, and Shuvendu K. Lahiri

Microsoft Research
{akashl, qadeer, shuvendu}@microsoft.com

Abstract. Consider a sequential programming language with control
flow constructs such as assignments, choice, loops, and procedure calls.
We restrict the syntax of expressions in this language to one that can be
efficiently decided by a satisfiability-modulo-theories solver. For such a
language, we define the problem of deciding whether a program can reach
a particular control location as the reachability-modulo-theories problem.
This paper describes the architecture of Corral, a semi-algorithm for
the reachability-modulo-theories problem. Corral uses novel algorithms
for inlining procedures on demand (Stratified Inlining) and abstraction
refinement (Hierarchical Refinement). The paper also presents an evalu-
ation of Corral against other related tools. Corral consistently out-
performs its competitors on most benchmarks.

1 Introduction

The reachability problem, with its roots in the classical theory of finite state
machines [20], asks the following question: given a (control flow) graph over a
set of nodes and edges, an initial state, and an error state, does there exist a path
from the initial to the error state? Subsequent to the recognition that a large
class of computer systems can be modeled as finite state machines, this problem
received a lot of attention from researchers interested in formal verification of
computer systems [19, 7]. Over the years, many variations of this problem have
been proposed to model increasingly complex systems. For example, finite control
is augmented by a stack to model procedure calls in imperative programs or by
a queue to model message passing in concurrent programs. Along a different
dimension, researchers have proposed annotating the nodes and edges of the
graph by a finite alphabet to enable specification of temporal behavior [30].

We are concerned with the problem of reasoning about programs written
in real-world imperative programming languages such as C, C#, and Java.
Because such programs routinely use unbounded data values such as integers
and the program heap, the framework of finite-state machines is inadequate for
modeling them. We propose that the semantic gap between the programming
languages and the intermediate modeling and verification language should be
reduced by allowing modeling constructs such as uninterpreted functions and
program variables with potentially unbounded values, such as integers, arrays,
and algebraic datatypes. We refer to the reachability problem on such a mod-
eling language as reachability-modulo-theories. Even though this generalization

immediately leads to a reachability problem that is undecidable, we feel that
this direction is a promising one for the following reasons. First, the increased
expressiveness dramatically simplifies the task of translating imperative software
to the intermediate language, thus making it much easier to quickly implement
translators from languages. In our own work, we have developed high-fidelity
translators both for C and .NET bytecode with a relatively modest amount of
engineering effort. The presence of an intermediate modeling and verification
language simplifies the construction of end-to-end verification systems by decou-
pling the problem of model construction from the problem of solving reachability
queries on the model. Second, our generalization leads to an intermediate ver-
ification language whose expression language is expressible in the framework
of satisfiability-modulo-theories (SMT) and decidable efficiently using the ad-
vanced solvers [15, 12] developed for this framework. Therefore, reachability on
bounded program fragments can be decided by converting them into verifica-
tion conditions [14, 4]. The ability to decide bounded reachability in a scalable
fashion can be of tremendous value in automated bug-finding and debugging.

This paper describes Corral, a solver for a restricted version of the
reachability-modulo-theories problem, in which the depth of recursion is bounded
by a user-supplied recursion bound (we assume that loops are converted to recur-
sive procedures).1 As discussed earlier, recursion-bounded reachability-modulo-
theories is decidable if the expression language of programs is decidable. In fact,
the simplest method to solve this problem is to statically inline all procedures
up to the recursion bound, convert the resulting program into a verification con-
dition (VC), and present the VC to an SMT solver. While this approach may
work for small programs, it is unlikely to scale because the inlined program
may be exponentially large. To make this point concrete, consider the restricted
case of recursion-free (and loop-free) programs. For these programs, a recursion
bound of 0 suffices for full verification; However, it is still a nontrivial prob-
lem to solve because the inlined program could be exponential in the size of
the original program. This complexity is fundamental, in fact, the reachability-
modulo-theories for recursion-free programs becomes PSPACE-hard even if we
allow just propositional variables. If we add other theories such as uninterpreted
functions, arithmetic, or arrays that are decidable in NP, reachability-modulo-
theories for recursion-free programs is decidable in NEXPTIME; however, we
conjecture that the problem is NEXPTIME-hard. Since the efficient (in prac-
tice) subset of theories decided by an SMT solver are in the complexity class
NP, it is likely that that the exponential complexity of inlining is unavoidable in
the worst case; Corral provides a solution to avoid (or delay) this exponential
complexity.

1.1 The Corral architecture

Corral embodies a principled approach to tackling the complexity of recursion-
bounded reachability-modulo-theories (RMT). Its overall architecture is shown

1 Corral can also be used in a loop where the recursion bound is increased iteratively,
it which case it is a semi-algorithm to the reachability-modulo-theories problem.

2

Fig. 1. Corral’s architecture.

in Figure 1. Corral uses Boogie [3] as the modeling language for encoding
reachability queries. The Boogie language already supports the essential re-
quirements of RMT: it has the usual control-flow constructs (branches, loops,
procedures), unbounded types (integers and maps) and operations such as arith-
metic and uninterpreted functions. Moreover, the Boogie framework [3] comes
equipped with verification-condition generation algorithms that can convert a
call-free fragment of code with an assertion to an SMT formula such that the
latter is satisfiable if and only if there is an execution of the code that violates
the assertion. This formula can then be fed to various solvers, including Z3 [12].
Thus, the Boogie framework can solve the loop-free call-free segment of RMT.

Corral has a two-level counterexample-guided abstraction refinement [9]
(CEGAR) loop. The top level loop performs a localized abstraction over global
variables [9, 23]. Given a set of tracked variables T , it abstracts the input pro-
gram using T ; the initial set of tracked variables is empty. Next, it feeds the
abstracted program to the module denoted Stratified Inlining (§2) to look for
a counterexample. Since VC generation is quadratic in the number of program
variables, performing variable abstraction before stratified inlining can improve
the latter’s performance significantly. If stratified inlining finds a counterexam-
ple, it is checked against the entire set of global variables. If the path is feasible,
then it is a true bug; otherwise, we call the module denoted Hierarchical Refine-
ment (§3.1) to minimally increase the set of tracked variables, and then repeat
the process. Besides the outer loop that increases T , both the stratified inlin-
ing and hierarchical refinement algorithms have their own iterative loops that
require multiple calls to Z3.

Stratified inlining For a single procedure program, we simply generate its
VC and feed it to Z3. In the presence of multiple procedures, instead of inlining
all of them up to a given bound, we only inline a few, generate its VC and ask Z3
to decide reachability. If it finds a counterexample, then we’re done. Otherwise,
we replace every non-inlined call site with a summary of the called procedure.
This results in a VC that over-approximates the program, which is fed to Z3. A
counterexample in this case (if any) tells us which procedures to inline next. By
default, Corral uses a summary that havocs all variables potentially modified
by the procedure, but more precise summaries can be obtained from any static
analysis. In our experiments, we used Houdini [17] to compute summaries.

3

Hierarchical refinement This algorithm takes a divide-and-conquer ap-
proach to the problem of discovering a minimal set of variables needed to refute
an infeasible counterexample. Suppose n is the total number of variables. In the
common case when the number of additional variables needed to be tracked is
small compared to n, our algorithm makes only O(log(n)) path queries to Z3,
as compared to a previous algorithm [23] that makes O(n) queries.

We have evaluated Corral on a large collection of benchmarks to mea-
sure its robustness and performance (§4). To demonstrate robustness, we ran
Corral on programs obtained from multiple sources; they are either sequen-
tial C programs, or concurrent C programs sequentialized using the Lal-Reps
algorithm [25]. To demonstrate good performance, we compare against existing
methods: hierarchical refinement is compared against the Storm refinement al-
gorithm, stratified inlining is compared against static inlining, and the entire
Corral system is compared against a variety of software verification tools such
as Slam [2], Yogi [29], Cbmc [8], and Esbmc [11]. Our evaluation shows that
Corral performs significantly better than existing tools. Moreover, every tool
other than Corral had a difficult time on some benchmark suite (i.e., the tool
would run out of time or memory on most programs in that suite).

Contributions In summary, this paper makes the following contributions:

– The stratified inlining algorithm.
– The hierarchical refinement algorithm for refining variable abstraction.
– The design and implementation of Corral, a novel architecture that com-

bines summaries, variable abstraction, and stratified inlining to solve the
reachability-modulo-theories problem.

– Extensive experimental evaluation to demonstrate the robustness and per-
formance of Corral.

2 Stratified Inlining

We consider a simple imperative programming language in which each program
has a vector of global variables denoted by g and a collection of procedures,
each of which has a vector of input parameters denoted i and a vector of output
parameters denoted by o. Given such a program F (possibly with recursion, but
no loops), a procedure m in the program, an initial condition ϕ(i, g) over i and
g, and a final condition ψ(o, g) over o and g, the goal is to determine whether
there is an execution of m that begins in a state satisfying ϕ and ends in a state
satisfying ψ. The pseudo-code of our algorithm is shown in Fig. 2.

Stratified inlining uses under- and over-approximation of procedure behav-
iors to inline procedures on demand. To underapproximate a procedure, we sim-
ply block all executions through it, i.e., we replace it with “assume false”. To
overapproximate a procedure, we use a summary of the procedure, i.e., a valid
over-approximation of the procedure’s behaviors. The default summary of a pro-
cedure havocs all variables potentially modified by it and leaves the output value
completely unconstrained. One may use any static analysis to compute better
summaries. In some of our experiments (§4.2), we used Houdini [17] to compute

4

summaries, which improved the performance of Corral over using the default
summaries. We call the overapproximation of a procedure p as summary(p).

The algorithm maintains a partially-inlined program P starting from the
procedure m (line 1). It also maintains the set C of non-inlined (or open) call-
sites in P . A call-site is defined as a dynamic instance of a procedure call, i.e.,
the procedure call along with the runtime stack of unfinished calls. For instance,
the call-site c = [m; foo1; foo2] refers to a call to foo2 from foo1, which is turn
was called from m.

We define the cost of a call-site c to be the number of occurrences of the
top-most procedure in c. For instance, if c = [m; foo1; foo2; foo1; foo2; foo1]
then cost(c) is 3 because foo1 occurs thrice in c. In other words, the cost of a
call-site c reflects the number of recursive calls necessary to reach c. Given a set
C of call-sites, the function split-on-cost(C, r) partitions C into two disjoint sets
C1 and C2, where the latter has all those call-sites whose cost is r or greater.

Input: Program F and its starting procedure m
Input: An initial condition ϕ and a final condi-

tion ψ
Input: Maximum recursion depth MAX
Output: Correct, Bug(τ), or NoBugFound
1: P := {assume ϕ; m; assert ¬ψ}
2: C := open-call-sites(P)
3: for r = 1 to MAX do
4: while true do
5: //Query-type 1
6: P ′ = P [∀c∈C c← assume false]
7: if check(P ′) == Bug(τ) then
8: return Bug(τ)
9: C1, C2 := split-on-cost(C, r)
10: //Query-type 2
11: P ′ = P [∀c∈C1

c ← summary(c),
∀c∈C2

c← assume false]

12: ret := check(P ′)
13: if ret == Correct ∧ C2 == ∅ then
14: return Correct
15: if ret == Correct ∧ C2 6= ∅ then
16: break
17: let Bug(τ) = ret
18: P := P + {inline(c) | c ∈ C, c ∈ τ}
19: C := open-call-sites(P)
20: return NoBugFound

Fig. 2. The stratified inlining algorithm.

Each iteration of the loop at line
3 looks for a bug (a valid execution
of m that violates ψ) within the cost
r. The loop at line 4 inlines proce-
dures on-demand. Each of its itera-
tions comprise of two main steps. In
the first step, each open call-site in P
is replaced by its underapproximation
(line 6) to obtain a closed program
P ′, which is checked using a theo-
rem prover (line 7). The routine check
takes a bounded program as input and
feeds it to the theorem prover to de-
termine satisfiability of the assertion
in the program. If a satisfying path is
found, the algorithm terminates with
Bug (line 8).

The second step involves overap-
proximation. Line 11 replaces each
call-site c that has not reached the
bound r (i.e., c ∈ C1) with the sum-
mary of the called procedure. Other
call-sites c ∈ C2 are still blocked be-
cause their cost is r or more. If the

resulting program is correct and C2 was empty, then all open call-sites were
overapproximated. Thus, the original program F has no bugs (line 14). If C2

was not empty, then r is not sufficient to conclude any answer, thus we break to
line 3 and increment r. If the check on line 11 found a trace τ , then τ must pass
through some call-sites in C (because line 8 was not taken). All open calls on τ
are inlined and the algorithm repeats.

5

Iteratively increasing the recursion bound ensures that in the limit (when
MAX approaches ∞), stratified inlining is complete for finding bugs.

The main advantages of the stratified inlining algorithm are:

1. The program provided to the automated theorem prover is generated in-
crementally. Eager static inlining (which inlines all procedures upfront up
to the recursion bound) creates an exponential explosion in the size of the
program. Stratified inlining delays this exponential explosion.

2. Stratified inlining inlines only those procedures that are relevant to ruling
out spurious counterexamples. Thus, it can often perform the search while
inlining few procedures. This ability makes the search property-guided. Be-
cause of the use of over-approximations, stratified inlining can be faster than
static inlining even for correct programs.

3. If the program is buggy, then a bug will eventually be found, assuming that
the theorem prover always terminates and MAX =∞.

3 Variable Abstraction and Refinement

It is often the case that a majority of program variables are not needed for
proving or disproving reachability of a particular goal. In this case, abstracting
away such variables can help the stratified inlining algorithm because: (1) The
VC construction is quadratic in the number of variables [4]; and (2) the theorem
prover does not get distracted by irrelevant variables. However, abstraction can
lead to an over-approximation of the original program and lead to spurious
counterexamples. In this case, we use a refinement procedure to bring back some
of the variables that were removed.

We apply variable abstraction to only global variables. At any point in time,
the set of global variables that are retained by the abstraction are called tracked
variables. Note that Boogie programs always have a finite number of global
variables; unbounded structures in real programs such as the heap are modeled
using a finite number of maps. Thus, the refinement loop always terminates.

Variable abstraction, also known as localization reduction [9], has been used
extensively in hardware verification. We now briefly describe the variable ab-
straction algorithm implemented in Corral (Fig. 3); this algorithm was previ-
ously implemented in the Storm checker [23]. Later, we present a new refinement
algorithm called hierarchical refinement (§3.1) that significantly out-performs
the refinement algorithm in Storm [23].

Let IsGlobalVar be a predicate that is true only for global variables. Let Glob-
alVars be a function that maps an expression to the set of global variables that
appear in that expression. Let T be the current set of tracked variables. Variable
abstraction is carried out as a program transformation, applied statement-by-
statement, as shown in Fig. 3. Essentially, assignments to variables that are not
tracked are completely removed (replaced by “assume true”). Further, expres-
sions that have an untracked global variable are assumed to evaluate to any
value. Consequently, assignments whose right-hand side have such an expression
are converted to non-deterministic assignments (havoc statements).

6

v := e

7→

 assume true IsGlobalVar(v) ∧ v 6∈ T
havoc v GlobalVars(e) 6⊆ T
v := e otherwise

assume e

7→
{

assume true GlobalVars(e) 6⊆ T
assume e otherwise

assert e

7→
{

assert false GlobalVars(e) 6⊆ T
assert e otherwise

havoc v

7→
{

assume true v 6∈ T
havoc v otherwise

Fig. 3. Program transformation for variable abstraction, with tracked variables T .

3.1 Hierarchical Refinement

In Corral, we abstract the program using variable abstraction and then feed
it to the stratified inlining routine. If it returns a counterexample, say τ , which
exhibits reachability in the abstract program, then we check to see if τ is feasible
in the original program by concretizing it, i.e., we find the corresponding path in
the input program. If this path is infeasible, then τ is a spurious counterexample.
The goal of refinement is to figure out a minimal set of variables to track that
rule out the spurious counterexample.2 Storm’s refinement algorithm already
computes a minimal set, but the algorithms presented in this section find such
a set much faster.

Let us define two subroutines: Abstract takes a path and a set of tracked
variables and carries out variable abstraction on the path. The subroutine check
takes a path (with an assert) and returns Correct only when the assert cannot
be violated on the path. We implement check by simply generating the VC of
the entire path and feeding it to Z3.

Let G be the entire set of global variables and T be the current set of tracked
variables. Storm’s refinement algorithm requires about |G−T | number of itera-
tions, and each iteration requires at least one call to check. In our experience, we
have found that most spurious counterexamples can be ruled out by tracking one
or two additional variables. We leverage this insight to design faster algorithms.

Alg. 1 uses a divide-and-conquer strategy. It has best-case running time when
only a few additional variables need to be tracked, in which case the algorithm
requires log(|G− T |) number of calls to check. In its worst case, which happens
when all variables need to be tracked, it requires at most 2|G−T | number of calls
to check. As our experiments show, most refinement queries tend to be towards
the best case, which is an exponential improvement over Storm.

Alg. 1 uses a recursive procedure hrefine that takes three inputs: the set
of tracked variables (T), the set of do-not-track variables (D, initially empty),
and a path P . It assumes that P , when abstracted with G−D, is correct (i.e.,
assertion in Abstract(P,G − D) cannot be violated). We refer to Alg. 1 as the
top-level call hrefine(T, ∅, P). Note that while hrefine is running, the arguments
T and D can change across recursive calls, but P remains fixed to be the input
counterexample.

2 We do not attempt to find the smallest set of variables to track; not only might that
be very hard to compute, but a minimal set already gives good overall performance
for Corral.

7

Procedure hrefine(T,D, P)

Input: A correct path P with global variables G
Input: A set of variables T ⊆ G that must be

tracked
Input: A set of variables D ⊆ G that definitely

need not be tracked, D ∩ T = ∅
Output: The new set of variables to track

1: if T ∪D = G then
2: return T
3: P ′ := Abstract(P , T)
4: if check(P ′) == Correct then
5: return T
6: if |G− (T ∪D)| = 1 then
7: return G−D
8: T1, T2 := partition(G− (T ∪D))
9: S1 := hrefine(T ∪ T2, D, P)
10: S′1 := S1 ∩ T1

11: return hrefine(T ∪ S′1, D ∪ (T1 − S′1), P)

Procedure vcrefine(T,D, P)

Input: A program P with special Boolean con-
stants B

Input: A set of Boolean constants T ⊆ B that
must be set to true

Input: A set of Boolean constants D ⊆ B that
must be set to false

Output: The set of Boolean constants to set to
true

1: if T ∪D = B then
2: return T
3: ψ = (

∧
b∈T b) ∧ (

∧
b∈B−T ¬b)

4: if check(VC(P) ∧ ψ) == Correct then
5: return T
6: if |B − (T ∪D)| = 1 then
7: return B −D
8: T1, T2 := partition(B − (T ∪D))
9: S1 := vcrefine(T ∪ T2, D, P)
10: S′1 := S1 ∩ T1

11: return vcrefine(T ∪ S′1, D ∪ (T1 − S′1), P)

(a) Algorithm 1: hrefine(T, ∅, P) (b) Algorithm 2: vcrefine(T, ∅, P)

Fig. 4. Hierarchical refinement algorithms.

Alg. 1 works as follows. If T ∪D = G (line 1) then we already know that P
is correct while tracking T (because the precondition is that P is correct while
tracking G−D). Lines 3 to 5 check if T is already sufficient. Otherwise, in line 6,
we check if only one variable remains undecided, i.e., |G− (T ∪D)| = 1, in which
case the minimal solution is to include that variable in T (which is the same as
returning G−D). Lines 8 to 11 form the interesting part of the algorithm. Line
8 splits the set of undecided variables into two equal parts randomly. Because
of the check on line 6, we know that each of T1 and T2 is non-empty. Next, the
idea is to use two separate queries to find the set of variables in T1 (respectively,
T2) that should be tracked. The first query is made on line 9, which tracks all
variables in T2. The only remaining undecided variables for this query is the set
T1. Thus, the answer S1 of this query will include T ∪T2 along with the minimal
set of variables in T1 that should be tracked. We capture this in S′1 and then all
variables in T1−S′1 should not be tracked. Thus, the second query includes S′1 in
the set of tracked variables and (T1−S′1) in the set of do-not-track variables. The
procedure hrefine is guaranteed to return a minimal set of variables to track.

Theorem 1. Given a path P with global variables G, and sets T,D ⊆ G, such
that T and D are disjoint, suppose that Abstract(P,G − D) is correct. If R =
hrefine(T,D, P) then T ⊆ R ⊆ G −D, and Abstract(P,R) is correct, while for
each set R′ such that T ⊆ R′ ⊂ R, Abstract(P,R′) is buggy.

Proof of this theorem can be found in our techreport [24]. The following
Lemma describes the running time of the algorithm.

Lemma 1. If the output of Alg. 1 is a set R, then the number of calls to check
made by the algorithm is (a) O(|R− T | log(|G− T |)), and (b) bounded above by
max(2|G− T | − 1, 0).

8

if(¬Tracked(v)) {
assume true;
} else if(¬Tracked(e)) {

havoc v;
} else {

v := e;
}

if(¬Tracked(e)) {
assume true;
} else {

assume e;
}

if(¬Tracked(e)) {
assert false;
} else {

assert e;
}

(a) (b) (c)

Fig. 5. Program transformation for parameterized variable abstraction: (a) Transfor-
mation for v := e; (b) assume e; (c) assert e. Other statements are left unchanged.

Both Alg. 1 and Storm’s refinement share a disadvantage: they spend a
significant amount of time outside the theorem prover. Each iteration of Alg. 1
needs to abstract the path with a different set of variables, and then generate
the VC for that path. In order to remove this overhead, the next algorithm that
we present will require VC generation only once and the refinement loop will be
carried out inside the theorem prover.

First, we carry out a parameterized variable abstraction of the input path as
follows: for each global variable v, we introduce a Boolean constant bv and carry
out the program transformation shown in Fig. 5. The transformed program has
the invariant: if bv is set to true then the program behaves as if v is tracked,
otherwise it behaves as if v is not tracked. The transformation uses a subroutine
Tracked, which takes an expression e as input and returns a Boolean formula:

Tracked(e) =
∧
v∈GlobalVars(e) bv

Thus, Tracked(e) returns the condition under which e is tracked.
If PI was the input counterexample and T the current set of tracked variables,

then we transform PI to P using parameterized variable abstraction. Next, we
set each bv, v ∈ T to true. Let B be the set of Boolean constants bv, v 6∈ T . The
refinement question now reduces to: what is the minimum number of Boolean
constants in B that must be set to true so that P is correct, given that setting
all constants in B to true makes P correct? We solve this using Alg. 2, which
takes P as input.

Alg. 2 is exactly the same as Alg. 1 with the difference that instead of oper-
ating at the level of programs and program variables, it operates at the level of
formulae and Boolean constants. This buys us a further advantage: the queries
made to the theorem prover on line 6 are very similar. One can save VC(P)
on the theorem prover stack and only supply ψ for the different queries. This
enables the theorem prover to reuse all work done on VC(P) across queries.

4 Evaluation

We have implemented Corral as a verifier for programs written in Boogie. It
is supported by a front-end each for compiling C and .NET bytecode to Boogie.
The translation from C to Boogie uses several theories for encoding the seman-
tics of C programs. Linear arithmetic is used for modeling pointer arithmetic
and a subset of integer operations; uninterpreted functions are used for mod-
eling any other operation not modeled by linear arithmetic; arrays are used to

9

Name LOC Vars Procs Conc? Correct? Iter Time (sec)

Total R(%) S(%)

daytona 660 114 40 Yes Yes 8 26.9 50 35
daytona bug2 660 114 40 Yes No 6 27.0 56 27
kbdclass read 978 212 48 Yes Yes 12 194.4 52 29
kbdclass ioctl 978 212 48 Yes Yes 6 63.9 43 38
mouclass read 818 179 44 Yes Yes 13 185.7 53 28
mouclass bug3 818 179 44 Yes No 15 245.5 53 30
ndisprot write 907 122 46 Yes Yes 6 24.8 41 44
pcidrv bug1 661 109 49 No No 11 37.4 49 37
serial read 1601 378 77 Yes Yes 13 1151.7 41 51
mouser sdv a 3311 225 131 No No 4 35.4 33 45
mouser sdv b 3898 252 143 No Yes 12 990.8 15 81
fdc sdv 5799 421 180 No Yes 11 659.8 11 85
serial sdv a 7373 466 149 No Yes 6 139.2 47 34
serial sdv b 7396 439 168 No No 6 289.1 46 40

Fig. 6. Running times of Corral on driver benchmarks.

model the heap memory split into multiple maps based on fields and types [10].
The translation of .NET bytecode uses the aforementioned theories in a similar
way but also uses two other theories: (1) algebraic datatypes to model object
types and delegate values, and (2) generalized array theory [13] to model hash-
sets and .NET events. It is important to note that Corral is agnostic to the
source language used and depends only on the compiled Boogie program.

4.1 Evaluating components of Corral

The first set of experiments show: (1) how the various components of Corral
contribute to its overall running time; (2) a comparison of stratified inlining
against static inlining; and (3) a comparison of different refinement algorithms.
These experiments were conducted on a collection of Windows device drivers
in C (compiled to Boogie using Havoc [10]). For each driver, we had various
different harnesses that tested different functionalities of the driver. Some of the
harnesses were concurrent, in which case the sequential program was obtained
using a concurrent-to-sequential source transformation described elsewhere [16,
25]. Such sequentialized programs are often quite complicated (because they
simulate a limited amount of concurrency using non-determinism in data) and
form a good test bench for Corral. These drivers also had planted bugs denoted
by the suffix “bug” in the name of the driver.

A summary of these drivers and Corral’s running time is shown in Fig. 6.
We report: the number of non-empty C source lines (LOC), the number of global
variables in the generated Boogie file (Vars), the number of procedures (Procs),
whether the driver is concurrent (Conc?), whether it has a planted bug or not
(Correct), the number of iterations of the refinement loop (Iter), the total run-
ning time of Corral (Total), the fraction of time spent in abstraction and
refinement (R%) and the fraction of time spent in checking using the stratified
inlining algorithm (S%). The refinement algorithm used was Alg. 2. Corral

10

fares reasonably well on these programs. A significant fraction of the time is
spent refining, thus, justifying our investment into faster refinement algorithms.

Static Inlining For the above-described run of Corral, we collected all pro-
grams that were fed to stratified inlining and ran static inlining on them, i.e.,
we inlined all procedures (up to the recursion bound) upfront and then fed it
to Z3. This did not work very well: static inlining ran out of memory (while
creating the VC) on each of the six largest programs, with a recursion bound
of 1 or 2. Even when the VC did fit in memory, Z3 timed out (after 1 hour) in
many cases. For the rest, stratified inlining was still three times faster. A more
detailed comparison can be found in our techreport [24].

Hierarchical Refinement For the above-described run of Corral, we col-
lected all the spurious counterexamples and ran each of the three refinement al-
gorithms on them: Storm’s refinement algorithm, Alg. 1, and Alg. 2. All three
algorithms returned the same answer on each counterexample. Alg. 2 was a
clear winner with very little variation in its running time. The average speedup
of Alg. 2 over Alg. 1 was 2.8X and that over Storm was 13.2X. A more detailed
comparison can be found in our techreport [24].

4.2 SDV benchmarks

For our next experiment, we compare Corral against state-of-the-art verifica-
tion tools Slam [2] and Yogi [29]. Both these tools are run routinely by the
Static Driver Verifier (SDV) team against a comprehensive regression suite con-
sisting of multiple (real) drivers and properties. The suite consists of a total of
2274 driver-property pairs, of which 1886 are correct (i.e., the property is satis-
fied by the driver) and 388 are incorrect (i.e., there is an execution of the driver
that violates the property). We compare Corral against Yogi. (The compar-
ison against Slam is similar in nature.) We compare the running times of the
tools as well as evaluate the effectiveness of recursion bounding. We will use the
term program to refer to a driver instrumented with a particular property.

First, note that Yogi does full verification unlike Corral that requires a
recursion bound to cut-off search. Thus, Yogi has to do more work than Corral
for correct programs. Moreover, both these tools use slightly different modeling
of C semantics, leading to different answers for a few programs. It was difficult
to remove these differences.

We ran Corral with a recursion bound of 2. The natural question to ask
is: how many bugs did Corral miss? It turns out that only on 9 programs
Yogi found a bug, but Corral was not able to find one (out of a total of 388
buggy programs). We investigated these 9 programs and they turned out to be
instances of just two loops. The first loop required a recursion bound of 3, and
Corral was able to find the bugs with this bound. The second loop was of the
form for(i = 0; i < 27; i + +), and thus, required a bound of 27 for Corral

11

Fig. 7. A comparison of running times of Corral against Yogi on buggy programs.

to explore the code that came after this loop. We are currently investigating
techniques to deal with such constant-bounded loops.

Aggregating over all programs on which Yogi and Corral returned the
same answer, Yogi took 55K seconds to produce an answer for all of them,
whereas Corral required only 27K seconds, a speedup of about 2X. The scatter
plot comparing the running times of Yogi and Corral on buggy programs is
shown in Fig. 7. Both tools took around the same amount of total time on these
programs (about 10K seconds). However, the total running time is dominated by
many programs with a trivial running time, on which Corral is slightly slower.
The distribution of points in the scatter plot show a more interesting trend.
For instance, there is a larger distribution of points around the X-axis, meaning
that Corral did very well on programs on which Yogi was having a hard
time. Aggregating over buggy instances on which Yogi took at least a minute,
Corral was twice as fast as Yogi. There is also a smaller distribution of points
around the Y-axis on which Yogi did much better. Manual inspection of these
programs revealed that the main reason for Yogi’s success was summarization
of procedures using predicate abstraction. The next subsection equips Corral
with a simple summarization routine.

We tried using other bounded-model checkers (Cbmc [8] and Esbmc [11])
on these programs but they did not perform well. They either ran out of time or
memory on most programs, possibly because they use static inlining to deal with

12

Fig. 8. A comparison of running times of Corral augmented with Houdini against
Yogi on buggy programs.

procedures. Moreover, both Slam and Yogi do not work well on “sequentialized”
versions of concurrent programs (i.e., they would often time out). On the other
hand, Corral is able to uniformly work on all these programs.

In conclusion, this experiment shows: (1) the practical applicability of recur-
sion bounding in practice for real-world bug hunting, and (2) that Corral is
competitive with state-of-the-art software model checkers.

Using Summaries We now demonstrate the ability of Corral to leverage
abstraction techniques by using Houdini [17]. Houdini is a scalable modu-
lar analysis for finding the largest set of inductive invariants from amongst a
user-supplied pool of candidate invariants. Houdini works as a fixpoint proce-
dure; starting with the entire set of candidate invariants, it tries to prove that
the current candidate set is inductive. The candidates that cannot be proved
are dropped and the procedure is repeated until a fixpoint is reached. Our us-
age of Houdini is restricted to inferring post-conditions of procedures, where a
post-condition is simply a predicate on the input and output vocabulary of a
procedure. The inferred post-conditions act as procedure summaries.

The drivers in our suite do not have recursion (but may have loops). In this
setting, if we generate n candidate summaries per procedure, and there are P
procedures, then Houdini requires at most O(nP) number of theorem prover
queries, where each query has the VC of at most one procedure only.

For SDV, we generated candidates using two different sources of predicates:
first, we used Yogi’s internal heuristics, which compute an initial set of pred-
icates for Yogi’s iterative refinement loop; and second, we manually inspected
some properties and wrote down predicates that captured the typestate of the
property. Because we never looked at the drivers themselves, this process re-
quired minimal manual effort. We now briefly illustrate this process.

A driver goes through two instrumentation passes that are important to
understand for generating Houdini candidates. The first pass instruments the
driver with a property. For illustration, consider a property which asserts that for
a given lock, acquire and release operations must occur in strict alternation. A
driver is instrumented with this property by introducing a new variable s of type

13

int that is initialized to 0 in the beginning of main. A lock acquire operation first
asserts that s == 0 and then sets s to 1. A lock release operation first asserts
that s == 1 and then sets s to 0. It is easy to see that if the instrumented driver
does not fail any assertion then the acquire and release operations happen in
strict alternation.

The second instrumentation is carried out internally inside Corral as a
preprocessing step. Because the stratified inlining algorithm only checks for a
condition at the end of main, Corral introduces a new Boolean variable error,
initialized to false, and replaces each assertion assert e with:

error := ¬e; if(error) return;
And after each procedure call, Corral inserts:

if(error) return;
Then Corral simply asserts that error is false at the end of main.

Houdini candidates are derived from predicates that capture the property
typestate. For the lock acquire-release property, the typestate predicates are
s == 0 and s == 1. These are used to generate the following 6 candidates to
capture either (a) how the typestate can be modified by a procedure; or (b)
conditions under which error is not set:

old(s) == 0⇒ s == 0 old(s) == 1⇒ s == 0
old(s) == 0⇒ s == 1 old(s) == 1⇒ s == 1
old(s) == 0⇒ ¬error old(s) == 1⇒ ¬error

Here, old(s) refers to the value of s at the beginning of a procedure and s refers
to its value at the end of a procedure.

The generated candidates are fed to Houdini and valid ones form procedure
summaries. These summaries not only help proving correctness of certain pro-
grams, but also help in finding bugs faster: when a part of a program is proved
correct, no further inlining is required in that region. A scatter plot on the buggy
instances is shown in Fig. 8. The running time of Houdini is included in the
running time of Corral. For simple instances, this adds extra overhead: the
distribution of points around the origin are in favor of Yogi. However, as run-
ning time increases, Corral + Houdini is almost always faster. On programs
with non-trivial running times, Corral + Houdini was six times faster than
Yogi (up from 2X without Houdini).

Computing Proofs Corral can prove correctness regardless of the recursion
bound when the over-approximation used in stratified inlining is UNSAT. Sur-
prisingly, this simple over-approximation (along with partial inlining) suffices in
many cases. Of the 1886 correct programs, Corral was actually able to prove
1574 of them correct irrespective of the recursion bound: a proof rate of 83%.
With the use of Houdini, this number goes up to 1715: a proof rate of 91%.

4.3 SV-COMP benchmarks

For the next experiment, we looked for external sources of benchmarks that are
already accessible to other tools. We found a rich source of such benchmarks

14

from the recently-held competition on software verification [6]. Unfortunately,
the benchmarks are CIL-processed C files, most of which do not compile using our
(Windows-based) front end. Thus, we picked all programs in only two categories
and manually fixed their syntax. The first category consists of 36 programs in
the ssh folder and the second category consists of 9 programs in the ntdrivers

folder. Roughly half of these programs are correct, and half are buggy. We ran
Corral with a recursion bound of 10, which is the same used by other bounded
model checkers in the competition. We did not attempt to set up the tools that
participated in the competition on our machine. Instead, we compare Corral
against the running times reported online. Although it is unfair to compare
running times on different machines (and operating systems), we only show the
numbers to illustrate Corral’s robustness, and a ball-park estimate of how it
competes against many tools on a new set of benchmarks.

For each program, Corral returned the right answer well within the time
limit of 900 seconds. In the ssh category, Corral takes a total of 168 sec-
onds to finish. This is in comparison to 525.8 seconds taken by the best tool
in the category (CPAChecker). In the ntdrivers category, Corral took a
total of 447.5 seconds, but in this case, the best tool (again CPAChecker)
performed better—it took only 105.2 seconds. No tool other than Corral and
CPAChecker was able to return right answers on all programs in ntdrivers

(they either ran out of time or memory or returned an incorrect answer).

4.4 .NET benchmarks

We downloaded an open-source .NET implementation of the Tetris game and set
it up with a harness that clicks random buttons and menus to drive the game.
We compiled this program to Boogie using Bct [5]. The original program is
around 1550 lines of source code (excluding type definitions and comments); it
compiles to roughly 23K lines of Boogie code and has 357 procedures. We cre-
ated a collection of 570 queries, one for each target of each branch in the program
as well as the beginning of each procedure. We ran Corral with a recursion
bound of 1. Within a budget of 600 seconds per query, Corral was able to
resolve 243 queries as reachable, 204 as unreachable, and the rest (123) timed
out. These results, together with results described earlier on C programs, demon-
strate Corral’s robustness in dealing with queries from different programming
languages.

5 Related Work

Stratified inlining is most closely related to previous work on structural abstrac-
tion [1], inertial refinement [31] and scope bounding [27, 21]. However, structural
abstraction is based entirely on overapproximations; it does not have the analog
of underapproximating by blocking certain calls. Inertial refinement uses both
over and under approximations to iteratively build a view of the program that
is a collection of regions and uses the notion of minimal correcting sets [26] for

15

the refinement. The scheme in stratified inlining appears to be much simpler
because, first, it abstracts only calls and not arbitrary program regions. Second,
the refinement is based on a simple analysis of the counterexample from the over-
approximate query. Scope bounding refers to limiting the scope of an analysis to
a program fragment and has been used previously, for instance, in verifying null-
dereference safety of Java programs [27]. In their context, fragments need not
contain the entry procedure and may grow backwards (i.e., callers get inlined,
instead of callees), which is in contrast to stratified inlining. Moreover, the pro-
cess of growing fragments is not based on abstract counterexamples. Addition-
ally, none of these previous techniques attempt to perform variable abstraction,
whereas Corral effectively orchestrates it along with stratified inlining.

The idea of introducing Boolean variables for doing optimization inside a
theorem prover, which we use in Alg. 2, has been used previously, for instance
in error localization [22].

A variety of methods have been proposed for software verification based on
predicate abstraction and interpolation [2, 18, 29, 28]. The focus of these meth-
ods is to infer predicates in order to create a finite vocabulary for invariants and
summaries. These techniques are complementary to our work; summaries gener-
ated by them could be used to speed up Corral as shown by our experiments
with Houdini.

Bounded model checkers such as CBMC [8], ESBMC [11], and LAV [32]
perform bounded program verification similar to Corral. However, their focus
is on efficient VC generation and modeling of program semantics; they use a
technique similar to static inlining and do not use variable abstraction.

References

1. D. Babic and A. J. Hu. Calysto: scalable and precise extended static checking. In
ICSE, pages 211–220, 2008.

2. T. Ball, V. Levin, and S. K. Rajamani. A decade of software model checking with
SLAM. Commun. ACM, 54(7):68–76, 2011.

3. M. Barnett, B.-Y. E. Chang, R. DeLine, B. Jacobs, and K. R. M. Leino. Boogie: A
modular reusable verifier for object-oriented programs. In FMCO, pages 364–387,
2005.

4. M. Barnett and K. R. M. Leino. Weakest-precondition of unstructured programs.
In PASTE, pages 82–87, 2005.

5. M. Barnett and S. Qadeer. BCT: A translator from MSIL to Boogie. Seventh Work-
shop on Bytecode Semantics, Verification, Analysis and Transformation, 2012.

6. D. Beyer, editor. 1st International Competition on Software Verification, co-located
with TACAS 2012, Tallinn, Estonia, 2012.

7. E. M. Clarke, O. Grumberg, and D. A. Peled. Model Checking. MIT Press, 1999.

8. E. M. Clarke, D. Kroening, and F. Lerda. A tool for checking ANSI-C programs.
In TACAS, pages 168–176, 2004.

9. E. M. Clarke, R. P. Kurshan, and H. Veith. The localization reduction and
counterexample-guided abstraction refinement. In Essays in Memory of Amir
Pnueli, pages 61–71, 2010.

16

10. J. Condit, B. Hackett, S. Lahiri, and S. Qadeer. Unifying type checking and
property checking for low-level code. In Principles of Programming Languages,
2009.

11. L. Cordeiro, B. Fischer, and J. Marques-Silva. SMT-based bounded model checking
for embedded ANSI-C software. IEEE Transactions on Software Engineering, 2011.

12. L. M. de Moura and N. Bjørner. Z3: An efficient SMT solver. In TACAS, pages
337–340, 2008.

13. L. M. de Moura and N. Bjørner. Generalized, efficient array decision procedures.
In FMCAD, pages 45–52, 2009.

14. E. W. Dijkstra. A Discipline of Programming. Prentice-Hall, 1976.
15. B. Dutertre and L. M. de Moura. A fast linear-arithmetic solver for DPLL(T). In

CAV, pages 81–94, 2006.
16. M. Emmi, S. Qadeer, and Z. Rakamaric. Delay-bounded scheduling. In Principles

of Programming Languages, 2011.
17. C. Flanagan and K. R. M. Leino. Houdini, an annotation assistant for ESC/Java.

In FME, pages 500–517, 2001.
18. T. A. Henzinger, R. Jhala, R. Majumdar, and G. Sutre. Lazy abstraction. In

Principles of Programming Languages, 2002.
19. G. J. Holzmann. The SPIN Model Checker: Primer and Reference Manual.

Addison-Wesley, 2003.
20. J. E. Hopcroft and J. D. Ullman. Introduction to automata theory, languages, and

computation. Addison-Wesley, 1999.
21. F. Ivancic, G. Balakrishnan, A. Gupta, S. Sankaranarayanan, N. Maeda,

H. Tokuoka, T. Imoto, and Y. Miyazaki. DC2: A framework for scalable, scope-
bounded software verification. In ASE, 2011.

22. M. Jose and R. Majumdar. Cause clue clauses: error localization using maximum
satisfiability. In PLDI, 2011.

23. S. Lahiri, S. Qadeer, and Z. Rakamaric. Static and precise detection of concurrency
errors in systems code using SMT solvers. In Computer Aided Verification, 2009.

24. A. Lal, S. Qadeer, and S. Lahiri. Corral: A solver for reachability modulo theories.
Technical Report MSR-TR-2012-09, Microsoft Research, 2012.

25. A. Lal and T. Reps. Reducing concurrent analysis under a context bound to
sequential analysis. Formal Methods in System Design, 35(1), 2009.

26. M. H. Liffiton and K. A. Sakallah. Algorithms for computing minimal unsatisfiable
subsets of constraints. J. Autom. Reasoning, 40(1):1–33, 2008.

27. A. Loginov, E. Yahav, S. Chandra, S. Fink, N. Rinetzky, and M. G. Nanda. Veri-
fying dereference safety via expanding-scope analysis. In ISSTA, 2008.

28. K. L. McMillan. Lazy annotation for program testing and verification. In CAV,
pages 104–118, 2010.

29. A. V. Nori and S. K. Rajamani. An empirical study of optimizations in YOGI. In
ICSE, pages 355–364, 2010.

30. A. Pnueli. The temporal logic of programs. In FOCS, pages 46–57, 1977.
31. N. Sinha. Modular bug detection with inertial refinement. In FMCAD, 2010.
32. M. Vujošević-Janičić and V. Kuncak. Development and evaluation of LAV: an

SMT-based error finding platform. In VSTTE, 2012.

17

