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Refinement



Verification Primer

● Behavioral
○ Specification and implementation are both programs
○ Equivalence check proves the functional correctness

● Hoare logic
○ Functional Specification are the preconditions and postconditions

● More ways e.g. DSL etc

int add(int a, int b)
{
    return a+b;
}

Test function

int spec_add(int a, int b)
{
    return a +2scomp b;
}

Behaviour specification

Pre:   bitvector32 : a
bitvector32 : b

Post: return = 
bvadd2scomp(a, b)

Hoare specification



Problem

● Verification of file system
○ Push-button i.e. automatic
○ No manual annotations or proofs

■ BilbyFs took 9.25 months, 13K LOP for 1350 LOC
■ FSCQ took 1.5 years, code size is 10x of xv6-fs

○ Functional correctness (stronger than the consistency requirement)

● What is special about file system verification?
○ Crash and recovery procedure
○ Reordering of writes



Overview of the technique

● Input: specification, implementation and consistency invariants
● Trusted components: specification, verifier, compiler and visualizer



Yggdrasil toolkit

● Specification, implementation and consistency invariants are specified in  a 
subset of python

● Counter examples are given when:
○ specification != implementation
○ consistency invariants do not hold

● Support for optimizations in the implementation e.g. disk flushes
● After verification it emits C code for the filesystem and fsck utility.



Example: YminLFS

● Simplified log-structured file system
● Development took less than four hours
● Even caught two bugs in the initial implementation



YminLFS: Specification

● Abstract data structure
● Operations
● Equivalence predicate

Dir-inode * file-name -> file-inode
inode -> parent-inode
inode -> mtime-stat
inode -> mode-stat
inode -> size-stat

● Abstract maps
● Abstract types: InotT, U64T are 64-bits integers and NameT is a string type 



YminLFS: Specification

● Abstract data structure
● Operations
● Equivalence predicate



YminLFS: Specification

● Abstract data structure
● Operations
● Equivalence predicate

● Transaction construct ensures all-or-nothing.



YminLFS: Specification

● Abstract data structure
● Operations
● Equivalence predicate

● Represents equivalence between the state of specification and 
implementation.



YminLFS: Specification

● Yggdrasil specification is succinct and expressive
○ Functional correctness
○ Crash safety using transaction

● Specification is agnostic to the implementation. For the same specification, 
we can write log-structured and journaling filesystems.



Implementation

● Choose disk model e.g. asynchronous and synchronous
● Write each specified operation
● Consistency invariants
● YminLFS implementation is just 200 lines of python



Implementation: Disk model

● Asynchronous model
○ Unbounded volatile cache
○ Allows arbitrary reorderings
○ Interface:

■ d.write(a, v)
■ d.read(a)
■ d.flush()

○ Block addresses are 64bits long.
○ Size of each block is 4KB
○ Single block read/write is atomic



Implementation: Disk layout

● Log-structured file system
○ Copy-on-write fashion 

■ On writes: modification is done on copies blocks and old blocks are forgotten
○ No segments
○ No subdirectories
○ No garbage collection (fails when it runs out of blocks, inodes or directory entries)
○ Zero sized files (no read, write or unlink)
○ It still has to deal with crashes, reordering of writes etc



Implementation: operation mknod

1. add an inode block I2 for the new file
2. add a data block D for the root directory, 

which now has one entry that maps the 
name of the new file to its inode number 
2

3. add an inode block I’1 for the updated 
root directory, which points to its data 
block D

4. add an inode mapping block M’, which 
has two entries: 1→b5 and 2→b3

5. finally, update the superblock SB to 
point to the latest inode mapping M’.

SB: superblock
M: inode to block mapping

Disk flush after each write. 



Implementation: consistency invariants

● Analogous to the well formedness invariant for the specification
● It determines whether a dist state is a valid log-structured file system image
● Implementation invariants are used for

○ Verification (do we really need for verification ??)
○ fsck util generation

● Invariants are checked for the initial file system and used in forming the 
precondition and postcondition.

● Invariants:
○ SB constraints

■ Next available inode number i > 1
■ Next available block number b > 2
■ Pointer to M belongs to (0, b) (shouldn’t it be (1, b) ??)

○ Inode mapping constraints (M)
■ For each entry (I, B) : I belongs to (0, i) and B belongs to (0, b)

○ Root dir constraints (D)
■ For each entry (name, I) : I belongs to (0, i)



Verification

● Crash free executions: same behaviour of specification and implementation
○ Given consistent and equivalent states, specification and implementation produces equivalent 

and consistent states in the absence of crashes

● Crashing executions:
○ Each possible crash state (including the ones due to reordering) in the implementation must 

be equivalent to some state in the specification and the states should be consistent

● Equivalence is determined using the equivalent predicate given in the 
specification



Counterexample

1. add an inode block I2 for the new 
file

2. add a data block D for the root 
directory, which now has one entry 
that maps the name of the new file 
to its inode number 2

3. add an inode block I’1 for the 
updated root directory, which points 
to its data block D

4. add an inode mapping block M’, 
which has two entries: 1→b5 and 
2→b3

5. finally, update the superblock SB to 
point to the latest inode mapping 
M’.

Step5

Step4

Step1

Step2
Step3

Flush is missing between step 4 and 5.



● Initial implementation contained two bugs in lookup logic and data layout.
○ Could not be detected in testing runs
○ Verifier found the same in seconds

● Proof:
○ If there is no counterexample found, then none exists, and the implementation is correct
○ Note that correctness hold for disks with up to 2^64 blocks and inodes
○ For all possible traces, crash scenarios and reorderings
○ The theorem only holds when disk is modified only through the file system

Counterexample/proof



Optimizations and compilation

● Optimization
○ Minimize disk flushes

■ In mknod: first three disk flushes can be removed in 3 mins

● Yggdrasil compilation
○ Implementation -> executable 
○ Implementation -> C code -> executable [using CPython]
○ The result is a single-threaded user-space file system

● Summary
○ No manual proofs
○ No annotations
○ Counterexample visualizer is useful for pointing bugs
○ Trusted computing base: 

■ Yggdrasil (Verifier, visualizer and compiler). Optimizer is not trusted.
■ Dependencies like Z3, Python, gcc, FUSE, Linux kernel



Crash refinement

● Crash refinement intuition
○ F0 specification and F1 is the implementation
○ F1 is correct wrt F0 if starting from equivalent consistent states and invoking same operations 

on both systems any state produced by F1 is equivalent to some state in F0
○ We do this for all operations and for the whole system



Modeling crashes and flushes

● Each operation is modeled with a function with three inputs
■ Current state
■ External input
■ Crash schedule

○ Example: write operation (a -> v) fw
■ Current state s (s(a) represent data at address a)
■ External input = (a, v)
■ Crash schedule: for asynchronous disk model for the write operation is pair of boolean 

values (on, sync)
● On: write operation completed and value is stored to volatile cache
● Sync: write value is synchronized to persistent memory



Crash refinement:

Definitions: State equivalence
 



Defn: Crash-free equivalence



Defn: Crash refinement w/o recovery (crashes but no 
recovery)

● If the functions are crash-free equivalent and following holds:



Defn: Recovery function idempotence

● Recovery function is idempotent if



Defn: Crash refinement with recovery

● If the functions are crash-free equivalent and following holds:



Defn: No-op

● Function f with recovery function r is a no-op if 
● r is idempotent and following holds:

● Background operations which do not change the externally visible state of the system are 
no-ops.



System crash refinement

● Given two systems F0 and F1 and recovery function r
● F1 is a crash refinement of F0 if every function in F1 with r is either a crash 

refinement of the corresponding function in F0 or a no-op.



Yxv6 file system overview

● Journaling based file system similar to xv6
○ Write-ahead logging

● Module based
○ Reduces SMT encoding size
○ Faster SMT queries
○ Multiple disks for different logical parts of the disk e.g. log, free bitmap etc.

● Yxv6+sync and Yxv6+group-commit
○ Group-commit combines multiple transactions in to one.



Yxv6 file system layers

● A layer is proven in each step.
● Once a layer is proven, the top 

layer use the specification of 
bottom layers.

● Layer 1: Asynchronous disk
○ Axiom 1: block device is a crash 

refinement of asynchronous disk 
specification.



Yxv6 file system: Layer 2: Transactional disk

● Specification: Transactional disk 
manages multiple disks and 
provides abstractions:

○ d.begin_tx()
○ d.commit_tx()
○ d.write_tx()
○ d.read()
○ Operations in a transaction are atomic 

and sequential.

● Implementation:
○ Write-ahead logging
○ One log for all disks



Yxv6 file system: Layer 2: Transactional disk

● Specification: Transactional disk 
manages multiple disks and 
provides abstractions:

○ d.begin_tx()
○ d.commit_tx()
○ d.write_tx()
○ d.read()
○ Operations in a transaction are atomic 

and sequential.

● Implementation:
○ Write-ahead logging
○ One log for all the managed disks



Yxv6 file system: Layer 3: Virtual transactional disk

● Specification: 
○ 64-bit virtual disk addresses
○ Only the mapped addresses can be 

read/written
○ Simplifies inode implementation

● Implementation:
○ Uses one transactional disk with three 

data disks
■ Free block bitmap
■ Direct block pointers
■ Data + singly indirect block 

pointers
○ Free block bitmap: One bit in each 

block for SMT encoding simplification

● Invariants:
○ Injective mapping (one-to-one)
○ If block with address a is mapped then 

ath bit in block bitmap must be marked



Yxv6 file system: Layer 4: Inodes

● Specification: 
○ 32-bit long inode number
○ Each inode is mapped to 232 blocks
○ Each inode is mapped to metadata like size, 

mtime and mode

● Implementation:
○ 64-bit virtual disk address space is split in 

232
 ranges each with 232 virtual blocks.

○ Uses separate disk for metadata.

● Invariants:
○ None



Yxv6 file system: Layer 5: File System

● Specification: 
○ Extension of FSSpec with regular files, 

directories and symbolic links.

● Implementation:
○ Builds on top of inode specification
○ Inode bitmap disk
○ Orphan inode disk

● Invariants:
○ Size of unused inode must be zero
○ Inode using n blocks should have virtual 

blocks larger than n unmapped.



Finitization

● Most of the operations are finite (bounded loops)
● With two exceptions:

○ Search-related procedure like finding free bit in bitmap
■ Validation is used for these cases.

● E.g. runtime check whether index returned is free in the bitmap
○ Unlink

■ To finitize: implementation moves the inode to orphan inodes disk. Garbage collector 
later reclaim the data blocks. And garbage collection is proven a no-op. Does not 
change the externally visible state.



Single disk and packed bitmaps

● Packed bitmap is a refinement of 
block bitmap

● Using single single disk is a 
refinement of using of seven 
disks (non-overlapping).



Yxv6+group-commit and Yxv6+sync

● Yxv6+group-commit is a crash refinement of Yxv6+sync



Beyond file systems

● Yggdrasil can be used for writing applications which use file systems e.g. Ycp
● Ycp spec:

○ If copy succeeds the target file is a copy of source file
○ If fails due to crash (or invalid target) file system is unchanged

● Ycp implementation:
○ Steps:

■ Create a tmp file
■ Write the source data to it
■ Rename

● Ycp implementation is proven to be a crash refinement of the specification



Yggdrasil limitations

● Single-threaded, does not support concurrency
● Cython is not verified
● SMT is limited to first order logic not as powerful is Coq and Isabelle. 

However, it is sufficient for Yxv6.
● Yxv6 does not support modern features like extents and delayed allocation 

(allocate-on-flush)
● Generated Fsck cannot repair



Implementation



Evaluation: correctness

● fsstress tests from the Linux Test Project
● SibylFS POSIX conformance tests
● Yggdrasil development + writing of paper hosted on Yxv6
● Block Order Breaker to cross-check that the file system state was consistent 

after a crash and recovery.
● Manually corrupted the file system and ran fsck



Evaluation: Run-time performance

● SSD
○ Yxv6+sync performs similar to ext+sync 

and fscq
○ Group_commit is 3–150× faster than 

ext+sync and fscq
○ Group_commit is within 10× ext+default

● RAM disk to understand CPU 
overheads

○ Fscq is slow because of haskell extracted 
code

○ Yxv6 benefits from C code
○ Largefile is exception



Evaluation: Verification performance

● One hour to verify Yxv6+sync
● 1.6 hours to verify Yxv6+group-commit (on 24 cores) and 36 hours on single 

core
● Related: FSCQ takes 11 hours



Related work

● FSCQ: Crash Hoare logic
● Flashix: similar approach, interactive verification
● Bug-finding tools


