Light-Weight Contexts: An OS Abstraction
for Safety and Performance

e Coroutines : Coroutine refers to procedures which allow multiple entry and exit points
using suspend and resume functionality. Execution in a coroutine begins where it was
suspended and values of local variables of procedure is retained using a structure. IwCs
are similar to them as they also allow multiple entry and exit points and retain execution
state of threads which had executed in them. Also like coroutines, IwC also do not use
stack to implement this functionality.

e FD is a handle inside process address space. Unix uses FD to identify all files, devices
or we can say resources using FDs and so they are chosen to identify IwC to keep the
generality. But system calls like open, read, write on FDs which are refering to lwC, will
result in an error.

e Unix implement two core Sandboxes:

o Process Level: One process cannot access the address space of another
process.
o User Id Level: A Unix process is Owned by a particular userid.

e One example where we have snapshot and rollback useful is for eg, when we use public
computer for browsing. The Clean up program could have bugs, so rollback is much
more secure and efficient.

e In terms of security, snapshot and rollback can provide various services like:

o No data leakage
o Integrity (snapshot is taken at a point where program is in consistent state, so
whenever some data lost or data modification happens we can just rollback and
rerun the instructions)
o It does not help in ensuring availability(DOS).
e There are two kinds of servers, event driven (like nginx) or multithreaded (like apache).
e Multi-threaded Server :
o Every time a new connection comes, it is handled by a separate thread which

could be created in advance. OS scheduler performs thread ordering.



o Each connection can also be handled by a separate process which can be pre
forked. But in this case overhead is of process scheduling and IPC which is more
than the case when threads were used. But this method provides more session
isolation.

Single Threaded - Event driven Server :
o It minimizers per connection state and maintains all states in a single thread.
o Also since there is only one thread, OS scheduler does not come into picture.

o These give high performance but are difficult to write.

Can we create root IwC again? No, we can not create a root IwC but we can create its
exact copy with same resources, same VM mappings etc. Root is just a name given to
one IwC which is present in a process by default when it is created and is identified by a
well known file descriptor.
Counterpart of IwC in current operating system is that if a process has permission to
read, open and write a sensitive file (like “/etc/passwd” in linux) then it can restrict its
child process to open or write that file. It’s just that in this new abstract there is no child
process but access is restricted for threads which can not switch to privileged IwC.
Are IwCs created before calling lwRestrict also restricted to by this call? No, since
permissions are associated with file descriptor tables and IwCs created before have
already copied fd table and hence permissions, so they can’t be restricted.
How will parent IwC have reference to a new buffer created by child IwC using COW to
deallocate in future? Parent IwC will not have reference to any private buffer of child IwC.
It is not permitted to deallocate it.
What if some memory is mapped in child at overlay address? That memory will be
unmapped.
On switching to a new IwC execution begins on line IwCreate, where will execution
resume on switching to it after 1st time? It will begin at line where thread running in child
IwC left its execution i.e. on line where it called IwSwitch.
What impact does this abstraction has on security i.e how it affects TCB (Trusted
Computing Base)?

o Removal from TCB : Before implementing IwCs, main function was in TCB. But

with IwC, except for the first few lines (where new IwC are created and we assign

them privileges), main function is excluded from TCB.



o Addition to TCB : All the framework code that is added to implement IwC APls is
added to TCB. But adding this code to TCB is better than adding application code
to TCB as this code is written by experts and tested many times.

To provide access enforcement, there are two approaches:

o One is to test every call to API which could cause unwanted result before the call
is made i.e. inline checks.

o Other is to check when trouble happens like exceptions, page faults, trap etc.
IwSyscall adds a new facility to pose as a different process by making system call on
behalf of thread running in different IwC.

Where will child return in reference monitor as it did not call IwSwitch? It did not call
IwSwitch explicitly but that call was made by sandboxing mechanism of Operating
System on its behalf when a privileged system call is made. This thread will resume from
there in sandboxing mechanism of OS.

What if child explicitly calls lwSwitch to reference monitor IwC? We can either restrict this
by not passing IwC fd of reference monitor to child IwCs or reference monitor can just
return some error and switch back to caller IwC.

Pattern of reference monitor is similar to that of kernel-application process relationship
where kernel performs various checks on parameters of application process when it tries
to perform privileged operations using traps.

We can stop threads in some particular IwCs to perform exit system call. But even that
will not give immunity against DoS attack as thread can simply run in infinite loop and
never call IwSwitch.

Even SIGALRM can not be used to prevent DOS attacks as they are non attributable
signals in this scheme which are delivered to root IwC when a thread switches to it. So if
malicious thread never switches to root IwC is will not run handler for SIGALRM and we
can not stop this thread.

Non Attributable signals are those which can not be associated with a particular
instruction like SIGALRM, SIGKILL, unlike SIGFPE which can be associated to a
instruction and hence is attributable. No process can itself specify that which signals are
attributable and which are not.

We can also implement reference monitors using strace but in in-process reference

monitors implemented using IwC, scheduling overheads go away. Also IPC is faster in



IwC because call to create mapping of shared memory among processes are costlier
operation. Thus, IwC are simpler and faster.

Number of PCID on Free BSD : 12bits(4096)

Hyper-threading : It refers to running more than one (say two) threads on same core.
Such a core has two copies of registers and some shared functionalities so that two
thread can run parallelly on same core. This is disabled during IwC experiments because
it is hard to model and sometimes can reduce performance.

Speed-step : It refers to increasing frequency of CPU for sometime to enhance its speed
at cost of more heat generation and power usage.

IwC unlike processes don’t protect against DOS attack but provides rest of the things

including privilege separation, sensitive data isolation and execution state.



