Summary:

CertiKOS: An Extensible Architecture for Building Certified

Concurrent OS Kernels

Ronghui Gu, Zhong Shao, Hao Chen, Xiongnan (Newman) Wu, Jieung Kim, Vilhelm

Sjéberg, and David Costanzo; Yale University

Keywords :

User concurrency, I/0O concurrency and Multicore concurrency
MCS locks, Multicore Shared Memory Systems
Starvation-freedom, Liveness

Formal verification, Certified Concurrent Layers, Coq

Motivation for Verified Concurrent OS Kernel :

Concurrent Operating Systems are backbone of all systems including
safety-critical software systems in the world.

Any error inside the kernel can lead to bigger disaster.

Complete formal verification is the only known way to guarantee that a system is
free of programming errors.[seL4 -- SOSP’09]

Limitations of Prior work :

Why formal verification of Concurrent OS is hard :

Prior work has formally verified the functional correctness of sequential kernels,
file systems, and device drivers, but none of these systems have addressed the
important issues of concurrency.

The selL4 team was the first to verify the functional correctness and security
properties of a high- performance L4-family microkernel, however selL4 does not
support Multicore shared memory concurrency with fine-grained locking.

Xu et al. have successfully verified key modules in the pC/OS-IlI kernel which
supports preemption but only on a single-core machine. They have not verified
any assembly code nor connected their verified C- like source programs to any
certified compiler so there is no end-to-end theorem about the entire kernel.

Concurrent kernels allow interleaved execution of

kernel/user modules across different abstraction layers;
multiprocessor

they contain many interdependent components that are difficult to untangle.
Checking functional correctness of thread yield/sleep/wakeup primitives or
interrupts to switch control and support synchronization or Multicore concurrency
with fine-grained locking is intractable, and even if it is possible, its cost would far
exceed that of verifying a single-core sequential kernel.

Proving liveness i.e. system calls eventually return is very hard as this depends
on the progress of the concurrent primitives.

Providing extensibility (kernel plug-in) support requires to encapsulate
interference, otherwise even a small edit could incur huge verification overhead.

Major Goals:

Verification should not impose significant overhead on kernel performance.
Should be able to prove global properties of user-level processes and virtual
machines built on top of certified kernel.

Extensibility support for new kernel Abstractions and Processes, i.e. it must
support transfer of global properties proved at a high abstraction level down to
any lower abstraction level which will also minimize the cost of development and
maintenance.

Certified kernel rather than verified kernel(machine-checkable proof).

How CertiKOS Architecture solves the verification problem:

kernel as composition of various certified concurrent abstraction layers.

The environment context of a kernel K could be other kernel threads on same
CPU or a copy of K running on another CPU due to shared-memory concurrency.
Use of environment context at each layer and applying techniques for verifying
sequential programs to verify functional correctness of concurrent programs also.
Temporal invariants(e.g. Fair OS Scheduler) over these environment contexts to
prove liveness.

Design Contributions:

m certified concurrent sequential layers

(L1,M,L2) and a mechanized proof object showing

verified sequential kernel

|

that the layer implementation M, built on top of the |

interface L1 (the underlay), is a contextual |

refinement of the desirable interface L2 (the

overlay).

m Multicore hardware model

Arbitrary interleavings at the level of assembly instructions.

Memory accesses are divided into Private(local objects), Synchronized
shared memory accesses (Atomic Objects) with a logical log to
maintaining the entire history of the operations that were performed on the
object during an execution.

m Hardware scheduler (ehs)

It specifies a particular interleaving for an execution resulting in a
deterministic machine model

_/ghs

m Push/Pull Model

Each CPU maintains local copy of shared memory blocks.

The pull operation over a particular memory block updates a CPU’s local
copy of that block to be equal to the one in the shared memory, marking
the local block as valid and the shared version as invalid.

The push operation updates shared version to be equal to the local block,
marking the shared version as valid and the local block as invalid.

Among each shared memory block and all of its local copies, only one can
be valid at any single moment of machine execution.

m Partial machine with environment context

The partial machine model is configured with an active CPU set and it
queries the environment context whenever it reaches a switch point that
attempts to switch to a CPU outside the active set.

Each environment context takes the current log and returns a list of events
from the context programs (i.e., those outside of Active CPU set).

The response function simulates the observable behavior of the context
CPUs and imposes some invariants over the context.

The hardware scheduler is also a part of the environment context.

m CPU-local machine model

e There is a switch point before each instruction, leading to unnecessary
interleavings (e.g., those between private operations).

e In CPU-local machine model for a CPU i, switch points only appear before
atomic or push/pull operations.

e The switch points before shared or private operations are removed via :
shuffling/delaying and merging.

Limitations :

The Certified mC2 kernel is not as comprehensive as real-world kernels eg
Linux.

The underlying assembly machine assumes strong sequential consistency for all
atomic instructions, not the x86 TSO consistency and only covers a small part of
the full x86 instruction set.

Any code for TLB shootdown is not modeled and hence cannot be verified.

Lacks a certified storage system.

The CompCertX assembler, Bootloader, Prelnit module (which initializes the
CPUs and devices), and ELF loader are unverified and assumed to be correct.

Check your understanding :

Standard Mesa-style condition variables do not guarantee starvation-freedom.
How can this be fixed by using a FIFO queue of condition variables.

For each environmental context, if A is singleton, the thread modular Machine
behave like sequential machine.

How can we guarantee that P is data-race free, by showing that a program P is
safe (never goes wrong) on Machine with local copy of shared memory for all
possible hardware schedulers.

Let C be the entire CPU set, show that EC(partial machine,C) = EC(hs).

Why all the query results from the environment context before shared and private
operations can be shifted just before the next atomic or push/pull operation.

