EbbRT: A framework for building
per-application library operating systems

Introduction

e A small introduction on library operating systems
o Operating system level features now implemented at application level
o Application now has better control of resources and hence can be made more
efficient
e Not only dennard scaling is broken, now the size of transistors also reaching limit

Objectives

e MultiLibOS model
e Function offloading, offload functionalities to remote nodes
IOMMU
o Have a separate MMU for the device too so that the device can translate the
virtual address into physical address itself

System Design

e Distinction between native and hosted runtimes
o Native - low level
o Hosted - proces level
e Hosted library is used for the application to make a smooth transition from hosted library
to native runtime
e Native runtime sets up a single address space while the applications runs at the highest
privilege level
e To provide high degree of customization Ebbs enable developers to modify or extend the
entire software stack
Ebbs are distributed, multicore fragments
RCU - read, copy, update
o Reads occur concurrently with updates
o Contrast this with simple lock - all operations are mutually exclusive,
reader-writer lock - concurrent reads are allowed but not in presence of a write
o Maintains multiple versions of objects and removes stale versions for which there
are no readers present (for that version)



o Reads and writes are done through publish subscribe mechanism
e Non preemptive execution model
o Non-preemptive does not imply that interrupts are disabled
o Itis just that the interrupt handler returns back to execution and control flow is
resumed
e Poll - polls the set of descriptors in a loop
o Pro - low context switch overheads
o Con - wastes cpu cycles when idle
o Used when activity is high
e Select - asks system to notify in case of an event
o Pro - sleeps when idle
o Con - context switch overhead present
o Used when activity is low
e Cooperative threading model
o Event driven programming may not be a good fit for all applications
o User saves and restores state at will
o Needed to support wide applicability

Implementation

e Application can control scheduling decisions by modifying EventManager Ebb. Look at
table 1
A new stack is used for each exception handler
Spawn method can register an event in any core but executes at a later point in time.
This is similar to that of a signal abstraction which internally uses Inter Processor
Interrupts at the lowest level to deliver signals to other cores.
e Ebbs use page tables to store references to local representatives
o Dereferencing an ebb internally walks through page table which is a hash map as
a data structure but an efficient one to obtain the reference to local representative
o Hosted implementations do not have access to page tables and hence use
software hash tables to store representatives
e Static dispatch is that function to be computed or data to be accessed is determined at
compile time and hence the offsets into objects are also constants determined at compile
time
e Dynamic dispatch is different in the sense that function to be executed is determined at
runtime. An example can be runtime polymorphism in c++ where the function to be
executed depends on nature of object and hence cannot be determined at compile time
e Main disadvantage of interface definition language being is that is used in EbbRT
serialization and deserialization takes place irrespective of whether representative is
present locally or not. This slows down even the fast path which is undesirable
e Parallel executions are not straight right intuitive and are relatively difficult to develop
than their serial counterparts. By adapting higher level programming abstractions like



lambdas and monadic futures into EbbRT we make it relatively easier for the
programmer to reason about program
Lambdas is an abstraction to make construction of continuations easy
Monadic futures allow programmers to linearly build up futures which is more neat and
intuitive in terms of control flow than having nested callbacks which is outright messy

e Depending on programming language monadic futures may also have abstractions
which allow programmers to execute functions/lambdas if any of the results are available
or all of the results are available depending on the requirement

e Instead of having a single buffer to store all the network data we use a chain of IOBufs
assisted by scatter gather interfaces

Evaluation

e |n threadtest benchmark, the performance when number of objects allocated in one
iteration is large is worse than when number of iterations is large because of overheads
caused by memory management logic. Look at Figure 4

e EDbDbRT is more performant than glibc because of lack of operating system overheads
and finer control on memory management

e Glibc does not scale as well as EbbRT because of synchronization overheads which is
not present in EbbRT due to its locality and non preemptive nature. Jemalloc scales well
since it uses per-thread caches

e A low throughput or high latency may also arise from heavy CPU usage which is
generally due to large software stacks. EbbRT applications specialize software stack to
improve performance

e Linux VM inefficiency also comes from the fact that Linux is not developed to run on a
VM, while EbbRT is specifically designed keeping cloud applications in mind

Conclusion

e EDbbRT adapts programming level abstractions to system level software. It uses objects
to create software stacks, C++ templates for generic EbbRefs, lambdas for continuations
and monadic futures to handle exceptions



