
Summary:​

CertiKOS:​ ​An​ ​Extensible​ ​Architecture​ ​for​ ​Building​ ​Certified
Concurrent​ ​OS​ ​Kernels

Ronghui​ ​Gu,​ ​Zhong​ ​Shao,​ ​Hao​ ​Chen,​ ​Xiongnan​ ​(Newman)​ ​Wu,​ ​Jieung​ ​Kim,​ ​Vilhelm
Sjöberg,​ ​and​ ​David​ ​Costanzo;​ ​Yale​ ​University

Keywords​​ ​:

■ User​ ​concurrency,​ ​I/O​ ​concurrency​ ​and​ ​Multicore​ ​concurrency
■ MCS​ ​locks,​ ​Multicore​ ​Shared​ ​Memory​ ​Systems
■ Starvation-freedom,​ ​Liveness
■ Formal​ ​verification,​ ​Certified​ ​Concurrent​ ​Layers,​ ​Coq

Motivation​​ ​​​ ​for​​ ​​​ ​Verified​ ​Concurrent​ ​OS​ ​Kernel​​ ​:

■ Concurrent Operating Systems are backbone of all systems including
safety-critical​ ​software​ ​systems​ ​in​ ​the​ ​world.

■ Any​ ​error​ ​inside​ ​the​ ​kernel​ ​can​ ​lead​ ​to​ ​bigger​ ​disaster.
■ Complete formal verification is the only known way to guarantee that a system is

free​ ​of​ ​programming​ ​errors.[seL4​ ​--​ ​SOSP’09]

Limitations​ ​of​ ​Prior​ ​work​ ​:

■ Prior work has formally verified the functional correctness of sequential kernels,
file systems, and device drivers, but none of these systems have addressed the
important​ ​issues​ ​of​ ​concurrency.

■ The seL4 team was the first to verify the functional correctness and security
properties of a high- performance L4-family microkernel, however seL4 does not
support​ ​Multicore​ ​shared​ ​memory​ ​concurrency​ ​with​ ​fine-grained​ ​locking.

■ Xu et al. have successfully verified key modules in the µC/OS-II kernel which
supports preemption but only on a single-core machine. They have not verified
any assembly code nor connected their verified C- like source programs to any
certified​ ​compiler​ ​so​ ​there​ ​is​ ​no​ ​end-to-end​ ​theorem​ ​about​ ​the​ ​entire​ ​kernel.

Why​ ​​formal​ ​verification​ ​of​ ​Concurrent​ ​OS​ ​is​ ​hard​ ​:

■ Concurrent kernels allow interleaved execution of

kernel/user modules across different abstraction layers;

they​ ​contain​ ​many​ ​interdependent​ ​components​ ​that​ ​are​ ​difficult​ ​to​ ​untangle.
■ Checking functional correctness of thread yield/sleep/wakeup primitives or

interrupts to switch control and support synchronization or Multicore concurrency
with fine-grained locking is intractable, and even if it is possible, its cost would far
exceed​ ​that​ ​of​ ​verifying​ ​a​ ​single-core​ ​sequential​ ​kernel.

■ Proving liveness i.e. system calls eventually return is very hard as this depends
on​ ​the​ ​progress​ ​of​ ​the​ ​concurrent​ ​primitives.

■ Providing extensibility (kernel plug-in) support requires to encapsulate
interference,​ ​otherwise​ ​even​ ​a​ ​small​ ​edit​ ​could​ ​incur​ ​huge​ ​verification​ ​overhead.

Major​ ​Goals:

■ Verification​ ​should​ ​not​ ​impose​ ​significant​ ​overhead​ ​on​ ​kernel​ ​performance.
■ Should be able to prove global properties of user-level processes and virtual

machines​ ​built​ ​on​ ​top​ ​of​ ​certified​ ​kernel.
■ Extensibility support for new kernel Abstractions and Processes, i.e. it must

support transfer of global properties proved at a high abstraction level down to
any lower abstraction level which will also minimize the cost of development and
maintenance.

■ Certified​ ​kernel​ ​rather​ ​than​ ​verified​ ​kernel(machine-checkable​ ​proof).

How​ ​CertiKOS​ ​Architecture​ ​solves​ ​the​ ​verification​ ​problem:

■ kernel​ ​as​ ​composition​ ​of​ ​various​ ​certified​ ​concurrent​ ​abstraction​ ​layers.
■ The environment context of a kernel K could be other kernel threads on same

CPU​ ​or​ ​a​ ​copy​ ​of​ ​K​ ​running​ ​on​ ​another​ ​CPU​ ​due​ ​to​ ​shared-memory​ ​concurrency.
■ Use of environment context at each layer and applying techniques for verifying

sequential​ ​programs​ ​to​ ​verify​ ​functional​ ​correctness​ ​of​ ​concurrent​ ​programs​ ​also.
■ Temporal invariants(e.g. Fair OS Scheduler) over these environment contexts to

prove​ ​liveness.

Design​ ​Contributions:

■ certified​ ​concurrent​ ​sequential​ ​layers
(L1,M,L2) and a mechanized proof object showing
that the layer implementation M, built on top of the
interface L1 (the underlay), is a contextual
refinement of the desirable interface L2 (the
overlay).

■ Multicore​ ​hardware​ ​model

● Arbitrary​ ​interleavings​ ​at​ ​the​ ​level​ ​of​ ​assembly​ ​instructions.
● Memory accesses are divided into Private(​local objects), Synchronized

shared memory accesses (Atomic Objects) with a logical log to
maintaining the entire history of the operations that were performed on the
object​ ​during​ ​an​ ​execution.

■ Hardware​ ​scheduler​ ​(εhs)
● It specifies a particular interleaving for an execution resulting in a

deterministic​ ​machine​ ​model

■ Push/Pull​ ​Model

● Each​ ​CPU​ ​maintains​ ​local​ ​copy​ ​of​ ​shared​ ​memory​ ​blocks.
● The pull operation over a particular memory block updates a CPU’s local

copy of that block to be equal to the one in the shared memory, marking
the​ ​local​ ​block​ ​as​ ​valid​ ​and​ ​the​ ​shared​ ​version​ ​as​ ​invalid.

● The push operation updates shared version to be equal to the local block,
marking​ ​the​ ​shared​ ​version​ ​as​ ​valid​ ​and​ ​the​ ​local​ ​block​ ​as​ ​invalid.

● Among each shared memory block and all of its local copies, only one can
be​ ​valid​ ​at​ ​any​ ​single​ ​moment​ ​of​ ​machine​ ​execution.

■ Partial​ ​machine​ ​with​ ​environment​ ​context

● The partial machine model is configured with an active CPU set and it
queries the environment context whenever it reaches a switch point that
attempts​ ​to​ ​switch​ ​to​ ​a​ ​CPU​ ​outside​ ​the​ ​active​ ​set.

● Each environment context takes the current log and returns a list of events
from​ ​the​ ​context​ ​programs​ ​(i.e.,​ ​those​ ​outside​ ​of​ ​Active​ ​CPU​ ​set).

● The response function simulates the observable behavior of the context
CPUs​ ​and​ ​imposes​ ​some​ ​invariants​ ​over​ ​the​ ​context.

● The​ ​hardware​ ​scheduler​ ​is​ ​also​ ​a​ ​part​ ​of​ ​the​ ​environment​ ​context.

■ CPU-local​ ​machine​ ​model
● There is a switch point before each instruction, leading to unnecessary

interleavings​ ​(e.g.,​ ​those​ ​between​ ​private​ ​operations).
● In CPU-local machine model for a CPU i, switch points only appear before

atomic​ ​or​ ​push/pull​ ​operations.
● The switch points before shared or private operations are removed via :

shuffling/delaying​ ​and​ ​merging.

Limitations​ ​:

■ The Certified mC2 kernel is not as comprehensive as real-world kernels eg
Linux.

■ The underlying assembly machine assumes strong sequential consistency for all
atomic instructions, not the x86 TSO consistency and only covers a small part of
the​ ​full​ ​x86​ ​instruction​ ​set.

■ Any​ ​code​ ​for​ ​TLB​ ​shootdown​ ​is​ ​not​ ​modeled​ ​and​ ​hence​ ​cannot​ ​be​ ​verified.
■ Lacks​ ​a​ ​certified​ ​storage​ ​system.
■ The CompCertX assembler, Bootloader, PreInit module (which initializes the

CPUs​ ​and​ ​devices),​ ​and​ ​ELF​ ​loader​ ​are​ ​unverified​ ​and​ ​assumed​ ​to​ ​be​ ​correct.

Check​​ ​​​ ​your​​ ​​​ ​understanding​​ ​:

■ Standard Mesa-style condition variables do not guarantee starvation-freedom.
How​ ​can​ ​this​ ​be​ ​fixed​ ​by​ ​using​ ​a​ ​FIFO​ ​queue​ ​of​ ​condition​ ​variables.

■ For each environmental context, if A is singleton, the thread modular Machine
behave​ ​like​ ​sequential​ ​machine.

■ How can we guarantee that P is data-race free, by showing that a program P is
safe (never goes wrong) on Machine with local copy of shared memory for all
possible​ ​hardware​ ​schedulers.

■ Let​ ​C​ ​be​ ​the​ ​entire​ ​CPU​ ​set,​ ​show​ ​that​ ​​ ​EC(partial​ ​machine,C)​ ​=​ ​EC(hs).
■ Why all the query results from the environment context before shared and private

operations​ ​can​ ​be​ ​shifted​ ​just​ ​before​ ​the​ ​next​ ​atomic​ ​or​ ​push/pull​ ​operation.

