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Motivation  for  Verified Concurrent OS Kernel : 

■ Concurrent Operating Systems are backbone of all systems including         
safety-critical software systems in the world.  

■ Any error inside the kernel can lead to bigger disaster. 
■ Complete formal verification is the only known way to guarantee that a system is              

free of programming errors.[seL4 -- SOSP’09] 
 
Limitations of Prior work : 

■ Prior work has formally verified the functional correctness of sequential kernels,           
file systems, and device drivers, but none of these systems have addressed the             
important issues of concurrency. 

■ The seL4 team was the first to verify the functional correctness and security             
properties of a high- performance L4-family microkernel, however seL4 does not           
support Multicore shared memory concurrency with fine-grained locking. 

■ Xu et al. have successfully verified key modules in the µC/OS-II kernel which             
supports preemption but only on a single-core machine. They have not verified            
any assembly code nor connected their verified C- like source programs to any             
certified compiler so there is no end-to-end theorem about the entire kernel.  

 
Why formal verification of Concurrent OS is hard : 

 
■ Concurrent kernels allow interleaved execution of      

kernel/user modules across different abstraction layers;      



they contain many interdependent components that are difficult to untangle. 
■ Checking functional correctness of thread yield/sleep/wakeup primitives or        

interrupts to switch control and support synchronization or Multicore concurrency          
with fine-grained locking is intractable, and even if it is possible, its cost would far               
exceed that of verifying a single-core sequential kernel. 

■ Proving liveness i.e. system calls eventually return is very hard as this depends             
on the progress of the concurrent primitives. 

■ Providing extensibility (kernel plug-in) support requires to encapsulate        
interference, otherwise even a small edit could incur huge verification overhead. 

 
Major Goals: 

■ Verification should not impose significant overhead on kernel performance. 
■ Should be able to prove global properties of user-level processes and virtual            

machines built on top of certified kernel. 
■ Extensibility support for new kernel Abstractions and Processes, i.e. it must           

support transfer of global properties proved at a high abstraction level down to             
any lower abstraction level which will also minimize the cost of development and             
maintenance.  

■ Certified kernel rather than verified kernel(machine-checkable proof). 
 
How CertiKOS Architecture solves the verification problem: 

■ kernel as composition of various certified concurrent abstraction layers. 
■ The environment context of a kernel K could be other kernel threads on same              

CPU or a copy of K running on another CPU due to shared-memory concurrency. 
■ Use of environment context at each layer and applying techniques for verifying            

sequential programs to verify functional correctness of concurrent programs also. 
■ Temporal invariants(e.g. Fair OS Scheduler) over these environment contexts to          

prove liveness. 
 
 
Design Contributions: 

■ certified concurrent sequential layers 
(L1,M,L2) and a mechanized proof object showing       
that the layer implementation M, built on top of the          
interface L1 (the underlay), is a contextual       
refinement of the desirable interface L2 (the       
overlay). 



 
■ Multicore hardware model 

● Arbitrary interleavings at the level of assembly instructions. 
● Memory accesses are divided into Private(local objects), Synchronized        

shared memory accesses (Atomic Objects) with a logical log to          
maintaining the entire history of the operations that were performed on the            
object during an execution.  

■ Hardware scheduler (εhs)  
● It specifies a particular interleaving for an execution resulting in a           

deterministic machine model 

 
■ Push/Pull Model 

● Each CPU maintains local copy of shared memory blocks.  
● The pull operation over a particular memory block updates a CPU’s local            

copy of that block to be equal to the one in the shared memory, marking               
the local block as valid and the shared version as invalid.  

● The push operation updates shared version to be equal to the local block,             
marking the shared version as valid and the local block as invalid. 

● Among each shared memory block and all of its local copies, only one can              
be valid at any single moment of machine execution. 

 
■ Partial machine with environment context 

● The partial machine model is configured with an active CPU set and it             
queries the environment context whenever it reaches a switch point that           
attempts to switch to a CPU outside the active set. 

● Each environment context takes the current log and returns a list of events             
from the context programs (i.e., those outside of Active CPU set).  

● The response function simulates the observable behavior of the context          
CPUs and imposes some invariants over the context.  

● The hardware scheduler is also a part of the environment context. 
 



■ CPU-local machine model 
● There is a switch point before each instruction, leading to unnecessary           

interleavings (e.g., those between private operations).  
● In CPU-local machine model for a CPU i, switch points only appear before             

atomic or push/pull operations.  
● The switch points before shared or private operations are removed via :            

shuffling/delaying and merging. 
 
Limitations : 

■ The Certified mC2 kernel is not as comprehensive as real-world kernels eg            
Linux. 

■ The underlying assembly machine assumes strong sequential consistency for all          
atomic instructions, not the x86 TSO consistency and only covers a small part of              
the full x86 instruction set. 

■ Any code for TLB shootdown is not modeled and hence cannot be verified. 
■ Lacks a certified storage system. 
■ The CompCertX assembler, Bootloader, PreInit module (which initializes the         

CPUs and devices), and ELF loader are unverified and assumed to be correct. 
 
Check  your  understanding : 

■ Standard Mesa-style condition variables do not guarantee starvation-freedom.        
How can this be fixed by using a FIFO queue of condition variables. 

■ For each environmental context, if A is singleton, the thread modular Machine            
behave like sequential machine. 

■ How can we guarantee that P is data-race free, by showing that a program P is                
safe (never goes wrong) on Machine with local copy of shared memory for all              
possible hardware schedulers.  

■ Let C be the entire CPU set, show that  EC(partial machine,C) = EC(hs). 
■ Why all the query results from the environment context before shared and private             

operations can be shifted just before the next atomic or push/pull operation. 
 


