
Introduction
● At times, user does not trust the host running the application.OS can act malicious and

application need to prevent its data from the privileged code.
● The paper proposed a mechanism which uses secured and trusted hardware for

protecting user-level architecture from privileged system software.

Desirables from SCONE

● Small TCB => less attack surface => easier to protect application
● Low overheads
● Transparent to docker

Secure Containers
Namespace Isolation:

● In containers, processes are launched in different environment isolated by namespaces
● VMs use tighter isolation than the containers
● Containers share the same kernel and isolation is dependent on host kernel’s capbilities.
● VM have fine control over resources while container uses cgroups for limiting, isolating

and accounting of resources.

Intel SGX - Enclave life cycle

● ECREATE -> EADD -> ENIT -> EENTER -> EXIT
● Entering in and out of enclave is costly

Design TradeOffs

External Interface
● The author uses an intermediate design for isolating interface of trusted and untrusted

code.
● Target is to reduce TCB and have less exits from enclave

System Call overhead
● Copying syscall arguments from enclave memory to non-enclave memory
● Entering and exiting out of the enclave

Memory Access Overhead
● MEE encrypts and decrypts data while fetching it from DRAM to cacheline
● Data in cacheline is in plaintext. It is difficult to prove CPU traffic than memory traffic

which is organised.
● When application size is beyond EPC,eviction cost

Architecture

M:N threading
● scheduler schedules m application threads on n OS threads
● No preemption required as application code is trusted by application scheduler and

preemption will complicate the design
● Reduced exits from enclave as scheduler is inside the enclave

Why threads go for exponential backoff?
Assuming past=future, if the thread has waited for 1 seconds and nothing has happened.So, it
will assume that nothing will happen for another 1s and it will wait for 2s.

Asynchronous Syscalls
● Separate syscall threads for executing syscalls
● Checks on the pointers passed by kernel (similar checks are done by kernel for user

pointers)
● IAGO attacks - check kernel do not pass user space pointer (similar checks are done by

kernel for kernel spacer pointers)

Shielding Layers
● Transparently encrypts and decrypts data
● Prevents malicious pointers

Replay Attack The traffic in past is repeated again.SCONE uses identifier to prevent this.

Where keys are stored?

● Key and certificate for network encryption is present in filesystem
● The keys with which filesystem is encrypted is presented in FS protection file in image
● FS protection file is again encrypted with the key but it is not present in the image

● Final key is passed to the container only after it is ensured that container is secured
● The symmetric keys for encryption of console stream are passed at runtime by scone

client.

How image is trusted?

● Image is build in a secure environment by the container owner or trusted party
● Final key is passed to the container only after remote cryptographic attestment of

container with the help of hardware

Ephermal FS

● Implementation by SCONE for a file system present in memory only.
● Each time, container is started again FS rollbacks to initial stage.

Discussion on Section 4
● In redis benchmarks, scone performs poorly due to lack of parallelism
● In Memcached benchmarks, scone performs better due to faster implementation of

network shield
○ Graph have a turn due to livelock like situation
○ With increased input throughput, scheduler takes poor decision and net output

throughput is decreased.
● In NGINX and apache , scone performs poorly than glibc application
● In general, scone async performs better than scone sync

Syscall Benchmarks

● In smaller buffer case
○ Scone async performs better than scone sync due to reduced exits from enclave
○ Number of syscall increase for both native and scone-sync due to increased

system calls and saturates after some time due to kernel-level contention
● In Large buffer cases

○ Difference between scone-async and scone-sync reduced as overheads for
copying buffers from enclave memory to DRAM are the bottleneck.

