
Ingens
Coordinated and Efficient huge page management
Youngjin Kwon, Hangchen Yu, Simon Peter, Christopher J. Rossbach, and Emmett Witchel

Kishalay Raj
Rachit Arora

1

Introduction
Defining the problem:

● Latency
● Memory Bloat
● Unfairness
● Memory savings

Defining the background:
● Increased RAM capacities
● Limited TLB capacity
● Base pages limit TLB reach
● Poor huge page support in S/W

2

State-of-the-art

● Increasing RAM capacities (over terabytes).
○ Challenge: Address translation.

● TLBs cache the virtual-to-physical mappings.
● The TLB capacities haven’t scaled like RAM understandably.
● Result : High performance penalty, TLB misses force page table walks.
● Hardware supports huge pages more than ever.
● Operating System/Hypervisor support for huge pages limited.

○ Hodge-Podge of best-effort algorithms and spot fixes.

3

Ingens

● Ingens : A coordinated, unified approach to huge pages.
● Manages memory contiguity as a first-class resource.
● Tracks utilization and access frequency of pages in memory.

4

Ingens : Impact on real workload problems

● Latency
○ Huge Pages increase tail latency and cause high latency variation.
○ Improves Cloudstone benchmark by 18% , reduces 90th percentile latency by 41%.

● Bloat
○ Process/VM allocated huge page memory is often internally fragmented.
○ For Redis, Linux bloats memory by 69% vs 0.8% with Ingens.

5

Ingens : Impact on real workload problems

● Unfairness
○ Linux : Simple, greedy allocation of huge pages.
○ Causes large, persistent performance differences across processes/VMs.
○ Ingens ensure fairness.

● Performance vs Memory Savings
○ Kernel Same-Page Merging (KSM) and other services reduce memory consumption.
○ These services may also prevent a VM from using huge pages containing shared code.
○ Ingens manages saving 71.3% of the memory saved by Linux/KVM while reduce

performance slowdown from 6.8-19% to 1.5-2.6%.

6

Background
● Virtual Memory Hardware Trends
● OS support for huge pages
● Hypervisor support for huge pages
● Performance improvement from

huge pages

7

Virtual Memory Hardware Trends

● DRAM Growth
○ Increased DRAM sizes imply deeper page tables.
○ Increased latency for page table walks.

■ X86 : 4 level page table => Four memory references per translation.

● Hardware Memory Virtualization
○ Extended (Intel) or Nested (AMD) page tables further aggravate VA translation complexity.
○ Both host and guest OS perform VA-> PA translations for a single request.
○ Each layer of lookup in guest => Multi level translations in host.
○ Maximum lookup cost can go as high as 24 lookups. => Higher latency.

8

Virtual Memory Hardware Trends

● Increased TLB Reach
○ Intel’s new two level TLB design, second level huge table entries have increased.
○ Eg. Haswell : 1024 entries, Skylake : 1536 entries.
○ Increased page size support (2MB vs 4KB) increases TLB reach.
○ Larger pages require contiguity => Risk fragmentation (internal and external).
○ System software must generate, manage and maintain significant memory continuity.

■ Memory contiguity as a first-class resource.

9

Operating System Support for Huge Pages

● Transparent support is vital
○ Only way to extend huge page support to all applications with dynamic memory behaviour.
○ Kernel autonomously can

■ Promote 512 contiguous and aligned base pages to a huge page.
■ Demote a huge page to 512 independent base pages.

○ Ingens builds on Linux running on Intel processors.
■ Best transparent huge page support currently.
■ Only 4KB and 2MB page sizes are dealt. (1 GB pages are too large for most cases).

10

Operating System Support for Huge Pages

● Linux Huge Page Management : Greedy and Aggressive
○ Promotes pages in the page fault handler based on local information.
○ Always tries to allocate a huge page to a process if possible.
○ The approach can work only for processes with uniform memory access patterns.
○ Many applications don’t fit this behaviour and are consequently penalized.
○ Results in an intuition: Contiguity should be explicitly managed.

■ Valuable OS resource.

11

Hypervisor Support for Huge Pages

● Focus : Linux used as both the guest OS and host hypervisor.
● Ingens supports host huge pages mapped from guest physical memory.
● Linux : Unified OS and hypervisor memory management.
● We next explore current huge page problems.

○ Some of these problems only apply to the OS.
○ Similarly some only apply to the hypervisor.

● Ingens : Future Scope of work.
○ Support for OS and hypervisor pair that does not share memory management.

12

Performance Improvement : Huge Pages

● Application speed up recorded with huge page support on linux shows that :
○ There are observable speed ups on enabling huge pages on host as well as guest.
○ Therefore, largest speedup attained when both host and guest use huge pages.

● Therefore huge page support holds a lot of value.
● However, a variety of more challenging workloads and circumstances:

○ Expose the limitations of Linux’s memory management.
○ Motivate the need for better and more principled huge page management.

13

Performance Improvement : Huge Pages

14

Current Huge
Page Problems

● Page fault latency,
synchronous promotion

● Increased memory footprint
● Fragmentation
● Unfair performance
● Memory sharing issues

15

Page Fault Latency

● Process faults on a memory region
○ => Page fault handler allocates physical memory to the page.

● However, Linux is greedy
○ On a page fault on a base page, it tries to upgrade and allocate a huge page if possible.

● This synchronous promotion increases latency because :
○ Linux must zero out a page before returning them to user.
○ Huge pages are 512x larger than base pages (thus, slower to clear).
○ With fragmented memory, contiguous 2MB regions become much harder to find than 4KB.
○ OS must even resort to compacting memory to generate contiguity.

■ Synchronous compaction of memory in page fault handler.
■ Increased average and tail latency.

16

Page Fault Latency

● Free memory fragmentation index (FMFI) :
○ 0 (unfragmented) to 1 (highly fragmented).

● For unfragmented memory (FMFI < 0.1)
○ Page clearing overheads increase page fault latency.
○ 3.6 us for base pages, 378 us (105x slower) for huge pages.

● For fragmented memory (FMFI = 0.9)
○ 8.1 us average latency for base and huge pages. (2.1x 3.6 us)
○ Average latency is lower because 98% allocations are base pages.
○ Why? The memory is too fragmented for huge page allocation.

17

Page Fault Latency

● Synchronous huge page promotion with page faults:
○ Increases average and tail latency.
○ Penalizes time-sensitive applications. Eg. Web services.

● Alternate : Asynchronous huge page promotion.
○ Configured to work at a promotion speed (in MB/s)
○ Not fast enough in practice at 1.6 MB/s.

● Faster asynchronous promotion => BAD IDEA.
○ Unacceptably high CPU utilization for memory scanning and compaction.
○ Aggressive CPU use reduces/cancels any performance benefits of huge pages.

18

Page Fault Latency

19

Increased Memory Footprint

● Application in general may not utilize their allocated huge pages uniformly.
● Linux continues to allocate huge pages irrespective of utilization.
● Leads to several huge pages that are internally fragmented.

○ Huge pages reserve large memory regions.

● Promotion of sparsely allocated memory to huge pages => Bloating!
● Experiments with:

○ Redis : 2 million keys allocated, 70 % freed => 69% bloating over base page only allocation.
○ MongoDB : Sparse allocation in VA space => 23% bloating over base page only allocation.

20

Increased Memory Footprint

● Impossible to predict total memory usage of application in production.
○ Memory usage depends on the huge page use.
○ Huge page use depends on memory fragmentation and allocation pattern.

● Eg. Previous instance of Redis application (1.69x bloating).
○ Base page memory usage of 12.2 GB for the job.
○ An 18 GB provision for huge page supported run (1.5x) over-provisioning would cause

swapping.

● Linux transparent huge page support susceptible to unacceptable bloating.

21

Fragmentation

● Greedy promotion quickly consumes available physical memory contiguity.
● Therefore memory becomes increasingly fragmented.

○ => Precondition for page fault latency, memory bloat. VICIOUS CYCLE!

● Redis application tested with initial FMFI = 0.3.
○ Clients populate the server with 13 GB of key/value pairs
○ With huge pages, FMFI quickly rises to 1 and Linux resorts to memory compaction.

22

Fragmentation

23

FreeBSD Huge Page Support

● Reserves contiguous 2MB memory but does not promote immediately.
○ Monitors page utilization while only allocating base pages on page faults.
○ Promotes a reserved region to huge page when the 2MB region in completely utilized.

● FreeBSD supports huge pages for file-cached pages.
● X86 maintains access/dirty bits for the entire huge page.

○ Eviction or swapping of huge page => Increased I/O traffic.

● FreeBSD is conservative about writable huge pages. Marks them read only.
● On a write, huge page demoted to base pages.
● Promoted again only if all base pages are modified.
● Conservative, Asynchronous approach limits speedups.

24

FreeBSD Huge Page Support

25

Unfair Performance

● Unfair huge page allocation :
○ => Unequal speedups.
○ => Unfair performance differences.

● Aggravated by high fragmentation.

● VM0 starts first in system with FMFI 0.85.
● VM1 starts next.
● VM2 and VM3 follow.
● VM0 terminates and frees its memory.
● Clearly, Linux allocates all new huge

pages to VM3.
● VM2 24% slower than VM3 as a result.

26

Memory Sharing vs Performance

● Sharing identical memory/code reduces guest VM memory footprint.
● KVM hypervisor : Identical page sharing supported with base pages only.
● If a huge page contains shareable base page, KVM demotes it.
● Clearly KVM penalizes performance to save memory.

Alternate Policy : Huge Page Sharing
● Base pages can be shared only with other base pages (no huge pages).
● Huge pages can be shared with other huge pages.
● Prioritizes performance over memory footprint.

Clearly, performance vs memory tradeoff is a common theme in systems. 27

Memory Sharing vs Performance

28

Design of
Ingens

Goals of the design:

● Reduce page fault latency
● Reduce memory bloating
● Fair huge page allocation

Basic primitives:

● Utilization tracking
● Access frequency tracking
● Contiguity monitoring

29

Monitoring Space and Time

● Util bitvector :
○ The util bitvector records which base pages are used within each huge-page region
○ The page fault handler updates the util bitvector

● Access bitvector :
○ The access bitvector records the recent access history of a process to its pages
○ Ingens computes the exponential moving average (EMA):

● Ft = a(weight(util bitvector)) + (1-a)Ft-1
● a = 0.4 for the experiments

○ Experimental verification of frequency information, using the access bit

30

Fast page faults

● Ingens decouples promotion decisions from huge page allocation
● The page fault handler decides when to promote a huge page and signals

a background thread (called Promote-kth) to do the promotion (and
allocation if necessary) asynchronously

● Promote-kth compacts memory if necessary and promotes the pages
identified by the page fault handler

31

Mitigating memory bloat

● Ingens manages memory contiguity as a resource
● It allocates only base pages in the page fault handler and tracks base

page allocations in the util bitvector
● If a huge page region accumulates enough base pages, it wakes up

promote-Kth to promote the base pages to a huge page
● The utilization threshold gives an upper bound on memory bloat
● Similar mechanism for utilization based demotion

32

Proactive compaction and page sharing

● Ingens monitors the fragmentation state of memory
● Proactively compacts memory to reduce the latency of large allocations
● Compaction -> TLB invalidations
● Don’t move frequently accessed pages

○ Minimize impact of TLB invalidations

● Ingens denies sharing if that huge page is frequently accessed, otherwise
it allows the huge page to be demoted for sharing

33

Memory contiguity management

● Fair allocation of memory contiguity across processes
● Share priority for every process
● Ingens imposes a penalty for idle memory
● Per page memory promotion metric:

○

● Scan Kth profiles idle fraction of huge pages for fair promotion

34

Fair promotion

● Fairness is achieved when all processes have a priority proportional share
of the available contiguity

● Mathematically this is achieved by minimizing theta
○

● In practice, an approximate minimization suffices

35

Implementation ● Huge page promotions
● Access frequency tracking
● Limitations

36

Huge page promotion

● Promote kth runs as a background kernel thread
● Promote kth maintains two priority lists:

○ High : Promotion requests from page fault handler
○ Low : Promotion requests filled as Promote kth scans memory

● Virtual memory can grow, shrink or be merged
● Promote-kth compares the promotion metric of each application and

selects the process with the highest deviation from a fair state
● Remove seemingly adversarial applications

37

Access frequency tracking

● Scan kth uses the Linux access bit tracking framework to find idle memory
● Default time period for performing the scan is of 2 seconds
● Clearing access bit -> TLB invalidation
● To ameliorate this:

○ Frequency aware profiling and sampling
○ Not frequently accessed : scan Kth clears the access bit
○ Otherwise it clears it with 20% probability
○ Experimental validation for this strategy

38

Limitations

● Linux does not support huge pages for page cache pages
○ Makes sense to extend Ingens to manage them

● Hardware support for finer-grain tracking of access and dirty bits for huge
pages would greatly benefit Ingens

● All measurements are within a single NUMA domain
○ Huge pages may lead to memory request imbalance.
○ Further work needed to balance huge pages among NUMA domains and split huge pages

if false sharing is detected or if they become too hot

39

Evaluation
● Page fault latency evaluation
● Memory bloating evaluation
● Ingens overhead
● Fair huge page promotion
● Trade off of memory saving

and performance

40

Page fault latency evaluation

● Fragmented memory
● Cloudstone workload (latency sensitive)

○ 85% read, 10% login, 5% write workloads
● Ingens reduces:

○ Average latency up to 29.2%
○ Tail latency up to 41.4%

41

Page fault latency evaluation

● Fragmented memory
● Cloudstone workload (latency sensitive)

○ 85% read, 10% login, 5% write workloads
● Ingens reduces:

○ Average latency up to 29.2%
○ Tail latency up to 41.4%

42

Memory bloating evaluation

● Redis
○ Delete 70% objects after populating 8KB

objects
● Mongo DB

○ 15 million GET requests for 1KB object
with YCSB

● Bloating makes memory consumption
unpredictable. Can’t avoid swapping.

Physical memory consumption:

43

Memory bloating experiment

44

Ingens overhead is small

● Overhead for memory intensive applications:

● Overhead for non-memory intensive applications:

45

Fair huge page promotion

● Ingens promotes huge pages based on the
fairness objective defined

● Fair distribution of huge pages translates
to fair end-to-end execution time as well

● All applications finish at the same time

46

Trade off of memory saving and performance

● Three different OS configurations:
○ KVM with aggressive page sharing
○ KVM where pages of same type are shared
○ Ingens

● Infrequently used huge pages are demoted
for sharing

● Ratio of huge pages to the total pages
remains high in Ingens due to it’s access
frequency based approach

47

Conclusion

● Hardware vendors are betting
big on huge pages

● Ingens provides coordinated,
transparent huge page support

● Ingens reduces tail latency and
bloat while improving fairness
and performance

48

