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Motivation
● Emphasis on CPU performance and software stack in cloud environments

○ End of Dennard scaling.
○ High speed I/O devices.

● Limitations of generality of commodity operating systems
○ Fixed interface and implementation.

● Techniques in response
○ Hardware virtualization.
○ Kernel bypass techniques.
○ Library operating systems.

● Engineering effort and narrow applicability.



Library OS
● Operating systems define the interface between application and hardware 

resources.
● They hide information about machine resources behind high level 

abstractions such as processes, files, address spaces and interprocess 
communication.

● Certain architectures leave the management of physical resources to 
applications by exporting hardware resources to library operating systems 
through low-level interfaces.



Exokernel



Unikernel



Objectives
● Performance specialization

○ Allow applications to specialize the system at every level.
○ Provide an event driven environment with minimal abstraction over hardware.
○ Low overhead component model to be used throughout performance sensitive paths.

● Broad Applicability
○ Designed to support existing libraries and complex runtimes.
○ Heterogeneous distributed architecture called MultiLibOS model.
○ EbbRT library OS and general purpose OS present.

●  Ease of development
○ Exploits modern language techniques to simplify the task of writing software.
○ Ebb model encapsulates existing system components.
○ Difficulty to port applications reduced through function offloading.



System Design
● Heterogeneous distributed structure
● Modular system structure
● Non-preemptive event driven execution model



Heterogeneous distributed structure
● Cloud environment, single application can be deployed across several 

machines.
● Deployed across a heterogeneous mix of specialized library OS and general 

purpose OS.
○ Light weight bootable runtime - native runtime.
○ User level library - hosted runtime.

● Native runtime sets up a single address space, basic system functionality (eg. 
timers, networking, memory allocation) and invokes an application entry point 
while running at highest privilege level.





Modular system structure
● Comprised of objects called Elastic Building Blocks.
● Can modify or extend software stack to provide high degree of customization.
● Distributed, multi-core fragmented objects.
● Namespace of Ebbs is shared across both the hosted and native runtimes.



Objects in distributed environment
● Shared objects
● Replicated objects
● Fragmented objects



Adaptable replicated objects
● Replicas enhance availability and reliability in distributed environments.
● Replicas need to be maintained consistent.
● Tradeoff between consistency and performance.
● Consistency contract must be implemented without jeopardizing performance.
● Replica

○ Encapsulates local copy and provides interface to access the object.

● Access object
○ Wrapper that controls accesses to replica.

● Consistency manager
○ Maintains consistency.

● Examples: counter, distributed editor.





Fragmented objects
● A fragmented object (FO) can be viewed at two different levels of abstraction

○ Client’s view (external/abstract).
○ Designer’s view (internal/concrete).

● For clients, FO is a single shared object.
● For designers, FO is composed of

○ Set of elementary objects, fragments.
○ Client interface exported through public interface.
○ Interface between fragments, group interface.
○ Lower level shared FOs used for communication, connective objects.









Execution model
● Non-preemptive and event-driven.
● Event loop per core

○ Dispatches external and software generated events to registered handlers.

● Hosted library provides analogous environment through the use of poll or 
select.

● Cloud applications driven by external requests in general
○ Event driven programming a natural choice.

● Cooperative threading model provided as well
○ Blocking semantics and concurrency model similar to Go.



Event driven execution



Implementation
● Software system overview
● Events
● Elastic Building Blocks
● Memory management
● Lambdas and futures
● Network stack





Software system overview
● Written predominantly in C++14.
● Native library is packaged with GNU toolchain and libc modified to support 

x86_64-ebbrt build target.
● Application when compiled with toolchain produces a bootable ELF binary 

linked with library OS.
● POSIX incompatible. Too restrictive and unnecessary.
● Provides necessary functionality for events to execute and Ebbs to be 

constructed and used. 



Events
● Both native and hosted systems provide event driven execution

○ Uses Boost ASIO library to interface with system APIs.
○ Event driven API implemented directly on hardware.

● Drivers allocate an interrupt from Event manager and bind a handler.
● Execution begins at the top frame of a per-core stack.
● Exception handler checks for event handler bound to interrupt and invokes.
● Events typically generated by hardware interrupts.



Synthetic Events
● Can invoke synthetic events on any core in the system.
● Spawn method

○ Receives an event handler that is later invoked.
○ Executed only once.

● IdleHandler
○ Handler for recurring events.



Event Manager
● Priority Order

○ Handles any pending interrupts.
○ Dispatches a single synthetic event.
○ Invokes all idle handlers.
○ Enables interrupts and halts.

● Adaptive polling implementation
○ Device programmed to fire interrupt when packets are received.
○ Process each packet to completion.
○ Rate beyond a threshold install IdleHandlers instead to poll the device.



Limitations
● Cooperative threading model.
● Long running threads

○ Preemptive scheduler.
○ Dedicated processors.
○ Cloud applications IO driven.



Elastic Building Blocks
● Nearly all software in EbbRT is written as elastic building blocks.
● Every instance is identified by a system wide unique EbbId.
● EbbId provides an offset into a virtual memory region backed with distinct 

per-core pages which holds a pointer to the per-core representative.
● When function is called and the pointer is null a type specific handler is 

invoked which either returns a reference to a representative or throws a 
language level exception.

● Fault handler will construct and store the representative so future invocations 
take the fast path.

● Hosted implementation uses per-core hash tables.



● EbbRT provides core Ebbs that support distributed data storage and 
messaging services.

● Fast path cost of a Ebb invocation is one predictable branch and one 
unconditional branch more than a normal C++ object dereference.

● Avoided using interface definition languages.



Memory Management
● Similar to that of Linux Kernel.
● Page Allocator

○ Buddy allocator per NUMA node.

● Slab Allocator Ebbs
○ Allocate fixed sized objects.
○ Per core, per NUMA node representatives to store                                                      object 

free lists and partial pages.
○ Design based on Linux Kernel’s SLQB allocator.

● General Purpose Allocator
○ Slab Allocator.
○ VMem Allocator.



Buddy Allocator



Buddy Allocator
● Generally implemented using binary trees.
● Very little external fragmentation.
● Low compaction overhead
● Problem - internal fragmentation due to memory wastage



Slab Allocator
● Each page - only to a particular type of 

object.
● Free lists maintained for each of the 

partial slabs.
● Advantages : 

○ No external fragmentation
○ Data structures of some objects can be difficult 

to move than other objects. So paging policies 
can be changed to include for this fact.



● Any ebb can be modified/replaced without impacting others.
● Compiler optimization, function inlining.
● Can perform zero copy IO, when memory is identity mapped rather than 

allocating memory for DMA.
● Lack of preemption

○ Allocations served from per core cache without synchronization.

● Partition of virtual memory.
● VMem Allocator allows implementation of arbitrary paging policies. 



Advantages

● Scalability: per core representatives.
● Lack of preemption: no need for synchronization.
● Library OS design: tighter collaboration between system and application 

components.
○ Directly manage virtual memory
○ Achieve zero copy interactions with device.



Event driven programming limitations
● Obfuscates control flow of application

○ Example: asynchronous calls, construct continuations - control mechanisms to save and 
restore state across invocations.

○ Lambdas capture local state that can be referred when they are invoked.

● Complex error handling
○ Exceptions in c++.
○ Stack unwound to most recent try catch block.
○ One logical flow of control split across multiple stacks.
○ Exceptions must be handled at every event boundary.
○ Monadic futures used instead.



● Futures - datatype for asynchronously produced values
● A future cannot be directly operated on, instead lambda can be applied using 

THEN method.
● Lambda is invoked once the future is fulfilled.



● THEN function returns Future representing value returned by applied function.
● This allows other software components to chain further functions to be 

invoked on completion.
● Any exception will flow to the first function which attempts to catch the 

exception - behaviour similar to synchronous code.
● C++ futures have no THEN function, block then using get function.
● Futures - interface definitions, lambdas - manual continuation construction



Network Stack
● Did not port but implemented the network stack anew.
● Features: IPv4, TCP/IP, DHCP functionality

○ Provided event driven interface to applications.
○ Minimized multi-core synchronization.
○ Enabled pervasive zero copy.

● Does not provide standard BSD socket interface.
● Enables tighter integration with application to manage resources.



● IOBuf primitive to support zero-copy software.
● Manages ownership of a region of memory as well as view of a part of it.
● Applications do not invoke read on a buffer.
● Rather they install a handler which is passed an IOBuf.
● Network stack does not provide buffering but will invoke the application as 

long as data arrives. 



● Most systems have fixed size buffers to pace connections.
● Application can manage its own buffering.
● UDP drop datagrams.
● TCP set window size to prevent further sends.
● Check if outgoing data fits within the advertised window.

○ If yes send otherwise buffer.

● Allow applications whether to delay sending to aggregate multiple sends.
○ Other Systems - Nagle’s algorithm - poor latency.
○ EbbRT - applications can tune behaviour of it’s connections runtime

● Default behaviours provided.



● Challenge - Synchronizing accesses to connection state.
● Connection state is stored in a RCU hash table.

○ No atomic operations required.

● Connection state manipulated only by a single core, chosen by application.
● Common case network operations require no synchronization.
● Network stack specialization

○ Buffering and queuing important factor in performance.
○ EbbRT gives more control to the applications
○ Zero copy optimization illustrates the value of having physical memory identity map, unpaged 

and within single address space.



Evaluation
● Affirm that this fulfills all the three objectives discussed.

○ Supports High-performance specialization
○ Provides support for broad set of applications
○ Simplifies development of application-specific systems software

● Micro-benchmarks to quantify base overheads of primitives.
● Macro-benchmarks that exercise EbbRT in the context of real applications.



Microbenchmarks
● Evaluates memory allocator and overheads of Ebb mechanism.
● Evaluates latencies and throughput of network stack and exercise several of 

system features discussed including idle event processing, lambdas and 
IOBuf mechanism.



Memory Allocation
● Ported Threadtest from Hoard benchmark suit.
● Compared performance with glibc 2.2.5 and jemalloc 4.2.1 allocators.
● Allocator scales competitively with production allocators.
● Scalability due to locality induced by the per-core Ebb reps of mem allocator 

and lack of preemption which removes synchronization.



Memory Allocator
● Each thread T allocates                                                                      and frees 

N * 8 / T byte objects. 



Network Stack
● Ported NetPIPE and iPerf benchmarks.
● NetPIPE

○ Client sends a fixed size message to server which is echoed back after receiving it completely.
○ Illustrates latency of sending and receiving over TCP.

● iPerf
○ Client opens a TCP stream and sends fixed sized messages which server receives and 

discards.
○ Confirms - run-to-completion network stack does not preclude high throughput applications.

● EbbRT servers - 24.53 microsec, 64 B msg - 4Gb goodput, 100 kB
● Linux VMs - 34.27 microsec, 64 B mgs - 4GB goodput, 200 kB
● EbbRT short path achieves a 40% improvement in latency.
● This illustrates the benefits of non-preemptive event driven execution model 

and zero copy instruction path.



Network Stack



Memcached
● Distributed memory caching system - caches data and objects in RAM to 

reduce number of times an external data source must be read.
● Used mainly in dynamic web applications to reduce database load.
● In memory key-value store common benchmark in examination and 

optimization of networked systems.
● Significant OS overhead for Memcached
● Re-implemented Memcached instead of porting.
● Supports standard memcached library protocol.
● Key value pairs stored in RCU hash table to alleviate lock contention.



Memcached
● Benchmarking tool - Mutilate
● Place particular load on server and measure response latency.
● Configure to generate load representative of facebook ETC workload.

○ Consists 20-70 B keys and 1-1024 B values.



Represents 99th percent latency



● Linux Kernel perf utility used to gather data - 10 sec duration of a fully-loaded 
single core memcached server run within a VM

● 2.75x speedup for request processing - shorter non-preemptive instruction 
path for processing requests.



Node.js
● In comparison to memcached node.js uses many features like virtual memory 

mapping, file I/O, periodic timers etc.
● To illustrate EbbRT’s support for broad class of software, also reducing 

developers burden required to develop specialized systems.
● Benchmark - V8 Javascript benchmark suite



Score - inversion of running time, 
scaling by the score of a reference 
implementation, geometric mean of 8 
scores

Inefficiency of Linux VM - executes 
more instructions such as VM exits, 
extraneous Kernel functionality like 
scheduling etc.



Node.js Webserver
● WRK benchmark - place moderate load on the webserver.
● EbbRT - 91.1µs mean and 100µs 99th percentile latencies.
● Linux - 103.5µs mean and 120.6µs 99th percentile latencies
● Linux has 13.6% higher mean latency and 20.65% higher 99th percentile 

latencies over EbbRT.



Conclusion
● Library OS uses - portability, security, efficiency
● EbbRT applications achieve high performance through system wide 

specialization rather than one particular technique.
● Long-term goal - ability to be used for a broad range of applications, enabling 

high degree of specialization
● EbbRT framework for constructing specialized systems for cloud applications


