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Abstract 

This paper presents the design and implementation of a com- 
piler that translates programs written in a type-safe subset 
of the C programming language into highly optimized DEC 
Alpha assembly language programs, and a certifier that au- 
tomatically checks the type safety and memory safety of any 
assembly language program produced by the compiler. The 
result of the certifier is either a formal proof of type safety 
or a counterexample pointing to a potential violation of the 
type system by the target program. The ensemble of the 
compiler and the certifier is called a certi,fying compiler. 

Several advantages of certifying compilation over previ- 
ous approaches can be claimed. The notion of a certify- 
ing compiler is significantly easier to employ than a formal 
compiler verification, in part because it is generally easier 
to verify the correctness of the result of a computation than 
to prove the correctness of the computation itself. Also, the 
approach can be applied even to highly optimizing compil- 
ers, as demonstrated by the fact that our compiler generates 
target code, for a range of realistic C programs, which is 
competitive with both the cc and gee compilers with all op- 
timizations enabled. The certifier also drastically improves 
the effectiveness of compiler testing because, for each test 
case, it statically signals compilation errors that might oth- 
erwise require many executions to detect. Finally, this ap- 
proach is a practical way to produce the safety proofs for a 
Proof-Carrying Code system, and thus may be useful in a 
system for safe mobile code. 

1 Introduction 

The question of compiler correctness is as old as the first 
compiler implementations. In a paper published in 1963, 
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John McCarthy refers to this problem as “one of the most 
interesting and useful goals for the mathematical science of 
computation” (McCarthy 1963). However, despite a large 
body of work in the area (Dybjer 1986; Guttman, Ramsdell, 
and Wand 1995; Moore 1989; Morris 1973; Oliva, Ramsdell, 
and Wand 1995; Thatcher, Wagner, and Wright 1980; Young 
1989), we still lack the technology to prove automatically the 
correctness of an optimizing compiler. Even manual proofs 
are rare, and they tend to verify only the algorithms rather 
than the implementations. Plus, the correctness proofs need 
to be redone after even the slightest modification or improve- 
ment to the compiler. 

Proving compiler correctness is just a means towards the 
actual goal of ensuring that only correct output is ever pro- 
duced by the compiler. In this paper we propose a poten- 
tially more practical approach to the same goal. Instead of 
verifying the compiler once and for all, we check aspects of 
the correctness of every individual compilation. This will 
not ensure that the compiler is bug-free, but it will signal 
most incorrect compiler outputs as soon as they are pro- 
duced. To reduce the complexity of the checking process, 
we do not try to check full equivalence of the source and 
target programs, but instead we verify only that the target 
program has certain key properties that can be verified using 
a small amount of information about the source program. 

We present in this paper the design and implementa- 
tion of Touchstone, an optimizing compiler that translates 
a strongly typed programming language (essentially a type- 
safe subset of C) into DEC Alpha assembly language, and 
a certifier that checks the type safety of any assembly lan- 
guage program produced by the compiler. The result of the 
certifier is either a formal proof of type safety or a counterex- 
ample pointing to a potential violation of the type system 
by the assembly-language target program. We refer to the 
ensemble of the compiler and the certifier as a certifying 
compiler. 

Our approach provides several advantages: 

l This method is significantly easier to employ than a 
formal verification of the compiler, even if the formal 
verification is restricted to proving that only type-safe 
code is emitted. This is because it is easier in general 
to verify the correctness of the result of a computation 
than to prove the correctness of the computation it- 
self. Furthermore, with this approach, most compiler 
revisions and improvements do not require any change 
to the certifier. 

l This method can be applied to optimizing compilers, 
because the design of the certifier does not restrict the 
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Figure 1: Overview of the Touchstone certifying compiler. 

optimizations that the compiler is allowed to perform. 
Our optimizing compiler generates code that, for many 
programs, matches or is within 15% of the performance 
of both gee and cc with all optimizations enabled, the 
difference being due mostly to several optimizations 
that we have not yet implemented. Also, we have suc- 
cessfully tested the certifier on hand-optimized sssem- 
bly language. 

l The presence of the certifier drastically improves the 
effectiveness of compiler testing because, for each test 
case, it statically signals compilation errors that might 
otherwise require many executions to detect. Even 
though this approach does not ensure full compiler cor- 
rectness, in our experience the vast majority of com- 
piler bugs lead the compiler to generate unsafe target 
programs for at least one of the test cases. 

l This method is applicable to the compilation of any 
type-safe language, as well as for certifying other prop- 
erties of the target programs beyond type safety. Also, 
a significant benefit of our design is that it requires rel- 
atively few modifications to the traditional compiler 
design, and hence it should be possible to adapt exist- 
ing compilers to this technique. 

l This is a practical method for producing, in an auto- 
matic manner, the safety proofs for a Proof-Carrying 
Code (Necula 1997; Necula and Lee 1996) system for 
type safety. By attaching the type-safety proof emit- 
ted by the certifier to the assembly language program, 
we enable a circumspect software system to easily ver- 
ify (by checking that the attached proof is valid and 
applies to the given target program) that the program 
is type safe and memory safe. Thus, a certifying com- 
piler can be at the base of a system for safe execution 
of untrusted mobile code. 

This paper is organized as follows. In Section 2 we give 
a high-level overview of the certifying compiler that we have 
implemented, and we compare it with related systems. Then 
WC present some details of the source language compiled by 
our prototype compiler. We continue with the implementa- 
tion details of the compilation and the certification phases. 
We discuss the certification phase first (Section 4) because 
its design is of independent interest and because it sets up 
the requirements for the compiler subsystem, which is dis- 
cussed in Section 5. Of all of the optimizations, we focus on 
array bounds-checking elimination and we show what addi- 
tional output the compiler must produce so that the certifier 
can check the memory safety of the optimized code (Sec- 
tion 5.1). We conclude with experimental results on a range 
of realistic C programs (Section 6). The experiments show 
that the cost of generating and checking the safety proofs is 
low, and also that we are indeed certifying a true optimizing 
compiler whose output code performance approaches that of 
both cc and gee. 

2 Overview of the Touchstone Certifying Compiler 

At a high-level, the certifying compiler is, as shown in Fig- 
ure 1, a pipeline composed of a compiler and a certifier. The 
compiler is a traditional compiler adapted to produce type 
specifications and code annotations in addition to the as- 
sembly language target program. Determining whether the 
target programs are type safe and memory safe is not an easy 
matter, due to the fact that the compiler performs a wide 
range of global optimizations. For example, the compiler 
performs global register allocation (with spilling and coa- 
lescing), and so a register might be used to store values of 
different types within a single code block. Also, the compiler 
aggressively analyzes and removes array-bounds checks, thus 
making it nontrivial to deduce that the target code is mem- 
ory safe. (The full range of optimizations performed by our 
compiler is described in Section 5.) 

The purpose of the code annotations is to make it pos- 
sible for a simple certifier to understand enough of the code 
to verify its type safety and memory safety, despite the opti- 
mizations. Owing to the design of the certifier, the required 
annotations are limited to loop invariants that declare the 
types of the live registers at the beginning of a loop body. 
The type specifications declare the type of argument and 
result registers for every function in the code. The type 
specifications are thus the vehicle for propagating source 
level information to the certification stage and to allow the 
certifier to verify that the target program retains at least 
the typing characteristics of the source program, if not full 
equivalence. 

The certifier subsystem is itself a pipeline composed of 
three subsystems: the verification condition generator (re- 
ferred to as VCGen), the prover and the proof checker, as 
shown in Figure 2. The VCGen scans the annotated as- 
sembly language program and, using the type specifications 
and the code annotations, produces a safety predicate for 
each function in the code, such that the safety predicate 
has a proof if and only if the assembly language program is 
memory-safe and type-safe according to the typing specifica- 
tion. Due to the code annotations and typing specifications, 
the VCGen can be performed on a function-at-a-time basis 
and can be implemented as an efficient single pass through 
the program. 

Following the VCGen phase, the safety predicate is sub- 
mitted to a prover for first-order predicate logic that pro- 
duces a formal proof of the predicate. Finally, the safety 
predicate and its proof are given to a very simple proof 
checker that verifies that we actually have a valid proof of the 
required safety predicate, and therefore the compiler output 
is memory safe and type safe. 

An important characteristic of our system is that it has 
a small safety-critical infrastructure. That is, the code that 
is relied upon to guarantee that no unsafe target programs 
escape unnoticed includes only the VCGen and the proof 
checker. Neither the compiler nor the prover need to be 
correct in order to be guaranteed to detect incorrect com- 
piler output. This is a significant advantage, since the VC- 
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Figure 2: The structure of the certifier. 

Gen and proof checker are significantly simpler than the 
compiler and the prover. Our confidence in VCGen and 
the proof checker is further enhanced by the fact that they 
are borrowed unchanged from our Proof-Carrying Code sys- 
tem, (Necula and Lee 1996) which has been in use since 
September 1996. 

3 The Source Language 

Our current prototype implementation of a certifying com- 
piler is for a strongly typed language, essentially a type-safe 
subset of the C programming language. Unlike C, all array 
subscripting operations are implicitly guarded by bounds- 
checking conditionals. Also, in order to simplify the elimi- 
nation of bounds-checking, an array is represented as a pair 
of values representing the base address and the array length. 
The length operator refers to the length component, while 
the subscripting operation refers to the base address com- 
ponent. This arrangement is compatible with the common 
programming practice of passing the array length value to- 
gether with the base address. Multidimensional arrays have 
a length component for every dimension. 

In addition to safe arrays, our compiler supports Java- 
style exceptions and exception handling (mostly for a cleaner 
treatment of array subscript errors), dynamic allocation of 
data structures in the heap, booleans as a separate type, 
and most of the arithmetic expression constructs of the C 
programming language. Common language features that 
are currently missing are: recursive data structures, func- 
tion pointers, floating point numbers, and allocation of data 
structures on the stack. Of these, only the function pointers 
are expected to pose some difficulties because they are not 
currently supported by the certification subsystem. And of 
course, we do not implement casts, the address-of operator, 
pointer arithmetic and explicit memory deallocation because 
they are not safe in general (though perhaps safely restricted 
versions of these operators might be added in the future). 
Finally, the implementation of the language assumes the use 
of an automatic garbage collector. 

4 Design Details of the Certifier 

The design of the certifier establishes the required code an- 
notations and type specifications that the compiler must 
produce. There are other important aspects of the certi- 
fier’s design, as well. Although we shall discuss only type 
and memory safety here, the certifier is general enough to be 
used for certifying other properties, and for handling safety 
properties in other languages. 

For a more concrete presentation of the certification pro- 
cess we introduce a simple example program and the corre- 
sponding compiler output. The program in Figure 3a com- 
putes the sum of all elements of an integer array. Our com- 
piler (which compiles one function at a time) compiles this 
program into the annotated code shown in Figures 3b and 
the typing specification shown in 3c. Note that the source- 
level array argument is represented in the target program as 

int main(int af.1) { 
int i, 8 = 0; 
for(i=O;i<length(a) ;i++) { 

8 += aCi1; 
1 
return s; 

main : 

Ll: 

L2: 

#a0 - base address, al - array length 
mov zero, v0 #a=0 
mov zero, t0 #i=O 
ANN-NV (v0 : int A t0 >= O,{tO,tl,vO}) 
sub1 tO,al,tl #i - length (a) 
be t1 ,L2 
slladdl tO,aO,tl ttl=a0+4*tO 
add1 to,1 ,to #i++ 
Id1 t1,0(t1> #a Cil 
add1 t1,vo,vo 
br Ll 
ret 

(b) 
main : (Pre = a0 : array(int, al) A al 2 1, 

Post = vo : int) 

(4 

Figure 3: An example source program (a) and the corre- 
sponding compiler output, consisting of the annotated code 
(b) and the typing specification (c). 

two values, namely the base address in register a0 and the 
array length in register al. The return value is returned in 
register vo, following the standard DEC Alpha calling con- 
vention. Note also that our compiler is successful in remov- 
ing the bounds-checking operations in this example. The 
syntax and meaning of the loop invariant code annotation 
appearing at label Ll in Figure 3b and the typing specifica- 
tions from Figure 3c are described in the next section. 

4.1 The VCGen 

The VCGen is a verification condition generator for the DEC 
Alpha annotated assembly language. Traditionally, verifica- 
tion condition generation is implemented as a backward pass 
through the code. However, we choose a different implemen- 
tation technique that uses a forward symbolic-evaluation 
pass through the code. VCGen operates on a per-function 
basis and performs three main operations. Firstly, it ensures 
that the code satisfies certain simple syntactic conditions 
(e.g., that all branch targets are within the code bound- 
aries and that only recognized instructions occur). Secondly, 
VCGen evaluates the code symbolically and whenever it en- 
counters a memory operation it emits a verification condi- 
tion (VC) that states under what conditions the memory 
operation is considered safe. For example, in the case of a 
read operation from address a, the condition “saferd(a)” is 
emitted. For a write operation the condition “safewr(a, e)’ 
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VOrS 2 ::= rm. 1 ri (i=O,...,31) 
Expr e::= zlnlel+ezlel-es) 

se1 (el, ez) I upd (el, es, es) 
Types T ::= int 1 boo1 I array(T,e) 
Pred P ::= true ( PI A P2 I PI > P2 I Vx.P, I 

el = e2 1 el # e2 1 el 1 e2 I el < e-2 
e: T I saferd (el) 1 safeur (e2,es) 

Inv L ::= ANN-INV(P, ($1,. . . ,xk}) 
Spec 0 ::= f : (Pre = PI, Post = Pz) 

Figure 4: The syntax of the safety predicates. 

is emitted (e denotes the value being written). The meaning 
of the predicates saferd and safewr is defined at the level 
of the prover (described in Section 4.2) to allow for a greater 
flexibility in choosing the desired flavor of memory safety. 

VCGen must operate on a per-function basis and ana- 
lyze code with loops without having to iterate through the 
loop body multiple times. To accomplish this, we require 
that each function in the code have a typing specification 
in the form of a precondition and a postcondition, and that 
each loop have an invariant annotation, which is a predicate 
that must hold every time around the loop. As these speci- 
fications and annotations come with the code and cannot be 
trusted in general, the third function of VCGen is to ensure 
that they exist and are valid. To ensure that all loop invari- 
ants are present, VCGen verifies that ewh backward-branch 
target is associated with an invariant annotation. 

In order to set the stage for a more detailed discussion 
of VCGen, we proceed with the introduction of the required 
notation. The symbolic evaluator operates with the syn- 
tactic entities shown in Figure 4.’ Among the variables we 
have the 32 physical DEC Alpha registers (ri, i = 0,. . . ,31) 
and the memory pseudo-register rm. The latter is used to 
denote the contents of the memory during execution. The 
contents of a memory address a is written as sel(r,, a) and 
the effect of updating the memory at address a with the ex- 
pression e is modeled by the assignment rm. t upd(r,, a, e). 
We write CS and Temp to refer to the callee-save and tempo- 
rary machine registers, as defined by the DEC Alpha calling 
convention. 

The language of predicates contains the first-order pred- 
icate logic constructors, the memory-safety predicates and 
the typing predicate. Among the types we consider here only 
the integers, booleans and one-dimensional arrays. Note 
that the array type encodes not only the element type but 
also the array length, which is guaranteed to be at least one. 
The type of pointers to elements of type 7 is expressed as 
array(r, 1). 

The only code annotations that we need for the purpose 
of this paper are the loop invariant annotations. Each such 
annotation contains an invariant predicate and a set of reg- 
isters that are modified in the loop body (see the invariant 
at label Ll in Figure 3b). For a simpler presentation we 
show the code annotations as part of the code although in 
practice they are stored in the data segment. 

The typing specification of a function is a pair of a pre- 
condition and a postcondition. The precondition is essen- 
tially a description of the calling convention and it declares 
the type of each argument register used by a function. The 

‘We only show here the syntax that is required for the examples. 
In practice, a more comprehensive language of expressions and pred- 
icates is used. 

Vao. Val . Vr, . 
(a0 : array(int,al) A al > 1) > 

(0 : int A 0 > 0) A 
(vto.vtl .vvo. 

(vg : int A to 2 0) 3 
(to -al 2 0 > vg : int) A 
(to -al < 0 > 

(saferd(ao + 4 x to) A 
to+l>OA 
vg + sel(rm, a0 + 4 X to) : int))) 

Figure 6: The safety predicate for the annotated code of 
Figure 3b. 

postconclition is a similar declaration of the types of the re- 
sult registers (VO and rm according to the standard calling 
convention on the DEC Alpha). A function returning no 
result has the postcondition true. The specifications are 
easily derived from the type of the function (see Figure 3~). 
Intuitively, the precondition is a predicate that can be as- 
sumed to be true when analyzing the body of the function, 
while the postcondition is a predicate that must be made 
true by the body of the function. 

VCGen is defined as a symbolic evaluator whose result is 
a predicate (the verification condition) that is provable only 
if the program is safe with respect to the typing specifica- 
tion. Let C : Label --+ Spec be the type specification for the 
entire program, represented as a map from function labels 
to their typing specifications. We assume that the target 
program is an array II of instructions and code annotations. 
The state of the symbolic evaluator consists of the current 
index i in the target program II, the register state p and a 
list C of the loop invariants encountered on the path from 
the start of the function. (Recall that VCGen translates one 
function at a time.) The register state is a mapping from 
register names to expressions p E VarState = Vars -+ Expr. 
We write p[ri +- e] to denote assigning of e to ri and we 
write p(e) to denote the expression obtained after substitut- 
ing the register names with their values in p. We extend 
the substitution notation to predicates. The loop invariant 
mapping L: maps the indices of loop invariants to the regis- 
ter states at the beginning of the corresponding loop body. 
These states are used to verify the set of changed registers 
in a loop. 

The core of VCGen is the symbolic evaluator, which can 
be described as a function SEn,~,~~,p~~t (i, p, C) with seven 
parameters: the annotated program II, the type specifica- 
tion C, the initial register state and the postcondition of the 
current function (po and Post), and the current values of the 
instruction index i, the register state p and the loop state 
c. 

To compute the safety predicate of a function f with 
precondition Pre and postcondition Post, we first initialize 
the registers with new variables IO,. . . , ~32 (for the machine 
registers 10, . . . , r31 and the memory pseudo-register r,,,). 
If po is the resulting initial register state, then the safety 
predicate is given by the formula: 

SPf = vxo . . . m.po(Pre) 3 SJ%I,~,~,,,P~~~(~, PO, [I) 

To simplify the notation we omit the subscripts on the SE 
function from now on. 

The symbolic evaluation function is defined formally as 
a recursive function in Figure 5, and described informally in 
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SE(i + 1, p[rd t p(rr + rz)], c) if Iii = add1 ri,rz,rd 
(p(r,) = 0 > SE(i + n + 1, p, L)) A if Iii = beqr,,n 
(pb) # 0 3 SE@ + ~,P,C)) I&+,,+1 = ANN-INV if n < 0 
saferd (p(r,) + n) A if IIi=ldlrd,nr, 
SE(i + 1, p[rd t p(sel(r,, rs + n))], c) 
SafeWr (p(rd)+n,p(r,))) A if Iii =Stlrs,7& rd 

SE(i + 1, p[rm t p(W(r,, rd + n, r5)>], L) 

p(Pre) A Vyl . . . yk.p’(Post) > SE(i + l,p’,L) if Iii = jsr g and C, = (Pre, Post) 

p(Post) A checkEq (p, PO, CS) 
if g)b;. * I yk}) t scramble(p, !femp) 

, 
p(P) A ‘&/I . . . yk.p’(P) > SE(i + l,p’, C[i t p’]) if Iii = ANN-INV P, s and i $! Dam(L) 

(f”,bl,.**,Yk)) t scramble(p, s) 
p(P) A checkEq (p, Li, Re,gs - S) if Iii = ANN-INV P, s and i E Eom(L) 

scramble(p, (21,. . . ,zk}) = (p[zl c yr,. . . ,5k + yk], {yl,. . . , yk}) , yi are new variables 

checW(P,po>s) = A P(Z) = P&C) 
xEs 

Figure 5: The definition of the symbolic evaluator function SEn~,~,,,p,,~~(i, p, C). Th e result of symbolic evaluation is a safety 
predicate which is true if the program is safe. 

the rest of this section. For arithmetic operations the evalu- 
ator updates the symbolic register state and continues with 
the next instruction. In the case of a conditional branch 
both branches are evaluated, each with the appropriate as- 
sumption about the outcome of the conditional. Note the 
use of implication to include control flow information in the 
resulting verification condition, so that the verification con- 
dition can be proved without further reference to the code. 
A backward branch is verified to point to an invariant in- 
struction. This is a simple way to verify that all loops have 
at least one invariant and to ensure the termination of the 
symbolic evaluator. For a memory operation, the appropri- 
ate safety predicate is emitted, in addition to updating the 
register state. 

When dealing with a function call the evaluator must 
ensure that the precondition part of the typing specification 
for the target function is established prior to the call. As 
is the case with the memory operations, VCGen does not 
itself verify the precondition, but instead it emits the ap- 
propriate verification conditions so that the precondition is 
verified by the prover when proving the verification condi- 
tion. The symbolic evaluator assumes conservatively that 
all temporary registers are changed during a function invo- 
cation. The unknown effect of the function call on the tem- 
porary registers is expressed in the symbolic evaluator with 
the help of the scramble operation, defined at the bottom 
of Figure 5. To process the code following the function call, 
the symbolic evaluator uses the register state produced by 
scramble and assumes that the postcondition component 
of the typing specification is met upon return. Note how 
quantification on the new values of the temporary registers 
is used to ensure that they are “new” from the logical point 
of view. 

When the symbolic evaluator encounters the return in- 
struction, it emits verification conditions that are provable 
only if the current function’s postcondition is satisfied and 
if all the callee-save registers are preserved since the begin- 
ning of the function. The latter condition is encoded as a 
conjunction of equalities between the values of registers on 
function entry (as encoded by the register state PO) and their 
values on function exit. 

A loop invariant annotation is dealt with in a manner 

e : array(r, 1) Oli i-cl 
saf erd(e + 4 x i) 

e : arrav(r, 1) O<i i<l 

Figure 7: Proof rules for proving the safety of array accesses. 
Currently only base types can occur in arrays, thus the size 
of an array entry is four bytes. 

similar to a function call or a return instruction, depending 
on whether this is the first time it is encountered. When a 
loop invariant is encountered for the first time, the symbolic 
evaluator verifies that the invariant is established before the 
loop is started. Then the symbolic evaluator simulates an 
arbitrary iteration through the loop, and for that purpose 
creates new register values for those registers that are de- 
clared to be modified by the loop body. In order to process 
the loop body, the symbolic evaluator uses the new values 
of registers and assumes that the invariant holds in this new 
state before the execution of the loop body. A loop invari- 
ant that is encountered for the second time marks the end of 
the arbitrary iteration that was initiated at the first occur- 
rence of the invariant. At this time, the evaluator requires 
that the invariant be established and that only registers that 
were declared to be modified by the loop body have actually 
been modified. 

We conclude the presentation of the VCGen by showing 
in Figure 6 the safety predicate that it produces for the 
program of Figure 3. 

4.2 The Prover and the Proof Checker 

To prove the safety predicates produced by VCGen we need 
a theorem prover for first-order logic. Many of the existing 
theorem provers (Boyer and Moore 1979; Detlefs 1996; Gor- 
don 1985; Owre, Rushby, and Shankar 1992) can be used 
for this purpose, although they do not produce proofs that 
can be checked independently. That is not an impediment 
as long as we agree to rely on the correctness of the prover, 

331 



and to give up the possibility of using the certifying compiler 
as a front end to Proof-Carrying Code systems. However, 
we feel that these are important properties, and thus, to re- 
tain them we have implemented a theorem prover that emits 
proofs. The theorem prover is based on the Nelson-Oppen 
architecture for cooperating decision procedures (Nelson and 
Oppen 1979), also implemented in the Stanford Pascal Ver- 
ifier (D.C. Luckham 1979) and the Extended Static Check- 
ing (Detlefs 1996) systems. 

Theorem provers are traditionally viewed as logically- 
incomplete systems that require human intervention in many 
instances. In our system, however, the theorem prover is 
guaranteed to be able to prove the safety predicates automat- 
ically because these predicates are implicitly proved by the 
compiler itself during compilation. 

For example, during bounds-checking elimination, the 
compiler eliminates those bounds-checking conditionals that 
it can prove to be always true. Later, during certifica- 
tion, the corresponding array operation prompts the sym- 
bolic evaluator to emit a predicate that captures exactly the 
arithmetic facts that were proved by the compiler. Thus, it 
is enough for the theorem prover to be “as good” at prov- 
ing arithmetic facts as the compiler is. This is usually the 
case in practice, as theorem provers are much more powerful 
than the typical compiler analysis of arithmetic. 

Beyond the predicate calculus and simple linear arith- 
metic, the theorem prover must also be able to interpret 
the typing and the memory-safety predicates that occur in 
the symbolic evaluator’s output. This can be done in most 
theorem provers by specifying a collection of inference rules. 
Two such rules are shown in Figure 7. The first rule says 
that it is safe to read an element of an array if its index is 
within the array boundaries, and the second rule says that 
the result of this read operation has the type of the array 
elements. By using these rules plus the usual predicate cal- 
culus rules, the reader can verify informally that the safety 
predicate shown in Figure 6 is indeed valid, and therefore 
the assembly language program of Figure 3b is memory safe. 

The role of the proof checker is to verify that every step 
in the proof is valid and also that the proof proves the re- 
quired safety predicate and not another one. We use the 
proof checker of the Proof-Carrying Code system, which rep- 
resents proofs in a language based on LF (Harper, Honsell, 
and Plotkin 1993), a simple typed &calculus. There are sev- 
eral engineering advantages of using LF to represent proofs, 
perhaps the most fundamental being that proof checking can 
be accomplished simply by type checking of LF terms. We 
encode a proof as an LF expression and the safety predi- 
cate as an LF type. Then LF type-checking is enough to 
validate the proof. (The fact that this approach is sound is 
established in (Harper, Honsell, and Plotkin 1993). We have 
made some modifications that are described and proved to 
be sound in (Necula and Lee 1997).) 

Another advantage of this arrangement is that the LF 
type checker is independent of the particular logic, and thus 
we are able to reuse its implementation for checking proofs 
in many logics, including the memory-safety and type-safety 
logic presented here. Also LF and LF type checking are 
simple, which leads to a small and fast implementation of 
the proof checker. 

5 The Optimizing Compiler 

The compiler component of our system is not very different 
from a traditional compiler for C. The differences can be 
classified ss due to changes in the language semantics and 

due to changes in the requirements on the output. The 
former class includes the enforcement of the array bounds, as 
mentioned before. The latter class includes the mechanisms 
for emitting the code annotations and type specifications. 

A common task in producing both the loop invariants 
and the type specifications is the conversion of variable type 
declarations to typing predicates involving machine regis- 
ters. This is done in two stages. The first stage happens in 
the compiler front-end and consists of generating a predicate 
t : T for every source-level variable v of type T, where t is the 
intermediate language temporary variable corresponding to 
v. Because we have chosen the type components of pred- 
icates to be similar to the source-level types, this stage is 
very simple. The second stage is done after register alloca- 
tion and consists of replacing the temporaries occurring in 
predicates with the register names chosen for them by the 
allocator. 

The procedure described above is all that is necessary 
for producing the type specifications. For loop invariants, 
we have to emit typing predicates for the variables that are 
live at the beginning of the loop body, and we also have to 
compute the set of registers that are changed in the loop 
body. This is done by a separate pass over the output pro- 
gram. 

One of the goals of the compiler implementation is to 
show that even the output of an optimizing compiler can 
be certified for type-safety. The main optimizations that we 
have implemented are: array bounds-checking elimination, 
constant propagation with algebraic reductions, dead-code 
elimination, common-subexpression elimination, loop invari- 
ant hoisting, in-register global variables, induction variable 
elimination, and global register allocation. Most of the 
implementation effort was directed towards array bounds- 
checking elimination both because bounds-checking is our 
most significant handicap with respect to the C compil- 
ers compiling the same programs, and because it is noto- 
riously difficult to verify the memory safety of assembly 
language programs whose bounds-checking code was elim- 
inated. Our results in this area are a major advantage over 
TIL (Tarditi, Morrisett, Cheng, Stone, Harper, and Lee 
1996) and Java (Gosling, Joy, and Steele 1996) bytecode 
verification. 

The type-safety aspect of the certification is always in- 
sensitive to most optimizations that a compiler might per- 
form, including all of the above. This is not true for the 
memory-safety aspect of the certification. The most obvi- 
ous complication for memory safety is generated by array 
bounds-checking elimination. The only other optimization 
implemented in our compiler that complicates the certifica- 
tion of memory-safety is the induction variable elimination 
in the instance when it replaces the array indexing with a 
running pointer inside the array. We discuss here only the 
array bounds-checking elimination. 

5.1 Array Bounds-Checking Elimination 

The array bounds-checking elimination is implemented in 
our compiler as an instance of the more general condi- 
tional elimination, that is, the elimination of the condition- 
als whose boolean expression can be statically proved to be 
always true or always false. The proof is attempted using 
a simple decision procedure for linear arithmetic based on 
computing loop residues (Shostak 1981). 

The conditional elimination analysis is implemented as 
a pass through the intermediate representation. When a 
bounds-checking conditional is encountered, its boolean ex- 
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pression is converted to the form z - y + c 2 0, where z and 
y are arbitrary expressions (usually variables) and c is a con- 
stant. This form is submitted to the loop residue decision 
procedure that returns a value saying that, in the current 
state, the boolean is always true, or always false, or that 
its value cannot be determined statically. In the first two 
cases the conditional is replaced with the code of the appro- 
priate branch, otherwise the boolean expression is recorded 
in the decision procedure’s state and the “true” branch is 
considered recursively. When the true branch is finished, 
the boolean is retracted and its negation is asserted instead 
for processing the “false” branch. Because all conditionals 
involved in array bounds-checking are of the form z > 0 or 
z < y, and because the loop residue is complete for this 
fragment of arithmetic, our compiler is able, in practice, to 
eliminate almost all bounds checks. 

There are two situations when the above analysis does 
not succeed in eliminating bounds-checks. One is when the 
information required for the proof is external to the current 
function. This happens, for example, in the function 

int subht aC1, int i) {return akl;} 

because there is no way to verify statically that i is a valid 
index for a. This situation would not occur if the function 
were inlined at the call site. 

To cover for the lack of interprocedural analysis, we have 
extended the language to allow the programmer to write 
simple function preconditions consisting of boolean expres- 
sions involving the formal parameters. For example, to elim- 
inate the bounds check in the above function the program- 
mer can write: 

int sub(int a[] , int i) 
PRECONDITION (0 <= i && i < length(a)) { 

return a[il; 
) 

The function preconditions are assumed true when analyzing 
the function but are checked at the call site. The precondi- 
tions are a convenient way to hoist the bounds checks out 
of the function to the call site, where there might be more 
information for eliminating them. In our experiments, these 
checks are in most cases eliminated by the same conditional 
elimination phase that eliminates the array bounds checks. 

Another situation when the conditional elimination anal- 
ysis presented above might fail to eliminate bounds-checks 
is inside loops like the one in Figure 3a. In that example, 
the upper bound of the index is given by the loop termi- 
nation conditional, while the lower bound is implicit. It 
can be seen from the loop invariant in that example that 
the compiler discovers a lower bound (to 2 0) and emits it 
as part of the invariant. To deal with such situations the 
compiler first discovers monotone variables. A variable v is 
monotone if, on all paths through the loop body, it is in- 
cremented by expressions that are either all positive or all 
negative. To detect monotone variables, the compiler first 
collects a set of increments for each variable, and then using 
the same loop-residue decision procedure verifies the sign of 
the set elements. For a monotone variable with only positive 
increments, the compiler generates a loop invariant stating 
that the value of the variable is always greater or equal than 
the value of the same variable on loop entry. This is how 
the conjunct to > 0 appeared in the invariant annotation of 
Figure 3b. 

6 Experimental Results 

We have two purposes in reporting the results of our exper- 
iments with the Touchstone certifying compiler. First, we 
wish to support the claim that we are applying the certifi- 
cation technique to an optimizing compiler. And second, we 
wish to show that the costs of certification are reasonably 
low. For the first purpose, we compare the running times 
of several benchmarks compiled by Touchstone against the 
running times of the same programs compiled with the GNU 
gee compiler and the vendor-supplied compiler (DEC cc) 
with all optimizations enabled. For the second purpose, we 
measure the size of proofs and also the time consumed for 
VC generation, theorem proving, and proof checking. We 
compare these with the code size and the compilation time 
respectively. 

Our benchmark programs depend only on those language 
features that are currently implemented in the certifying 
compiler (this ruled out floating-point benchmarks, for ex- 
ample) with a bias towards programs for which array-bounds 
checking elimination could make a significant difference in 
the running time. We furthermore preferred programs that 
might be useful as native-code components in a safe mobile 
code system, in order to evaluate the certifying compiler as 
a front-end to a system for safe execution of Proof-Carrying 
Code. 

These considerations led us to eight benchmarks. Three 
of them, blur, sharpen, and edge are bidimensional convo- 
lutions used as image processing filters in the xv program. 
qsort is an implementation of the quicksort algorithm for 
an array of integers. simplex is the linear programming al- 
gorithm implemented for rational numbers. kmp (an imple- 
mentation of the KMP search algorithm) and unpack (one 
of the gzip decompression algorithms and the core of the 
Unix utility with the same name) were chosen as examples 
of cases where array bounds-checking elimination is not ef- 
fective. The bcopy program is an implementation of string 
copy for non-overlapping strings. It is worth noting that 
some of these C programs are fairly realistic in both size 
and complexity, and none required anything more than mi- 
nor syntactic modifications to conform to our safe C dialect. 
The main changes involved replacing the use of pointer arith- 
metic with array indexing. All results are the average of at 
least 1000 runs on a DEC Alpha 21064 running at 175MHz. 

Figure 8 shows the effect of optimizations on the running 
time of the benchmark programs for the GNU gee compiler, 
the DEC cc compiler, and the certifying compiler. The C 
compilers were invoked with all optimizations enabled (-64). 
The running times are reported as speedups over the run- 
ning time of the unoptimized code as compiled with gee 
-00. The last set of bars in Figure 8 is the geometric mean 
of the speedups for each compiler. On the average, the cer- 
tifying compiler performs slightly better than gee (by about 
10%) and not quite as well as cc (the difference being about 
12%). The programs for which the certifying compiler is 
not quite as good as the C compilers are kmp and unpack, 
due to the bounds checks that cannot be eliminated, and 
bcopy, because of the lack of loop-unrolling in the certifying 
compiler. In addition to array bounds-checking elimination, 
the inter-procedural register allocation and the common- 
subexpression elimination played a major role in making the 
quality of code generated by Touchstone comparable to that 
produced by the other C compilers. 

In our experiments, the C compilers compile the pro- 
grams unsafely (that is, without any bounds checking), while 
Touchstone has the handicap of having to implement (and 
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Figure 8: The effect of optimizations in the certifying compiler, expressed as the ratio between the running time of the 
optimized code to the rumring time of the same code compiled with “GNU gee -00”. For comparison, we also show for each 
benchmark the effect of the optimizations in the GNU C compiler (‘GNU gee -04”) and the vendor C compiler (UDEC cc 
-04”). The last column is the geometric mean over all the benchmarks. 

Figure 9: Comparison of the compilation time for Touchstone and the GNU gee and DEC cc compilers with all optimizations 
enabled. The times in the table are shown in milliseconds. On the average, Touchstone is 20% slower than gee and 72% 
slower than cc. Note that the compilation time does not include VC generation, proof generation or proof checking. 

Figure 10: Comparison of the target code sizes for programs compiled with Touchstone and the GNU gee and DEC cc 
compilers with all optimizations enabled. The sizes in the table are shown in bytes of machine code. On the average, 
Touchstone is within 5% of the sizes of code emitted by the C compilers. 
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Figure 11: The relative sizes (in bytes) of proofs, invariants 
and the machine code. 

then hopefully remove) the array-bounds checks. The array- 
bounds checking elimination described in Section 5.1 is able 
to eliminate most, of those checks whose proof is local to 
the current function, but is ineffective when the elimination 
requires global information. This weakness is a problem 
in all of our benchmarks except for blur, edge and bcopy. 
To substitute for the required global information in these 
cases, we have added simple one-line function preconditions 
to sharpen, qsort and simplex. With the preconditions, 
our compiler succeeds in eliminating all bounds-checking op- 
erations in all but the kmp and unpack benchmarks. What 
makes these two benchmarks special is that array indices 
are computed based on the contents of some auxiliary data 
structures. The formal safety argument for these array op- 
erations involves the proof of complicated global program 
invariants, and thus it is probably not reasonable to expect 
a compiler to be able to eliminate these bounds checks. 

Even though the preconditions are added to programs 
only for the benefit of the bounds-checking elimination in 
our compiler, we do not feel that this gives us an unfair ad- 
vantage over the C compilers. To the contrary, the precon- 
ditions enable more extensive bounds-checking elimination 
and thus make the job of the certifier more difficult. The 
formal proof of redundancy for the bounds-checks that are 
eliminated based on preconditions and global information is 
larger and more complicated than for the locally-provable 
checks. Our experiments show that the additional bounds- 
checking elimination that is enabled by the preconditions 
leads, on the average, to a 7% reduction in code size, a 12% 
reduction of the running time and a 12% increase of the 
proof sizes. 

Due to the fact that Touchstone is an early prototype, 
the compilation time is significantly larger than that of the 
C compilers used in the performance comparisons. Figure 9 
shows the compilation times (not including the time for VC 
generation, proof generation or proof checking) of Touch- 
stone and of the C compilers (with ail optimizations enabled) 
for our set of benchmarks. On the average, Touchstone is 
20% slower than GNU gee and 72% slower than DEC cc. 
Figure 10 shows the comparison of the machine-code sizes 

% 
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I= 

Figure 12: The distribution of time spent for the compilation 
and certification of several benchmarks. The data in the 
table is expressed in milliseconds. 

of programs compiled with Touchstone and the C compil- 
ers. Unlike the compilation times, the sizes of machine code 
emitted by Touchstone are within 5% of that emitted by the 
C compilers. Note, however, that there is no fundamental 
reason why a certifying compiler should emit code that is 
larger than that emitted by a traditional compiler. With re- 
spect to the compilation time, the certifying compiler must 
incur the extra cost of emitting the loop invariants and type 
specifications. This cost, however, should negligible with 
respect, to the rest of the compilation effort. 

Hoping to have convinced the reader that we are indeed 
certifying optimized assembly language, we now move to the 
presentation of the costs of certification. For this purpose, 
we have measured the proof size and the time required for 
VC generation, theorem proving and proof checking, for the 
benchmarks discussed above. 

Figure 11 shows the sizes of the safety proofs and the 
annotations as compared to the sizes of the machine code 
for each benchmark. The annotations are only 30% of the 
size of the code, on the average. The average ratio of proof 
size to code size is 2.5, which is consistent with our observa- 
tions in experiments with PCC using hand-written assembly 
language. While this factor seems large, one must consider 
that the proofs are not currently compressed. Preliminary 
measurements show that general-purpose compression algo- 
rithms can decrease the size of proofs by a factor of two. 
However, larger reductions are likely to be obtained by fist 
optimizing the proof representations and then employing a 
compression algorithm. Further discussion about proof op- 
timizations is given in Section 8. 

Figure 12 displays graphically the distribution of time 
spent for compilation and certification. On the average, 
72% of the time is spent compiling, 22% is used for the- 
orem proving and the rest of 6% is split evenly between VC 
generation and proof checking. Based on these results we 
make two observations. First, the cost of certification is 
only about a third of the cost of compilation, meaning that 
it is reasonable to use the certifier throughout the life of the 
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compiler, and not just during compiler development. Sec- 
ond, not only are VCGen and the proof checker much sim- 
pler than the compiler and the theorem prover, but they are 
also much faster. Hence, this safety-critical infrastructure is 
both small and fast. This is important in situations when 
the certifying compiler is used to produce Proof-Carrying 
Code, because the system receiving the code needs to trust 
and run only the VCGen and the proof checker. 

7 Related Work 

The idea of checking individual compilations instead of ver- 
ifying the compiler also appears in the work of Cimatti et 
al. (Cimatti et al. 1997), though in the much simpler in- 
stance of a non-optimizing compiler from an expression lan- 
guage without loops or function calls to an RTL-like lan- 
guage. On the other hand they have the more ambitious 
goal of verifying full equivalence of the source expression 
and the target program. 

The compilation approach presented here resembles in 
many respects the compilation strategy of the TIL (Tarditi, 
Morrisett, Cheng, Stone, Harper, and Lee 1996) compiler 
for Standard ML, which uses a typed intermediate language 
that can be easily type-checked to achieve an independent 
validation of optimizations. However, the TIL type-system 
does not guarantee memory safety in the presence of cer- 
tain optimizations such as array bounds-checking elimina- 
tion, and furthermore, it cannot be used after the register 
allocation phase when some variables (registers) are reused 
to hold values of different types in the body of the same 
function. For this reason, types are dropped in TIL be- 
fore the register allocation phase and thus, no type-checking 
is possible at the level of the compiler output. The prob- 
lems related to register allocation are solved by Morrisett et 
al. (Morrisett, Walker, and Crary 1998) by choosing a more 
expressive type system, but the issue of memory-safety in 
the presence of optimizations such as array bounds-checking 
elimination still remains a problem. 

The purpose and the design of our certifying compiler 
are also related to the Java (Gosling, Joy, and Steele 1996) 
compiler and bytecode verifier (Lindholm and Yellin 1997) 
systems. The similarity is that both systems produce code 
that is annotated for the purpose of enabling a certification 
system (the bytecode verifier, in the Java case) to verify the 
type safety. The difference is that our certifier has a more 
flexible annotation language that permits the verification 
of arbitrarily optimized assembly language while necessitat- 
ing fewer annotations. The bytecode verifier only works on 
a specially designed bytecode intermediate language where 
typing annotations are contained in the instruction codes 
themselves. Furthermore, the Java bytecode verifier pre- 
vents the compiler from doing several important optimiza- 
tions, such as array bounds-checking elimination and global 
register allocation, since these checks are built in to the def- 
inition of the byte codes. 

8 Discussion and Future Work 

The approach to a certifying compiler presented in this 
paper is inspired by our work on Proof-Carrying Code 
(PCC) (Necula 1997; Necula and Lee 1996), and in fact 
reuses the VCGen, the theorem prover, and the proof 
checker components of our implementation of PCC. If in- 
tegration with PCC and the generality and simplicity of the 

certifier were not important to us, we could have chosen 
from several alternate implementation approaches. 

One alternative is suggested by the fact that the verifi- 
cation conditions emitted by VCGen can be proved auto- 
matically. Thus, one can incorporate parts of the prover in 
VCGen and prove the VCs as they are encountered, with- 
out actually generating a safety predicate and maybe not 
even a proof that can be checked. This might be particu- 
larly practical when array bounds are not verified and thus 
only a small part of the prover is used. The Java bytecode 
verifier (Lindholm and Yellin 1997) can be viewed as taking 
this approach, as can the type-checker in the typed assembly 
language of Morrisett, et al. (Morrisett, Walker, and Crary 
1998). 

Another variation of the method presented here is to 
attempt to certify the output of an off-the-shelf compiler, 
which does not produce annotations or type specifications. 
We suspect that this can be achieved by interposing a loop 
invariant inference phase before VCGen. For the source lan- 
guage presented here, and for a compiler that does not per- 
form aggressive global optimizations, it should be possible 
in principle to discover the typing invariants completely au- 
tomatically. 

Our current experimental results show that the proofs 
are about 2.5 times larger than the code. Some preliminary 
experiments show that standard compression techniques re- 
duce the proof sizes by a factor of 2. We believe, however, 
that the biggest gains in reduction of size will be obtained 
by designing and implementing optimizations in the repre- 
sentation of proofs. Already, our current LF representation 
provides a simple approach to type reconstruction that al- 
lows some type information to be elided (Necula and Lee 
1997). We are currently exploring more aggressive tech- 
niques that involve finding common subterms (essentially 
a kind of common subexpression elimination). A manual 
inspection of the proofs gives some indication that such an 
approach should yield good reductions, though much further 
work is necessary to measure the effects. 

In addition to the general notion of certifying compila- 
tion, we believe that we have discovered a simple correct- 
ness criterion for both register allocation with spilling and 
for instruction scheduling. Bugs in these compiler optimiza- 
tions are notoriously difficult to find because they lead to 
subtle errors in the output that tend to surface as sporadic 
program failures, usually many instructions past the actual 
erroneous instruction. Furthermore, the low-level nature of 
the output and the fact that such errors most likely occur 
in large programs, makes the visual inspection of the output 
quite tedious. 

We have observed that the result of our symbolic evalu- 
ator is insensitive to global register allocation with spilling 
and to global code scheduling. During the development of 
our compiler, this has meant that we could verify each run of 
these transformations simply by comparing the safety pred- 
icates computed before and after the transformation. To see 
an example of this, consider the annotated code of Figure 3b. 
In this code, the register tl is used to hold values of different 
types in the body of the loop. One can now observe that 
even if the independent uses of rl are renamed, the safety 
predicate does not change, up to the renaming of bound 
variables in the predicate. A similar experiment shows the 
same phenomenon in the case of instruction scheduling. 

To preserve this invariance property even in the presence 
of register spilling, the symbolic evaluator must be extended 
to interpret a portion of the stack frame as an extension of 
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the register file and thus consider the read/write operations 
to the stack frame as moves from/to these pseudo-registers. 
To simplify the symbolic evaluator, only memory references 
to addresses that are computed as immediate offsets from 
the dedicated stack pointer (or frame pointer) register are 
intercepted; all other memory references must be proved to 
be within heap-allocated arrays. 

We strongly suspect that this observation can form the 
basis for a general correctness criterion for global register 
allocation and instruction scheduling, and one that would 
be useful for any compiler, not only certifying compilers. 
However, we do not yet have a formal proof of this claim. 
We hope to make a more formal statement and proof of this 
correctness criterion in future work. 

9 Conclusion 

This paper presents the design and implementation of a cer- 
tifying compiler composed of a traditional optimizing com- 
piler for a typed language and a certifier that automatically 
produces a proof of type safety for each assembly language 
program resulting from the compilation. The main benefit 
of such a system over a traditional compiler is that the cer- 
tifier acts as an effective referee for the correctness of each 
compilation, thus simplifying compiler testing and develop- 
ment. Only rare compilation errors that do not break the 
type-safety of the target program are not detected by a cer- 
tifying compiler. During the development of the certifying 
compiler we have encountered only one such error, as op- 
posed to a large number of errors that were caught early 
by the certifier. The certifier reduced the effort required 
for the development of an optimizing compiler whose per- 
formance rivals that of production compilers, to only three 
man-months. 

A second important benefit of a certifying compiler is 
that it can serve as an automatic front-end to a system that 
uses Proof-Carrying Code to enable the safe execution of 
untrusted mobile code. 

The main contribution of this research is the design of 
a certifier that does not restrict the optimizations that the 
compiler can perform, while requiring only a small amount 
of information from the compiler. As an indirect result, we 
have identified that the symbolic evaluation technique that 
is at the base of the certifier leads to a simple but effec- 
tive correctness criterion for low-level optimizations such as 
register allocation and code scheduling. 
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