
NetBricks:
Taking the V out of NFV

Authors: Aurojit Panda and Sangjin Han, Melvin Walls and Sylvia
Ratnasamy, Scott Shenker (UoC, Berkeley), & Keon Jang (Google)

Presented By: Anmol Mahajan & Sachin Meena

What will we cover

● Network Functions and their virtualization

● Challenges in virtualization

● Methods invented to overcome these challenges

● NetBricks:

○ Design & Implementation

○ Evaluation

Introduction
Background & Motivation

Design
Implementation

Evaluation

What are NFs?

● Networks need more functionality than forwarding packets
● Additional functionality implemented by middleboxes
● Middleboxes

○ Security, firewalls, IDS/IPS, caches, etc
○ Implemented by dedicated hardware

● Functions to replace these hardware devices - Network Functions

What is NFV?

● Replacing dedicated routers (and firewall h/w, etc) with s/w on servers
● Aim: transform network architecture

○ No new hardware needed
● Example: Firewall, checks for packets from known malicious source,

discards accordingly

Why NFV?

● Simplifying deployment, as new functionality only needs new s/w
● Cost reduction due to consolidation of many NFs on single machine
● Cost reduction in h/w setup
● Faster development

Why isn’t NFV popular?

● Pre-reqs of carrier networks
○ Performance: latencies of O(10 s) and throughput of O(10 Gbps)
○ Chaining: each packets needs to be processed by sequence of NFs
○ Efficiency: maximize number of NFs on single machine

● Current tools for building NFs fall short of these requirements

Introduction
Background & Motivation

Design
Implementation

Evaluation

● State of art for NFV is much more primitive than that for programming
● Click - does not provide easily customizable low-level optimizations
● DPDK - fast and optimized I/O only
● NFV developers spend much time in code optimization
● More code tweaks may lead to more bugs

Background

Building NFs

● Tools do not support
○ rapid development (achieved through high level abstractions)
○ high performance (requiring low-level optimizations)

Building NFs

● Click allows NF development by assembling various modules
● I/O is optimized, but developers responsible for other optimizations
● Modules support only limited customization, through parameters
● Developers often need to implement & optimize new modules

Running NFs

● Isolation between NFs is critical
○ as they might be from different vendors (memory isolation)
○ as each must be able to work in parallel (performance isolation)

● Current deployments rely on VMs for isolation
● VMs incur substantial overheads

Running NFs

● NICs are abstracted - multiple NFs can independently access network
● Allows existence of several NFs on one machine
● Allows chaining operations

Penalties

● Comparison between
○ Single process running a dedicated NIC
○ Same functionality on a container
○ Same functionality on a VM

Penalties

● For single NF (processing smallest packets - 64B)
○ Per core throughput decreases by up to

■ 3x when using containers
■ 7x when using VMs

● Chained NFs
○ Containers are up to 7x slower
○ VMs are up to 11x slower

Reason

● During network I/O packets must cross a h/w memory isolation
boundary

● This needs a context switch/syscall, which incurs significant overheads

Introduction
Background & Motivation

Design
Implementation

Evaluation

NetBricks: Novelty

● Instead of providing developers with many complex and non
customizable modules, NetBricks focuses on a core set with well
known semantics and highly optimized implementations

● Allows User Defined Functions for customizations
● Avoid overheads by relying on compile time and runtime checks for

memory isolation in software
● Memory and packet isolation with NO overheads (ZCSI)
● Tradeoff between performance and flexibility

Design

● Programming Abstractions
○ Packet & Bytestream Processing
○ Control Flow
○ State Abstraction
○ Event Scheduling

● Execution environment
○ Isolation
○ Placement & Scheduling

Packet Processing Abstractions

● Netbricks uses its own packet structure
○ Stack of headers
○ Payload
○ Reference to any per packet metadata

● UDFs operating on a packet are provided with the packet structure
● UDFs can access the last parsed header, along payload and associated

metadata

Packet Processing Abstractions
Operation Input Process/Output

Parse Header type and packet structure Parses the payload using header type and
pushes resulting headers onto stack,

removes the header bytes from payload

Deparse - Pops bottom most header back to payload

Transform Packet structure, UDF Modifies header/payload as per UDF

Filter Packet, UDF Allows packets meeting some criteria (as
defined by UDF) to be dropped

Bytestream Processing Abstractions

Operation Input Process/Output

Window Window size, Timeout, sliding
increment, stream UDF

Waits till timeout or window size packets
collected. Operates on available bytes.

Responsible for receiving, reordering and
buffering packets to reconstruct TCP stream.

Packetize Packet structure Given header stack and byte array, converts
data into packets with appropriate headers

attached

Control Flow Abstractions

● Necessary for branching and merging
● Branching is needed for implementing conditionals and multicore

processing
● NFs need to minimize cross core access to avoid synchronization costs
● NetBricks provides partition mechanisms (port, destination address, or

again, UDFs)
● Allows chaining of NFs

Control Flow Abstractions

Operation Input Process/Output

Group By Packet, No. of target groups,
packet based UDF

Branch control flow within NF or across NF
chains. The UDF function returns the ID of

the group that the packet will go to

Shuffle Packet Similar to Group By, except that #target
groups is based on #active cores. Shuffle

outputs are processed on other cores

Merge Packets from different branches A single group of packets

State Abstractions (for data serializability)

● Across cores, cache coherence and synchronization incur excess cost
● NFs are programmed to partition state & minimize cross core access
● NetBricks provides state abstractions that partition data across cores
● Inter-core access have following options:

○ Not allowed
○ Only reads allowed (possibly with certain conditions)
○ Serializable multi write multi read access through synchronization

Scheduled Event Abstractions

● Means to run arbitrary UDFs at given times or periodically
● Helps in implementing, for ex, NFs with monitoring functionality

Runtime Isolation

● Need??
● VM based isolation incurs heavy penalties for simple NFs
● NetBricks uses software isolation instead
● Previous research - safe languages with type checks, and runtimes can

provide memory isolation equivalent to that provided by MMU
● NetBricks uses Rust (type checking) & LLVM (runtime env)

Previous research

Property Implication

Disallow pointer arithmetic No arbitrary pointers to (isolated) memory

References by allocation or function call No arbitrary reference to (isolated) memory

Checking bounds on array access Prevents stray memory access

Disallow access to null objects Prevents applications from using undefined
behavior to access (isolated) memory

Safe and compatible type casts No unwanted memory access

Zero Copy Soft Isolation

● NFV requires that an NF cannot modify a packet once it has been sent
● Packet isolation - usually achieved by copying (performance overhead)
● Unique Types - NO simultaneous access to same data from 2 threads
● Verification at compile time, to avoid runtime overheads
● NetBricks designed so that only single NF has access to packet

NetBricks: Cornerstones

● Provides memory and packet isolation
● Multiple NFs can now share a core

○ Switches between NFs through function calls
○ Function calls (few cycles) vs context switches (1 μs)

● Reduce memory and cache pressure
○ ZCSI - no need to copy packets

Placement and Scheduling

● NetBricks runs several NFs (several parallel directed graphs)
● NetBricks must decide at compile time what core is to be used to run

each NF chain
● NetBricks must make scheduling decisions about which packet to

process next
● Currently using run-to-completion scheduling
● Currently using round robin scheduling for deciding event scheduling

Introduction
Background & Motivation

Design
Implementation

Evaluation

Example:
Decrementing

TTL

Example:
Maglev

● Packet processing and
forwarding part

● Unsynchronized cache

Implementation of Abstractions

● Packet Processing abstractions are lazy.

Eg. parse nodes do not perform computation until a transform, filter, group by.

● Abstractions process batches of packets for high-performance.

Notes

● Operators running Netbricks chain NFs using same language used for
writing NF.

● This provides many optimization opportunities.
● Builds on Rust and uses LLVM as runtime.

Introduction
Background & Motivation

Design
Implementation

Evaluation

Setup

● Testbed of dual-socket servers equipped with Intel Xeon E5-2660 CPUs

● Each with 10 cores

● Intel XL710 QDA2 40Gb NIC

● 2 Virtual Switches-

● OpenVSwitch with DPDK.

● SoftNIC (new virtual switch optimized for NFV use cases)

Overhead for
checking array
bounds

● Due to use of a safe
language.

● Impact of cache
misses

● LPM lookup table

Cost of Isolation: Single NF

● Only 15% increase in
per-packet processing time
between 64B and 1500B for
cases that involve copying

Cost of Isolation: NF
Chains

● Each packet handled by a chain of NF’s

● Netbricks is run under 2
configurations-> single core and
multiple cores.

● Trend for Netbricks in multicore
configuration!!!

I/O becomes more expensive as
more cores access the same NIC.

Effect of
Increasing NF
complexity

As we increase NF
complexity, packet
processing time starts to be
the dominant factor

