
Summary:

CertiKOS: An Extensible Architecture for Building Certified
Concurrent OS Kernels

Ronghui Gu, Zhong Shao, Hao Chen, Xiongnan (Newman) Wu, Jieung Kim, Vilhelm
Sjöberg, and David Costanzo; Yale University

Keywords :

■ User concurrency, I/O concurrency and Multicore concurrency
■ MCS locks, Multicore Shared Memory Systems
■ Starvation-freedom, Liveness
■ Formal verification, Certified Concurrent Layers, Coq

Motivation for Verified Concurrent OS Kernel :

■ Concurrent Operating Systems are backbone of all systems including
safety-critical software systems in the world.

■ Any error inside the kernel can lead to bigger disaster.
■ Complete formal verification is the only known way to guarantee that a system is

free of programming errors.[seL4 -- SOSP’09]

Limitations of Prior work :

■ Prior work has formally verified the functional correctness of sequential kernels,
file systems, and device drivers, but none of these systems have addressed the
important issues of concurrency.

■ The seL4 team was the first to verify the functional correctness and security
properties of a high- performance L4-family microkernel, however seL4 does not
support Multicore shared memory concurrency with fine-grained locking.

■ Xu et al. have successfully verified key modules in the µC/OS-II kernel which
supports preemption but only on a single-core machine. They have not verified
any assembly code nor connected their verified C- like source programs to any
certified compiler so there is no end-to-end theorem about the entire kernel.

Why formal verification of Concurrent OS is hard :

■ Concurrent kernels allow interleaved execution of

kernel/user modules across different abstraction layers;

they contain many interdependent components that are difficult to untangle.
■ Checking functional correctness of thread yield/sleep/wakeup primitives or

interrupts to switch control and support synchronization or Multicore concurrency
with fine-grained locking is intractable, and even if it is possible, its cost would far
exceed that of verifying a single-core sequential kernel.

■ Proving liveness i.e. system calls eventually return is very hard as this depends
on the progress of the concurrent primitives.

■ Providing extensibility (kernel plug-in) support requires to encapsulate
interference, otherwise even a small edit could incur huge verification overhead.

Major Goals:

■ Verification should not impose significant overhead on kernel performance.
■ Should be able to prove global properties of user-level processes and virtual

machines built on top of certified kernel.
■ Extensibility support for new kernel Abstractions and Processes, i.e. it must

support transfer of global properties proved at a high abstraction level down to
any lower abstraction level which will also minimize the cost of development and
maintenance.

■ Certified kernel rather than verified kernel(machine-checkable proof).

How CertiKOS Architecture solves the verification problem:

■ kernel as composition of various certified concurrent abstraction layers.
■ The environment context of a kernel K could be other kernel threads on same

CPU or a copy of K running on another CPU due to shared-memory concurrency.
■ Use of environment context at each layer and applying techniques for verifying

sequential programs to verify functional correctness of concurrent programs also.
■ Temporal invariants(e.g. Fair OS Scheduler) over these environment contexts to

prove liveness.

Design Contributions:

■ certified concurrent sequential layers
(L1,M,L2) and a mechanized proof object showing
that the layer implementation M, built on top of the
interface L1 (the underlay), is a contextual
refinement of the desirable interface L2 (the
overlay).

■ Multicore hardware model

● Arbitrary interleavings at the level of assembly instructions.
● Memory accesses are divided into Private(local objects), Synchronized

shared memory accesses (Atomic Objects) with a logical log to
maintaining the entire history of the operations that were performed on the
object during an execution.

■ Hardware scheduler (εhs)
● It specifies a particular interleaving for an execution resulting in a

deterministic machine model

■ Push/Pull Model

● Each CPU maintains local copy of shared memory blocks.
● The pull operation over a particular memory block updates a CPU’s local

copy of that block to be equal to the one in the shared memory, marking
the local block as valid and the shared version as invalid.

● The push operation updates shared version to be equal to the local block,
marking the shared version as valid and the local block as invalid.

● Among each shared memory block and all of its local copies, only one can
be valid at any single moment of machine execution.

■ Partial machine with environment context

● The partial machine model is configured with an active CPU set and it
queries the environment context whenever it reaches a switch point that
attempts to switch to a CPU outside the active set.

● Each environment context takes the current log and returns a list of events
from the context programs (i.e., those outside of Active CPU set).

● The response function simulates the observable behavior of the context
CPUs and imposes some invariants over the context.

● The hardware scheduler is also a part of the environment context.

■ CPU-local machine model
● There is a switch point before each instruction, leading to unnecessary

interleavings (e.g., those between private operations).
● In CPU-local machine model for a CPU i, switch points only appear before

atomic or push/pull operations.
● The switch points before shared or private operations are removed via :

shuffling/delaying and merging.

Limitations :

■ The Certified mC2 kernel is not as comprehensive as real-world kernels eg
Linux.

■ The underlying assembly machine assumes strong sequential consistency for all
atomic instructions, not the x86 TSO consistency and only covers a small part of
the full x86 instruction set.

■ Any code for TLB shootdown is not modeled and hence cannot be verified.
■ Lacks a certified storage system.
■ The CompCertX assembler, Bootloader, PreInit module (which initializes the

CPUs and devices), and ELF loader are unverified and assumed to be correct.

Check your understanding :

■ Standard Mesa-style condition variables do not guarantee starvation-freedom.
How can this be fixed by using a FIFO queue of condition variables.

■ For each environmental context, if A is singleton, the thread modular Machine
behave like sequential machine.

■ How can we guarantee that P is data-race free, by showing that a program P is
safe (never goes wrong) on Machine with local copy of shared memory for all
possible hardware schedulers.

■ Let C be the entire CPU set, show that EC(partial machine,C) = EC(hs).
■ Why all the query results from the environment context before shared and private

operations can be shifted just before the next atomic or push/pull operation.

