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Abstract

Concurrency is ubiquitous. Concurrent processing improves the speed of execution,

and offers better resource utilization. However, the analysis of concurrent programs is

remarkably more challenging than sequential counterparts. Concurrency renders an

inherently complex program structure and unintuitive control flow. The complexity

is further escalated with synchronization primitives used to control access to shared

resources. Moreover, the reachable state graph grows exponentially with an increase

in the concurrent processing elements resulting in the state space explosion problem.

Relaxed memory models allow out-of-order execution of program instructions that fur-

ther ravel the program structure and significantly expand the reachable state graph.

As a result, the challenge in analyzing concurrent programs becomes more acute

under relaxed memory concurrency. Consequently, it is hard to develop concurrent

programs that efficiently utilize the permitted ordering relaxations, and equally hard

to determine the feasible program outcomes under relaxed memory concurrency. Both

the problems may become exacting even for expert programmers.

This work proposes techniques for the ease of development of efficient programs that

produce expected outcomes on relaxed memory models. The techniques focus on
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verification efficiency, targeting legacy and developed programs, and developer pro-

ductivity and runtime efficiency, targeting programs under development.

Stateless model checkers mitigate the state space explosion problem by exploring a

reduced state graph comprising representative program executions from each equiva-

lence class; where, an equivalence class is a set of equivalent executions that is formed

based on an equivalence relation. This work proposes a novel equivalence relation

on the program executions called view-equivalence that is at least as coarse as any

existing equivalence relation. Consequently, view-equivalence induces the smallest

set of equivalence classes, positively reducing the analysis effort. This work also pro-

poses a stateless model checker called ViEqui, which partitions program executions

on the proposed view-equivalence relation. The fewer equivalence classes under view-

equivalence help ViEqui achieve faster analysis and better scalability in comparison

to the existing stateless model checkers on finer equivalence relations.

As the second contribution, this work explores stateless model checking under relaxed

memory consistency specifications or memory models. Various program outcomes fea-

sible under the memory model associated with languages (such as C/C++) may never

manifest on underlying architectures, being disallowed by the architecture’s stronger

implicit ordering. Existing model checking techniques operate under the memory

consistency specification of a language or of an architecture. This work proposes

a stateless model checker called MoCA that analyzes programs with C/C++ memory

model under a class of architecture memory models called multi-copy atomics. MoCA

performs a precise stateless model checking for program outcomes valid under the

C/C++ specification and feasible under multi-copy atomicity. The precise analysis of

vi



MoCA reduces the cognitive load on developers of sorting the feasible from infeasi-

ble outcomes while also reducing the model checking effort by restricting the set of

outcomes to analyze.

The C/C++ language is known to have intricate memory consistency semantics. The

work with MoCA uncovers the complexity of the semantics that a C/C++ developer is

exposed to. With a focus on reducing development effort, the final element of this

study proposes the first fence synthesis technique for C/C++ memory model. The

technique takes a buggy C/C++ program with a correctness specification and presents

an automated fix of the program with additional synchronization on concurrent ele-

ments through fences. This work proposes a technique called FenSying that fixes

the input program with minimal necessary synchronization overhead.

In summary, this work proposes analysis techniques for developing correct and effi-

cient concurrent programs for relaxed memory models. The focus of this work is on

verification efficiency (through ViEqui and MoCA), developer productivity (through

MoCA and FenSying), and runtime efficiency (through FenSying). Each technique is

accompanied by an effective tool support.
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सार

समवर्तीता सर्वव्यापी है. समवर्ती प्रसंस्करण से िनष्पादन की गित में सुधार होता है, और बेहतर

संसाधन उपयोग प्रदान करता है। हालाँिक, समवर्ती कार्यक्रमों का िवश्लेषण है अनुक्रिमक समकक्षों

की तुलना में उल्लेखनीय रूप से अिधक चुनौतीपूर्ण। समवर्ती एक प्रस्तुत करता है स्वाभािवक रूप

से जिटल कार्यक्रम संरचना और सहज ज्ञान युक्त िनयंत्रण प्रवाह। जिटलता साझा तक पहुंच को

िनयंत्िरत करने के िलए उपयोग िकए जाने वाले िसंको्रनाइजे़शन प्िरिमिटव के साथ इसे और बढ़ाया गया है

संसाधन। इसके अलावा, पहुंच योग्य स्िथितका गा्रफ वृद्िधके साथ तेजी से बढ़ता है समवर्ती प्रसंस्करण

तत्वों के पिरणामस्वरूप राज्य अंतिरक्ष िवस्फोट की समस्या उत्पन्न होती है।

िरलेक्सड मेमोरी मॉडल पो्रगा्रम िनर्देशों के आउट-ऑफ़-ऑर्डर िनष्पादन की अनुमित देते हैं जो िक

प्रदान करते हैं- वे पो्रगा्रम संरचना को स्पष्ट करते हैं और पहुंच योग्य स्िथित गा्रफ़ का महत्वपूर्ण

रूप से िवस्तार करते हैं। पिरणामस्वरूप, समवर्ती कार्यक्रमों के िवश्लेषण में चुनौती और अिधक गंभीर

हो जाती है आरामदेह स्मृित संगािमित के अंतर्गत। पिरणामस्वरूप, समवर्ती िवकास करना किठन है ऐसे

पो्रगा्रम जो अनुमत आदेश संबंधी छूटों का कुशलतापूर्वक उपयोग करते हैं, और समान रूप से किठन

भी िरलेक्सड स्मृित संगािमित के तहत व्यवहार्य कार्यक्रम पिरणामों को िनर्धािरत करने के िलए। दोनों

िवशेषज्ञ पो्रगा्रमर के िलए भी समस्याएँ िवकट हो सकती हैं।

यह कार्य कुशल कार्यक्रमों के िवकास में आसानी के िलए तकनीकों का प्रस्ताव करता है िरलेक्सड

मेमोरी मॉडल पर अपेक्िषत पिरणाम उत्पन्न करें। तकनीकें सत्यापन दक्षता, िवरासत और िवकिसत
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कार्यक्रमों को लक्िषत करने और डेवलपर समर्थक पर ध्यान केंद्िरत करती हैं। लचीलापनऔर रनटाइम

दक्षता, िवकास के तहत कार्यक्रमों को लक्िषत करना।

स्टेटलेस मॉडल चेकर्स खोज करके राज्य अंतिरक्ष िवस्फोट की समस्या को कम करते हैं प्रत्येक

समतुल्य से प्रितिनिध कार्यक्रम िनष्पादन को शािमल करते हुए कम िकया गया राज्य गा्रफ़- लेंस वर्ग;

जहां, एक समतुल्य वर्ग समतुल्य िनष्पादन का एक सेट है जो बनता है तुल्यता संबंध पर आधािरत. यह

कार्य एक नवीन तुल्यता संबंध का प्रस्ताव करता है पो्रगा्रम िनष्पादन पर दृश्य-समतुल्यता कहा जाता

है जो कम से कम उतना ही मोटा है मौजूदा तुल्यता संबंध. नतीजतन, दृश्य-समतुल्यता सबसे छोटे को

पे्रिरत करती है तुल्यता वर्गों का सेट, िवश्लेषण प्रयास को सकारात्मक रूप से कम करता है। यह कार्य

भी पो्र- ViEqui नामक एक स्टेटलेस मॉडल चेकर बनाता है, जो पो्रगा्रम िनष्पादन को िवभािजत करता

है प्रस्तािवत दृश्य-समतुल्य संबंध पर। िवचाराधीन कम तुल्यता वर्ग- समतुल्यता ViEquiको तुलना में

तेज़ िवश्लेषण और बेहतर स्केलेिबिलटी पा्रप्त करने में मदद करती है बेहतर तुल्यता संबंधों पर मौजूदा

स्टेटलेस मॉडल चेकर्स के िलए।

दूसरे योगदान के रूप में, यह कार्य आराम के तहत स्टेटलेस मॉडल चेिकंग की पड़ताल करता है मेमोरी

संगित िविनर्देश या मेमोरी मॉडल। िविभन्न कार्यक्रम पिरणाम- भाषाओं (जैसे C/C++) से जुडे़ मेमोरी

मॉडल के तहत िसबल कभी नहीं हो सकता अंतर्िनिहतआर्िकटेक्चर पर प्रकट, आर्िकटेक्चर के मजबूत

द्वारा अस्वीकृत िकया जा रहा है अंतर्िनिहत आदेश. मौजूदा मॉडल जाँच तकनीकें मेमोरी के अंतर्गत

काम करती हैं िकसी भाषा या वास्तुकला की स्िथरता िविशष्टता। यह कार्य प्रस्तािवत है MoCA नामक

एक स्टेटलेस मॉडल चेकर जो C/C++ मेमोरी वाले पो्रगा्रमों का िवश्लेषण करता है आर्िकटेक्चर मेमोरी

मॉडल के एक वर्ग के तहत मॉडल िजसे मल्टी-कॉपी एटॉिमक्स कहा जाता है। मोका के अंतर्गत मान्य

कार्यक्रम पिरणामों के िलए एक सटीक स्टेटलेस मॉडल जाँच करता है सी/सी++ िविशष्टता और बहु-

प्रितिलिप परमाणुता के तहत व्यवहार्य। MoCAका सटीक िवश्लेषण व्यावहािरक से व्यवहार्य को छांटने

में डेवलपर्स पर संज्ञानात्मक भार को कम करता है- सेट को सीिमत करके मॉडल जाँच प्रयास को कम

करते हुए पिरणामों को ख़राब करें िवश्लेषण करने के िलए पिरणाम.
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C/C++भाषा को जिटल मेमोरी संगित शब्दार्थ के िलए जाना जाता है। MoCAके साथ काम करने से C/C++

डेवलपर के शब्दार्थ की जिटलता का पता चलता है से अवगत कराया। िवकास प्रयास को कम करने पर

ध्यान देने के साथ, इसका अंितम तत्व अध्ययन C/C++ मेमोरी मॉडल के िलए पहली बाड़ संश्लेषण

तकनीक का प्रस्ताव करता है। तकनीक एक तु्रिटहीन C/C++ पो्रगा्रम को शुद्धता िविनर्देशन के साथ

लेती है और प्रस्तुत करती है समवर्ती तत्वों पर अितिरक्त िसंक्रनाइजे़शन के साथ कार्यक्रम का एक

स्वचािलत समाधान- बाड़ के माध्यम से प्रवेश. यह कार्य फे़ंिसंग नामक एक तकनीक का प्रस्ताव करता

है जो ठीक करती है न्यूनतम आवश्यक िसंको्रनाइजे़शन ओवरहेड के साथ इनपुट पो्रगा्रम।

संक्षेप में, यह कार्य सहीऔर प्रभावोत्पादक िवकासके िलए िवश्लेषण तकनीकों का प्रस्ताव करता है।

िरलेक्सड मेमोरी मॉडलके िलए वैज्ञािनकसमवर्ती कार्यक्रम। इसकाम परफोकस है सत्यापन दक्षता

(ViEqui और MoCA के माध्यम से), डेवलपर उत्पादकता (के माध्यम से)। MoCA और FenSying),

और रनटाइम दक्षता (FenSying के माध्यम से)। प्रत्येक तकनीक है एक प्रभावी उपकरण समर्थन

के साथ।
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Chapter 1

Introduction

Concurrency in computer systems involves the simultaneous execution of multiple

instructions by different processing elements. Concurrency can provide significant

benefits, including improved response time, higher throughput, and better resource

utilization. To facilitate concurrent programming, modern programming languages

have included concurrent processing elements as a first-class programming construct.

However, concurrency can also introduce complex interactions and data dependencies,

which has led to increased interest in analyzing concurrent programs for correctness

and efficiency within the research community.

Concurrent programs may be executed out-of-order, i.e., their execution order may

differ from that specified in the program. The out-of-order execution is done to reduce

the stalls associated with store instructions and to support compiler optimizations.

While this can increase efficiency, it also introduces additional scheduling overhead

and programming complexity. Furthermore, if a program’s correctness depends on

the completion of memory accesses in a specific order, out-of-order execution can lead

to errors.

In order to ensure correct execution of concurrent programs, it may be essential

to impose limitations on the allowable orderings of memory accesses. This is where

memory consistency models become significant, as they define the required constraints

1
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and guarantee that concurrent programs run coherently.

Different architectures and programming languages define their own memory con-

sistency models, which can vary in their strictness and performance characteristics.

The most restrictive model is the sequentially consistent memory model, which only

allows outcomes that are consistent with some sequential order of memory accesses.

While intuitively appealing, this model severely limits the possible execution orders

of instructions.

Most real-world architectures and programming languages support more relaxed mem-

ory consistency models that allow for greater performance but may permit out-of-

order executions. However, these models exacerbate the state space explosion prob-

lem, where the number of reachable program states grows exponentially with the

number of concurrent processing elements and instructions. This problem makes it

difficult to reason about and analyze concurrent programs accurately.

Despite these challenges, significant progress has been made in the last decade in

understanding the semantics of relaxed memory concurrency and developing effective

analysis techniques. However, there are still significant challenges in scaling analysis

techniques, accurately detecting feasible program outcomes, and understanding the

complex prose-style memory model specifications with mathematical rigor.

To address these challenges, this work proposes techniques to facilitate the develop-

ment of efficient concurrent programs that produce expected outcomes under various

memory consistency models. The techniques focus on,

• verification efficiency, targeting legacy and developed programs, and

• developer productivity and runtime efficiency, targeting programs under develop-

ment.

Note.

Verification is establishing the correctness of a concurrent program. The techniques

analyze all possible program outcomes under a memory consistency model, to vali-

date that a specified property is satisfied for every program run. Most verification
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techniques also provide an error trace if the property may be violated. Verification

efficiency focuses on improving the time of analysis, the memory requirement, and

the scalability of the verification process.

One effective verification technique is stateless model checking, which analyzes a re-

duced state graph to tackle the state space explosion. The reduced state graph com-

prises representative program executions from each set of equivalent executions, where

equivalence is established based on an equivalence relation. This work proposes a novel

equivalence relation on program executions called view-equivalence, which is at least as

coarse as any existing equivalence relation. As a result, view-equivalence induces the

smallest number of partitions of equivalent executions, which reduces the number of

representative executions to be analyzed and positively impacts the stateless model

checking effort. This work also proposes a stateless model checker, called ViEqui,

to analyze concurrent programs based on view-equivalence partitioning. ViEqui is

sound, complete, and optimal in its analysis.

Further, this work addresses the challenge of stateless model checking for concurrent

programs under relaxed memory consistency. Different computer architectures have

varying memory consistency models, which dictate the feasible outcomes of a con-

current program. Likewise, programming languages define their memory models for

proper compiler transformations and optimizations. However, outcomes that are per-

mitted by a language’s ordering specification may not manifest on an architecture’s

memory model with a stronger implicit ordering specification. It should be noted

that existing verification techniques are either designed for the memory model of an

architecture or the memory model of a language, which can lead to imprecise analysis

for outcomes that are permitted by the language and producible on the architecture.

In this context, this work proposes a stateless model checker called MoCA that ana-

lyzes C/C++ programs under a class of architecture memory models called multi-copy

atomics. The model checker is designed to be sound and precise for coherent C/C++

outcomes that can manifest on a multi-copy atomic architecture. The precise analysis

reduces the reachable state graph, leading to better verification efficiency. Moreover,
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the precise set of reported bugs reduces the burden of sorting feasible from infeasi-

ble bugs or the burden of fixing a larger set of bugs, thereby increasing developer

productivity.

Note.

Developer productivity focuses on easing the development process by improving the

programming constructs, unambiguous presentation of the memory model specifica-

tions, quick and precise detection of bugs, and automated program synthesis for fixing

bugs or improving performance, among others.

The work with MoCA exposes the complex semantics of the C/C++ memory model

that a developer of the language faces. Among existing memory models, the C/C++

memory model is one of the most relaxed, making it difficult to comprehend the

feasible program outcomes. Even experts of the language struggle to find a balance

between efficient use of the permitted relaxations and ensuring correctness.

To tackle this issue, this work proposes a fence synthesis technique called FenSying

that can automatically correct concurrent buggy programs under the C/C++ memory

model. The technique accomplishes this by using fences to preserve the ordering be-

tween program instructions that are relaxed under the memory model. Furthermore,

the FenSying technique produces the most runtime-efficient version of the corrected

C/C++ program.

Note.

Runtime efficiency deals with improving the performance of a concurrent program in

terms of response time, execution time, and effective resource utilization. Runtime

efficiency also focuses on efficiently exploiting the ordering relaxation permitted by

the language and architecture.

FenSying is sound and optimal, meaning that it fixes a C/C++ buggy program while

adding minimal fence overhead. However, the optimality of fence placement is an
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NP-hard problem. To mitigate the optimality toll, this work proposes a related fence

synthesis technique called fastFenSying. The fastFenSying technique is sound and

significantly outperforms the optimal technique, albeit with a small possibility of

incurring extra fences.

FenSying and fastFenSying are the first fence synthesis techniques developed for

the C/C++ memory model. The techniques perform fence synthesis while maintaining

the portability of the C/C++ program.

Each of the techniques, ViEqui, MoCA, FenSying, and fastFenSying, are accompa-

nied with an implementation.

The ViEqui technique is implemented in C++, over a tool called Nidhugg, for con-

current C/C++ programs. The technique is validated on 16,154 litmus tests of multi-

threaded C programs. ViEqui is compared on the time of analysis and scalability

against state-of-the-art stateless model checkers. Due to the effective reduction in

the state graph and optimal exploration, ViEqui performs verification over 10x faster

in ∼23% of tests and times out in ∼29% lesser tests than the fastest comparative

technique (∼30% and ∼46%, respectively on an average across techniques).

The MoCA technique is implemented in C++, over a tool called rInspect, for concurrent

C/C++ programs using C/C++ memory model semantics. The technique is validated on

diy7 family of litmus tests and small tests from SV-Comp suite. MoCA is compared on

the time of analysis, scalability, and precision against state-of-the-art stateless model

checkers for C/C++ memory model and non-multi-copy atomic memory models. MoCA

alone precisely detects the feasible outcomes for the cross-section of C/C++ and multi-

copy atomic memory models. Further, due to the precision of analysis, MoCA performs

3.3x faster and times out in ∼12.5% lesser tests than the comparative technique.

The FenSying and fastFenSying techniques are implemented in Python for concur-

rent C/C++ programs. The techniques are validated on 1,389 buggy C programs built

on C/C++ memory model semantics. The performance of FenSying and fastFenSying

are compared on the time of analysis and scalability. The near-optimal fastFenSying

technique performs over ∼100x faster in nearly 41% of tests (67x in general) and times
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out in ∼35% lesser tests than the optimal FenSying technique. The fastFenSying

technique produces the optimal result in ∼99.5% of the tests.

Thesis Statement

This work proposes techniques for efficient development of concurrent programs under

various memory consistency models, focusing on verification efficiency for both legacy

and developed programs, as well as developer productivity and runtime efficiency for

programs under development.
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Document structure

The remaining document is structured as follows.

Chapter 2. Preliminaries

The chapter introduces terms and notations used through this document. The chapter

also introduces the operational assumptions.

Chapter 3. Background

This chapter briefly presents background details on concepts and models relevant for

this work. This chapter includes details on concurrency, relevant memory models,

and brief introduction to model checking.

Chapter 4. ViEqui. Stateless Model Checking based on View-equivalence

This chapter discusses the various approaches for efficient model checking including

reducing the number of equivalence partitions. It discusses the existing equivalence

relations, and the difference and applicability of the novel view-equivalence relation

in comparison to the existing relations. The chapter presents the ViEqui stateless

model checker including the proposed analyses, representations and the ViEqui algo-

rithm. It presents proofs of various claims on ViEqui and presents its time and space

complexity. It further presents the implementation details and experimental study

on ViEqui. The chapter also discusses the scope of the work and compares against

similar notions. Finally, based on the scope, the chapter presents future directions.

Chapter 5. MoCA. Dynamic Verification of C11 Concurrency over Multi

Copy Atomics

This chapter discusses the imprecision in the analysis of the existing techniques wrt

feasibility of outcomes on multi-copy atomics (MCA). It presents the formal specifi-

cation of the MCA model. It then introduces a novel restriction of the C/C++ memory

model for MCA, and further restrictions for specific MCA models called TSO and

ARM; including proposed analyses and representations. The chapter presents proofs
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of various claims on MoCA and presents its time complexity. It further presents the

implementation details and experimental study on MoCA. The chapter also discusses

the scope of the work and presents future directions.

Chapter 6. (fast)FenSying. Fence Synthesis for the C11 Memory Model

The chapter discusses the complexity of C/C++ memory model and the need for a fence

synthesis technique. It then discusses the first fence synthesis techniques for the C/C++

memory model, including proposed analyses, and the FenSying and fastFenSying

algorithms. It presents proofs of various claims on FenSying and fastFenSying and

presents their time complexity. It further presents the implementation details and

experimental study on FenSying and fastFenSying. The chapter also discusses the

scope of the work and compares against similar notions. Finally, based on the scope

the chapter presents future directions.

Chapter 7. Conclusion

This chapter summarizes the work presented in this document.



Chapter 2

Preliminary Setup

Concurrent model

Consider an acyclic multi-thread program P on a finite set of program threads. Each

thread of P has deterministic computations and terminating executions. Let T repre-

sent the finite set of threads of P . Each thread in T is represented by a unique whole

number added as a subscript of T, for instance the ith thread of P is represented as

Ti. The threads in P access a fixed set of memory locations called objects. The set

of objects is denoted by O. The input program operates on fixed input values and

the only source of non-determinism is the scheduling non-determinism.

Each thread of P constitutes a sequence of actions from the set A = {write, read,

rmw, fence} representing, respectively, the write operation or store to an object in

O, the read operation or load of an object in O, the read-modify-write operation

that atomically reads an object in O, modifies the object and writes it back, and a

fence memory synchronization action (discussed in §3.2.3).

Memory access actions on objects that are shared between threads are called shared or

global memory accesses and memory access actions on thread local objects are called

local memory accesses. For the purpose of program analysis1conducted in this study,

the local memory accesses are considered invisible actions, while the shared memory

9
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accesses and fences are considered visible actions.

Program events

The runtime instance of a visible action is called an event. An event comprises the

effect of a sequence of local actions followed by a visible action. A thread executes a

sequence of events.

Note that, multiple executions of a program location yield different events. Thus, an

event is uniquely identified in a program execution, however, multiple events may be

associated with the same program location. An event is formally defined as,

Definition 1. (Event)

An event e is a tuple 〈thr(e), idx(e) act(e), obj(e), ord(e), loc(e)〉 where,

thr(e) ∈ T, represents the thread of e;

idx(e) represents the unique identifier of e;

act(e) ∈ A, is the event action;

obj(e) ⊆ O, is memory objects accessed by e;

ord(e) is the memory order associated with e; and

loc(e) is the program location corresponding to e.

Note that, the events may be referred to by their actions, for instance, ‘a read event

e’ or simply ‘a read e’ refers to an event e such that act(e) = read. The obj(e) for a

fence event e is not valid as a fence does not access an object. Under the C/C++

memory consistency model an event e is additionally associated with a memory order,

represented as ord(e). Memory orders are formally introduced in §3.2.3.

1We use the term program analysis as opposed to program verification for the proposed techniques
to include a broader scope of analyses encompassing the verification techniques along with various
static and dynamic analysis.
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The set of events of P is represented by E . The notations EW, ER and EF are used

to represent the set of writes, the set of reads, and the set of fences respectively.

Note that, an rmw event belongs to both the sets EW and ER.

Further, for each shared object o, consider a special initial event (Io). The initial

event provides a well-defined initial value for its corresponding object.

Event sequences and program executions

A sequence of program events, τ = e1.e2, ...en where ei ∈ E for i ∈ [1, n], is maximal if

after the sequence, there are no events enabled or available for execution. A maximal

event sequence represents a program execution or an execution sequence. A sequence

may refer to either non-maximal sequences or maximal sequences of events.

Given a sequence τ , notations Eτ , EWτ and ERτ represent respectively the set of events,

the set of writes and the set of reads occurring in τ . In a sequence τ , val[τ ](e)

represents the value of an event e from a finite set of program values V . This represents

the value written for a write event and the value read for a read event.

Consider e1, e2 ∈ Eτ , e1 occurs-before e2 in τ is represented as e1<τe2. Given er ∈ ERτ ,

the latest write of obj(er) in the prefix of τ up to er is represented by lastW[τ ](er).

However, if there does not exist a write event in the prefix of τ up to er then

lastW[τ ](er) = Iobj(er). Note that, under strong models of memory consistency (refer

to §3.2) such as the sequentially-consistent memory model (refer to §3.2.1) er reads

the value of lastW[τ ](er) in τ .

A sequence τ is extended by an event e or a sequence τ ′ as τ.e (respectively τ.τ ′).

An empty sequence is represented by 〈〉. The notation e ∈ A is used to represent

that an event e is contained in A, where A can be a set or a sequence of events.

Given sequences τ1, τ2, notation τ1 u τ2 represents the longest sequence τ that is a

subsequence of τ1 and τ2, and τ1−τ2 represents the remaining sequence of τ1 after

removing its subsequence τ2.
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Exploration states.

A state of exploration (or simply a state) is defined as the valuation of shared objects.

The state reached after executing a sequence τ is denoted as s[τ ].

The set of enabled events at a state s[τ ] is represented as En(s[τ ]). An execution

transitions from a state s[τ ] to the next state s[τ.e] on execution of an enabled event e.

Given a state s[τ ] , shr(s[τ ]) denotes the valuation of shared objects, that is, a set

of pairs of (O,V) representing a shared object and its corresponding shared value.

Similarly, lcl(s[τ ]) denotes the valuation of local objects, again a set of pairs of (O,V)

representing a thread local object and its corresponding thread local value.

Relational Operators

R−1 represents the inverse and R+ represents the transitive closure of a relation R.

Further, R1;R2 represents the composition of relations R1 and R2.

Given a relation R, (a, b) ∈ R is also represented with a corresponding infix notion

a→Rb. Similarly, (a, b) 6∈ R is represented with a corresponding infix notion a9Rb.

Lastly, a relation R has a cycle (or is cyclic) if ∃e ∈ E s.t. e→Re.

Figure notations

The notation W (o, v) represents a write to a shared object o of value v. Similarly,

R(o, v) represents the read of a shared object o and value v, and R(o) represents

the program event read of a shared object o (not associated with a sequence). The

parallel bars (‖) represent the parallel composition of events of program threads. The

events in figures may be referred to by their labels, for instance, consider the notation

a : W (x, 1), where a write event of object x with value 1 is labeled with a, the event

may be referred to as the event a.
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Background

3.1 Introduction to Concurrency

Simultaneous execution of multiple sequences of events is called concurrency. The

sequences of events are executed by several concurrent processing elements such as

program threads. Concurrent execution significantly improves the processing speed

and offers better resource utilization.

Concurrency is ubiquitous. Various programming languages have included concurrent

processing as a first-class programming construct. Multicore systems are globally

used, and even on uniprocessor systems, the applications are typically concurrent.

3.1.1 Models of concurrency

There are two models of concurrency, the shared memory model, and the message

passing model. The models are diagrammatically represented in Figure 3.1.

Under the shared memory model of concurrency, concurrent processing elements com-

municate by read accesses and write accesses to a shared memory. The model is

13
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shared memory

P1 P2

P1 P2

shared memory model message passing model

Figure 3.1: Models of concurrency

typically associated with a uniprocessor or a multiprocessor system, where the pro-

cessing elements and the shared memory reside on the same system. The model allows

a faster communication but explicit care is needed in ensuring a coherent access to

the shared memory.

Under the message passing model, concurrent processing elements communicate by

sending and receiving messages through a communication channel. The model is

typically associated with a distributed system where the processing elements reside

on separate machines. It is relatively slower than shared memory and is used for

exchange of small amounts of data.

3.1.2 Models of reasoning about concurrency

There are two popular models of reasoning about concurrency, the interleaving model

of reasoning and the partial-order based model of reasoning.

Under the interleaving model of reasoning events from different processing elements

are non-deterministically weaved or interleaved to represent a program execution se-

quence. As a consequence, the set of all possible interleavings represents the set of

all feasible program outcomes. The interleaving model of reasoning about concur-

rent programs abstracts from the multiple processing elements and reasons about the

program as a single sequence of events.

The partial order model of reasoning represents the input program by a set of partial



Background 15

orders such that each partial order represents a set of program executions that reach

the same outcome.

a: W (x, 1) c: R(x)
b: R(y)

a.b.c
a.c.b
c.a.b

a

b c

c

a

b

(a) (b) (c)

Figure 3.2: WR-R. (a) input program, (b) interleavings, (c) partial orders

Consider the input program in Figure 3.2(a). Figure 3.2(b) represents the feasible

interleavings of the input program, where the event c interleaves with the events of

the other thread. Figure 3.2(c) represents the feasible partial orders of the input

program. The order of execution of the write and read events of x result in different

program outcomes. The partial orders represent those program outcomes.

3.1.3 State-space explosion problem

The combinations of interleaving of concurrent events grows exponentially with num-

ber of concurrent processing elements and concurrent events. The condition is called

a combinatorial explosion in program interleavings.

As a result of the combinatorial explosion, the set of reachable program states, called

the state space, also grows exponentially. The exponential increase of the state space

with the increase in the number of concurrent processing elements and events is called

the state space explosion problem.

The state space explosion escalates the challenge of reasoning about concurrent pro-

grams and negatively impacts the time of analysis and scalability of analysis tech-

niques.
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a: W (x, 1) c: W (y, 1)

b: R(y, 0) d: R(x, 0)

a: W (x, 1) c: R(y, 1)

b: W (y, 1) d: R(x, 0)

(a) (b)

a: W (x, 1) b: R(x, 1) d: W (y, 1) e: R(y, 1)

↓addr ↓addr
c: R(y, 0) f : R(x, 0)

(c)

Figure 3.3: Concurrent programs. (a) Store buffer, (b) Message passing,
(c) IRIW+addr (↓addr represents address dependence)

3.2 Memory Models

Model of memory consistency, a.k.a memory model, is a specification of the permitted

outcomes of multi-threaded programs executing with shared memory. A memory

model describes the permitted reorderings on concurrent events, where reordering

refers to execution of events in a different order than that specified in the program. A

memory model also specifies the permitted accesses to the shared memory and, thus,

the permitted inter-thread interactions.

The memory models can range from strong to weak. The stronger memory models

allow a low degree of reordering and restrict the permitted inter-thread interactions.

The weak memory models are liberal with permitted reorderings and inter-thread

interactions. Weak memory models enable compiler and hardware optimizations that

improves system performance. However, even for experts, comprehending the pro-

gram outcomes under weak memory models is formidable.

3.2.1 Sequential consistency

Sequential consistency, or sequentially consistent memory model is defined by the

following property [61],
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“the result of any execution is the same as if the operations of all the threads

were executed in some sequential order, and the operations of each individual thread

appear in this sequence in the order specified by its program”.

The definition implies that all threads agree on an order of occurrence of program

events and the agreed upon order is consistent with the order of events in the in-

put program (called the program-order). The model does not support reordering on

program events.

Consider the three programs outcomes shown in Figure 3.3, where the read events

read the values shown in the figure. Any of the three outcomes cannot be explained by

a sequential occurrence order on the events for a single shared memory. As the result

the three outcomes are infeasible under sequential consistency and cannot manifest

on an architecture that follows sequential consistency.

Such sequential ordering levies a heavy performance penalty. The model also restricts

a large set of compiler optimizations.

3.2.2 Multi-copy Atomics (MCA)

Multi-copy atomicity refers to a class of memory models where the writes of the

memory models satisfy the conjunction of the following conditions [64].

• All writes to the same location are serialized, meaning they are observed in

the same order by all threads, although some threads might not observe all of

the writes.

• A read does not read the value of a write from a different thread until all

threads observe that write.

Intuitively, under multi-copy atomicity, a write is advertised to all other threads

simultaneously, however, the write is available to its own thread prior to being ad-

vertised to all other threads.
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Multi-copy atomic (MCA) is a popular class of memory models that is supported by

memory models such as Intel x-86 TSO, sparc PSO, newer versions of ARM (version 8

and later), and Alpha. However, each of the models that support multi-copy atomicity

defines its own set of permitted reorderings. The reordering conditions are conjuncted

with the above stated conditions of multi-copy atomicity to define the permitted

outcomes under the models of various MCA architectures.

The outcomes shown in Figure 3.3(a) and (b) can be explained under the conditions

stated above and, thus, represent multi-copy atomic outcomes. On the other hand,

in Figure 3.3(c) the events of a thread are address dependent (represented by addr)

disallowing any reordering. As a result, the outcome shown in Figure 3.3(c) is feasible

only if the writes become visible to different threads at different times. Thus, the

outcome is non-multi-copy atomic.

Total Store Order (TSO)

The TSO model relaxes the write-read ordering allowing writes from a thread to

complete after a later read of different object from the same thread. Here, later

implies a higher event index. x86 architecture supports the TSO memory model.

Consider the program outcome in Figure 3.3(a), the outcome can be explained by

reordering the write events of either of the two threads with the read events of the

same thread. Therefore, the outcome is feasible under TSO. A similar reordering

cannot occur for Figure 3.3(b), and (c), thus, the outcomes are not valid under TSO.

Partial Store Order (PSO)

In addition to the write-read ordering, the PSO model also relaxes the write-write

ordering allowing writes from a thread to complete after a later write of different

objects from the same thread.

Consider the program outcomes in Figure 3.3(a), and (b), the outcomes can be ex-
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plained by write-read and write-write reorderings respectively. Therefore, the

outcomes are feasible under PSO. A similar reordering cannot occur for Figure 3.3(c)

and, thus, the outcome is not valid under PSO.

ARM version 8 and higher (ARM)

The ARM memory model (associated with versions 8 and later) [64] allows the re-

ordering of every pair of events from a thread. The model defines a set of coherence

conditions that describe the valid reorderings. As a result a program outcome that is

feasible with reorderings but does not satisfy the ARM coherence conditions is con-

sidered invalid. For instance, the model does not permit reordering of program (data,

address, register, control) dependent events.

The necessary reorderings for the outcomes shown in Figure 3.3(a), and (b) are valid

under ARM and, thus, the outcomes are feasible under the model. The outcome shown

in Figure 3.3(c) is not feasible under ARM since the reads are address dependent and

cannot reorder. In the absence of such an address dependence, the outcome would be

feasible under ARM.

3.2.3 Non-multi-copy Atomics (non-MCA)

Non-multi-copy atomicity refers to a class of memory models where the writes may

become visible to different threads at different times. The memory models that do

not always satisfy the conditions of a MCA model fall in the class of non-multi-copy

atomic (non-MCA) memory models.

The outcomes of a non-MCA model are popularly explained using the Flowing model of

Flur et al. [36]. non-MCA is supported by memory models such as the memory model

of earlier versions (version 7 and earlier) of ARM architecture, Power and language

models such as the C/C++ memory model.

Each of the outcomes shown in Figure 3.3(a), (b) and (c) is a valid outcome under a
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non-MCA model.

C/C++ ISO 2011 memory model (C11)

The C/C++ 2011 (and subsequent) ISO standard introduces a memory model to define

the semantics of computer memory storage for the purpose of the C/C++ abstract

machine. The model lays down semantics of concurrent memory accesses in C and

C++. In this document the model is referred to as C11.

Non-atomic and atomic memory access. The model supports two categories of

events - non-atomic and atomic.

The events of an atomic object that are called atomic events. Atomic events are

specifically intended for shared objects. Data races on atomic events are permitted

or defined under C11. However, the compilers and underlying architectures have to in-

troduce memory barriers and impose additional restrictions to maintain the atomicity

and impose ordering restrictions.

The events of a non-atomic object are called non-atomic events. They are the general

events and can be translated to plain load and store instructions. However, data races

on such events are not permitted under C11 and lead to undefined behavior.

Memory orders in C11. C11 provides a spectrum of ordering restrictions that can

be imposed on an atomic event. The atomic events are tagged with memory orders

that define the ordering restriction on atomic and non-atomic events around them.

The memory orders provide options to pose no ordering restriction all the way to

strong ordering restrictions that may restore sequential consistency.

Let M = {na, rlx, rel, acq, acq-rel, sc}, represent the set of memory orders. A

non-atomic event is recognized by the na memory order. The atomic events may

be associated with the memory orders relaxed (rlx), release (rel), acquire/consume

(acq), acquire-release (acq-rel) and sequentially consistent (sc) associating varying

degrees of ordering guarantees. Let @ ⊆M×M represent the relation weaker such

that m1@m2 represents that the m1 is weaker than m2. As a consequence, tagging
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an event with m2 may order events that are unordered with m1. The orders in M
are related as,

na @ rlx @ {rel, acq} @ acq-rel @ sc.

Also, the relation v represents weaker or equally weak. Similarly, A represents

stronger and w represents stronger or equally strong.

Let E (m) represent the set of events ordered with the memory order m. Similarly, let

EW(m) and ER(m) represent the set of writes and the set of reads, respectively, that

are ordered with the memory order m. Further, let E (m)
τ , EW(m)

τ and ER(m)
τ represent

the set of events, write events and read events, respectively, of a sequence τ that are

ordered with the memory order m.

The operators @ and v are overloaded as unary operators that return the set of

memory orders that are weaker, and weaker or equally weak respectively. For instance,

vrel = {na, rlx, rel}. Similarly, the operators A and w are overloaded to represent

the set of memory orders that are stronger, and stronger or equally strong respectively.

For instance, wrel = {rel, acq-rel, sc}.

Given a relation R, the notation R|sc represents a subset of R on sc ordered events;

i.e. (e1, e2) ∈ R|sc ⇔ (e1, e2) ∈ R ∧ e1, e2 ∈ E (sc).

Definition 2. (C11 Trace)
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e1→sb
τ e2 ⇐ ∀e1, e2 ∈ Eτ s.t. thr(e1) = thr(e2) and e1 occurs before e2 in their thread.

ew→sw
τ er ⇐ ew ∈ EW(wrel)

τ , er ∈ ER(wacq)
τ , thr(e) 6= thr(e1) ∧ ew→rf

τ er.

ew→dob
τ er ⇐ ew ∈ EW(wrel)

τ , er ∈ ER(wacq)
τ , thr(e) 6= thr(e1) ∧ ∃e′w ∈ release-sequence

of ew s.t. e′w→rf
τ er.

e1→ithb
τ e2 ⇐ ∀e1, e2, e3 ∈ Eτ ,

(e1→sw
τ e2) ∨

(e1→dob
τ e2) ∨

(e1→sw
τ e3 ∧ e3→sb

τ e2) ∨
(e1→sb

τ e3 ∧ e3→ithb
τ e2) ∨

(e1→ithb
τ e3 ∧ e3→ithb

τ e2).

e1→hb
τ e2 ⇐ e1→sb

τ e2 ∨ e1→ithb
τ e2.

Figure 3.4: C11 hbτ relation

A trace under C11, τ , is a tuple 〈Eτ , hbτ ,moτ , rfτ 〉, where

Eτ ⊆ E represents the set of events in the trace τ ;

hbτ (Happens-before) ⊆ Eτ × Eτ is a partial order which captures the event

interactions and inter-thread synchronizations, (discussed below);

moτ (Modification-order) ⊆ EWτ × EWτ is a total order on the writes of an

object;

rfτ (Reads-from) ⊆ EWτ ×ERτ is a relation from a write event to a read event

signifying that the read event takes its value from the write event in τ .

A valid outcome or behavior of an input program under C11 is called a trace of the

program. A C11 trace is defined over a set of events of the input program and relations

over the events, as shown in Definition 2.

C11 happens-before relation.
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The most significant relation that defines a C11 trace τ is the irreflexive and acyclic

happens-before relation, hbτ ⊆ Eτ ×Eτ . The hbτ relation is composed of the following

relations [46] (the relations are formally defined in Figure 3.4).

sbτ (Sequenced-before): total occurrence order on the events of a thread1.

swτ (Synchronizes-with) Inter-thread synchronization between a write ew (ordered

w rel) and a read er (ordered w acq) when ew→rf
τ er.

dobτ (Dependency-ordered-before): Inter-thread synchronization between a write ew

(ordered w rel) and a read er (ordered w acq) when e′w→rf
τ er for e′w ∈ release-

sequence2of ew in τ .

ithbτ (Inter-thread-hb): Inter-thread relation computed by extending swτ and dobτ

with sbτ .

hbτ (Happens-before): defined as sbτ ∪ ithbτ .

Happens-before relation with C11 fences.

C11 fences form ithbτ relation with other events of a trace τ [20, 46]. A fence can

be associated with the memory orders rel, acq, acq-rel and sc. An appropriately

placed fence can form swτ and dobτ from an rfτ relation between events of different

threads. The conditions for forming swτ and dobτ relations with fences are formally

presented in Figure 3.5.

Figure 3.5 also represents the conditions diagrammatically; where the black edges

from ew to e′w labeled rs (in (e) and (f)) represent that e′w is in the release-sequence

of ew. Further, the depictions (a) and (e) represent the conditions in the absence of

fences (presented in Figure 3.4); the depictions (b)-(d) represent the conditions for

forming swτ relation with fences; and, the depiction (f) represents the condition for

forming dobτ relation with fences.

1Some events of a thread may not be ordered (for example, the operands of ==). This work
assumes sbτ as a total order on the events of a thread, similar to previous works on C11 [51, 72].

2release-sequence of ew in τ : maximal contiguous sub-sequence of moτ that starts at ew and
contains: (i) write events of thr(ew), (ii) rmw events of other threads [20, 46].
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swτ using C11 fences

Given ew→rf
τ er,

if ord(ew)wrel, ∃Facq ∈ EF(wacq)
τ s.t. er→sb

τ Facq then ew→sw
τ Facq;

if ord(er)wacq, ∃Frel ∈ EF(wrel)
τ s.t. Frel→sb

τ ew then Frel→sw
τ er;

if ∃Frel ∈ EF(wrel)
τ , ∃Facq ∈ EF(wacq)

τ s.t. Frel→sb
τ ew, er→sb

τ Facq then
Frel→sw

τ Facq.

dobτ using C11 fences

Given e′w→rf
τ er, if ∃ew ∈ EW(wrel)

τ s.t. e′w ∈ release-sequence of ew and ∃Facq ∈
EF(wacq)
τ s.t. er→sb

τ Facq then ew→dob
τ Facq.

Figure 3.5: swτ and dobτ using C11 fences

Intuitively, a write event with a fence placed before it in sbτ and a read event with

a fence placed after it in sbτ enact the role of strongly ordered write and strongly

ordered read events respectively.

Note that, C11 fences are not memory barriers and do not flush write values to

the shared memory. They are synchronization tools that assist in forming ithbτ

relations [20, 46].

Trace coherence under C11. The hbτ relation along with the moτ and rfτ relations

is used in specifying a set of six coherence conditions [46, 85].
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(corf) ew→rf
τ er ⇒ er9hb

τ ew

(coWW) ∀ew1 , ew2 ∈ EWτ , ew1→hb
τ ew2 ⇒ ew1→mo

τ ew2

(coRR) ∀er1 , er2∈ERτ , ew1∈EWτ , er1→hb
τ er2 ∧ ew1→rf

τ er1 ⇒ ew1→rf
τ er2 ∨ (∃ew2 ∈ EWτ s.t.

ew1→mo
τ ew2 ∧ ew2→rf

τ er2)

(coRW) ∀er1 ∈ ERτ , ew1 ∈ EWτ , er1→hb
τ ew1 ⇒ ∃ew2 ∈ EWτ , ew2→mo

τ ew1 s.t. ew2→rf
τ er1

(coWR) ∀ew1 ∈ EWτ , er1 ∈ ERτ , ew1→hb
τ er1 ⇒ ew1→rf

τ er1 ∨ (∃ew2 ∈ EWτ s.t. ew1→mo
τ ew2 ∧

ew2→rf
τ er1)

(tosc) (i) order(E(sc), toτ ) ∧ total(E(sc), toτ ) ∧ hbτ |sc ∪ moτ |sc ⊆ toτ (coto)

(ii) ∀ew→rf
τ er s.t. er ∈ E(sc)

τ

- ew ∈ E(sc)
τ ∧ imm-scr(τ, ew, er); or, (rfto1)

- ew 6∈ E(sc)
τ ∧ @e′w ∈ E

W(sc)
τ s.t. ew→hb

τ e′w ∧ imm-scr(τ, e′w, er). (rfto2)
where,

order(S,R) , (@a R(a, a)) ∧ (R+ ⊆ R) ∧ (R ⊆ S × S).
total(S,R) , ∀a, b ∈ S ⇒ a = b ∨ R(a, b) ∨ R(b, a).

imm-scr(τ, a, b) , a ∈ EW(sc)
τ , b ∈ ER(sc)

τ , a→to
τ b and obj(a) = obj(b) ∧

@c ∈ EW(sc)
τ s.t. obj(c) = obj(a) ∧ a→to

τ c→to
τ b

(tofen) ∀ew→rf
τ er s.t. ew ∈ E(sc)

τ , if ∃F ∈ EF(sc)
τ s.t. F→sb

τ er then ew→to
τ F ∧ @e′w ∈ EW(sc)

where ew→to
τ e
′
w→to

τ F.

(cormw) ∀ e ∈ Eτ , act(e) = rmw, ∃ ew→rf
τ e s.t. ew→mo

τ e ∧ @ e′w s.t. ew→mo
τ e′w→mo

τ e

Figure 3.6: C11 coherence conditions

Formally, a trace is coherent under C11 if it satisfies the conjunction of the following

coherence conditions. The conditions are formally presented in Figure 3.6 and

discussed below.

(corf) A read event does not take its value from a write event hbτ ordered after

the read.

(coWW) writes ordered by hbτ are also ordered by moτ .

(coRR) A read (er2) hbτ ordered after another read (er1) does not read from a write

moτ ordered before the write that er1 reads from.

(coRW) A read hbτ ordered before a write reads from another write moτ ordered

before that write.
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(coWR) A read hbτ ordered after a write (ew1) does not read from a write moτ

ordered before ew1 .

(tosc) The sc events3of a trace must form a total order (toτ ), such that, the hbτ

and moτ ordered sc events are also toτ ordered. Further, a sc read reads

from the immediately toτ ordered before sc write or any non-sc write that

is hbτ ordered after the immediately toτ ordered before sc write.

(tofen) If there exists an sc fence before a read and the read reads from an sc

write then the sc write is immediately toτ ordered before the sc fence.

(cormw) an rmw event reads from the immediately moτ ordered before event.

Coherence of a trace under the C11 model is also popularly interpreted as the con-

junction of the following constraints [60]. The constraints are defined as compositions

of event relations hbτ , moτ , and rfτ that must be irreflexive.

hbτ is irreflexive. (co-h)

rfτ ; hbτ is irreflexive. (co-rh)

moτ ; hbτ is irreflexive. (co-mh)

moτ ; rfτ ; hbτ is irreflexive. (co-mrh)

moτ ; hbτ ; rf−1
τ is irreflexive. (co-mhi)

moτ ; rfτ ; hbτ ; rf−1
τ is irreflexive. (co-mrhi)

Figure 3.7 diagrammatically represents conditions on events of a trace that violate

the above stated constraints.

3.3 Model checking concurrent software

Model checking is an automated verification technique that explores all possible pro-

gram states in a systematic manner. Given a reachable state graph of an input

3Given a memory order m, ‘m events’ (similarly ‘m writes’ and ‘m reads’) is used to describe
the set of events (similarly writes and reads) with the memory order m. For instance sc events
refers to the set of events with memory order sc.
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Figure 3.7: Conditions that violate C11 coherence

program and a formal property, a model checking technique examines all possible

program outcomes. In this way, it can be shown that a given system model truly

satisfies a certain property.

The model checking technique does not bias towards errors that are more likely to

occur, thus, even the subtle errors that remain undiscovered using testing and simu-

lation can be revealed using model checking.

Model checking suffers from the state space explosion problem. However, with the

use of elegant algorithms and efficient data structures, model checkers can scale to

larger state spaces.

Scheduling program executions. For the maximal coverage of the reachable state

space, model checkers orchestrate the order of execution of program events to sys-

tematically reach various program states. A scheduler controls the execution steps to

achieve a predetermined execution sequence.

At each state of exploration a model checker determines a representative set of the

various schedules that must be explored from the state. The classic representations

include ample sets [74] and persistent sets [39, 42, 86].



28 Background

s0

s1

s2 s3

s4

a

b c

c b

Figure 3.8: commutativity of concurrent events

3.3.1 Stateless and Stateful model checking

A stateful technique captures the local and shared program states at runtime. Thus

the technique can accurately detect revisits to the same state during exploration of

the state space and avoid repetitive explorations. Capturing the entire state space

of an input program can be difficult to implement and expensive in memory require-

ment. However, the memory requirement may be tackled by efficiently tracking state

changes.

A stateless technique explores the reachable state space without explicitly storing the

program states. Stateless techniques reset the input program for each fresh execution

and replay the execution steps to reach an intermediate state in exploration. Thus, a

state can be represented by its execution prefix eliminating the need to store runtime

states. Stateless model checkers are easier to design and implement but may suffer

from repetitive explorations which effects the scalability of the technique.

3.3.2 Partial Order Reduction

Exploring all possible execution orders of events to determine correctness wrt a prop-

erty may be wasteful. Execution order of two concurrent events does not necessarily

change the outcome of the program. As an example consider again the input program

in Figure 3.2(a), execution of events b and c in either order after the execution of a
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reaches the same state, as show in Figure 3.8. The condition is called commutativity

of events b and c.

Consequently, it suffices to explore any one of b.c or c.b from the state s1 for a

sound model checking. Thus, instead of exploring the set of execution sequences of

a program, a model checker may focus on exploring representative executions for the

set of partial orders, such as those shown in Figure 3.2(c) for the input program in

Figure 3.2(a).
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Chapter 4

ViEqui. Stateless Model Checking

based on View-equivalence

4.1 Background

The interleaving model for reasoning about concurrent program outcomes suffers

from the state explosion problem [30] due to the combinatorial explosion of thread

interleavings (refer to §3.1.3). Early solutions to this problem were static in nature,

with partial order reduction (POR) being a popular approach [29, 43, 39, 56]. POR

techniques statically compute persistent sets [39, 42, 86] or ample sets [74], which

represent a subset of the interleavings that must be explored. However, conservative

over-approximation in static analyses often result in inaccurate sets.

Dynamic analyses, which construct persistent or ample sets on-the-fly, have proved

to be more effective in addressing the combinatorial explosion. Dynamic analyses

can be stateless or stateful (refer to §3.3.1). Seminal works like Verisoft [40, 41]

and CHESS [69] popularized stateless model checking. Stateless model checking is

a popular model checking technique under sequential consistency [1, 7, 12, 19, 24,

26, 27, 35, 52] and weak memory models [3, 9, 24, 52, 81] (refer to §3.2). Several

stateless model checking techniques are coupled with POR [1, 3, 7, 19, 26, 27, 35, 81]

31
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to combat the state space explosion.

Stateless Model Checkers (SMCs) investigate various schemes to further reduce the

combinatorial explosion and improve their performance, such as bounding the state

space and model checking using representatives, and further, minimization of the

set of representatives and accurate computation of representatives to obtain smaller

exploration graphs.

Bounding the exploration state space. Dynamic analyses compute persistent

(or ample) sets on-the-fly, thus, bounding the exploration state by bounding the

depth of exploration [84], loop unrolls in the input program [23, 28], or the number

of context-switches [68, 69] limits the number of explored interleavings.

Model checking using representatives. Given a property ψ for an input program,

ψ may be insensitive to the order of execution of certain concurrent events of the pro-

gram. As a result any two execution sequences differing only in the order of such

instructions would either both satisfy ψ or both satisfy ¬ψ. Model checking using

representatives [74] addresses the state space explosion problem by exploring a re-

duced state graph generated of a subset of the interleavings, based on the observation

made above.

SMCs that rely on model checking using representatives partition the execution se-

quences into equivalence classes based on an equivalence relation such that either all

execution sequences of an equivalence class satisfy ψ or all satisfy ¬ψ. Such a repre-

sentation generates a smaller state graph that contains (ideally) only one execution

sequence from each equivalence class. Model checking using representatives is com-

monly referred to as Dynamic POR (DPOR) [35] and has been extensively studied

over the past two decades [1, 3, 7, 13, 14, 19, 35, 81].

Minimizing the set of representatives. To ensure soundness, an SMC must

explore at least one execution sequence from each equivalence class. Evidently, min-

imizing the set of equivalence classes positively impacts the model checking effort.

The challenge remains in defining a suitable equivalence relation that partitions the

execution sequences such that (i) all sequences in a partition behave similarly to
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the property ψ (i.e. satisfy ψ or satisfy ¬ψ), and (ii) there exists an equivalence

class whose sequences satisfy ψ (if feasible) and an equivalence class whose sequences

satisfy ¬ψ (if feasible).

Suitably defined equivalence relations may induce coarser partitioning on execution

sequences towards a smaller set of equivalence classes. The coarse equivalence rela-

tions can be defined based on attributes of execution sequences relevant to ψ, such as

data races [1, 3, 19, 35], visibility of events to other threads and events [7, 14, 19, 26],

and other features than may render sequences indistinguishable such as read of the

same data values [13, 27]. Section §4.1.1 discusses details of coarser notions of equiv-

alence for partitioning execution sequences.

Accurate computation of representatives. The set of equivalence classes is not

known to an SMC a priori. Moreover, computing the set of equivalence classes is as

hard as exploring the entire state space. Thus, the SMCs compute equivalence classes

while exploring execution sequences (on-the-fly). Inaccurate on-the-fly computation

of the equivalence classes leads to exploration of multiple execution sequences from

an equivalence class, called redundant explorations.

Accurate computation of representatives ensures exploration of exactly one execution

sequence from each equivalence class, such an accurate exploration is called an opti-

mal exploration and an SMC that performs optimal exploration is called an optimal

SMC [1, 14, 19, 52].

4.1.1 Equivalence partitioning of program executions

As discussed previously, equivalence between program executions is established through

an equivalence relation. The equivalence relation partitions the execution sequences

into sets of equivalent execution sequences called equivalence classes. Various equiva-

lence relations can be defined on the attributes of execution sequences that partition

the sequences into finer or coarser equivalence classes. This section describes such

equivalence relations.



34 ViEqui

Bisimulation equivalence. Bismimulation represents a fine equivalence relation

that aims to identify transition systems which can simulate each other in a step-wise

manner. Considering an execution sequence as a transition system with a deter-

ministic order of occurrence on events in the sequence, bisimulation may be used to

establish equivalence between execution sequences. However, such a fine equivalence

relation may relate as equivalent only those execution sequence that vary on the or-

der of occurrence of invisible events (refer to §2). As a result, execution sequences

that have the same order of occurrence on visible events (refer to §2) are considered

equivalent.

Mazurkiewicz traces and classical equivalence (∼c). Mazurkiewicz [65] defines

a finite, reflexive and symmetric relation on the events of an input program called

dependence, D. Further, the relation D induces a relation independence, I = (E ×
E) \D. Equivalence classes formed using D are called Mazurkiewicz traces. A single

trace arises by identifying all execution sequences that differ only in the order of the

pairs of events in I that are adjacent in the execution sequence.

Classically, SMCs use Mazurkiewicz traces to define equivalence partitions, where, the

dependence relation used to determine the Mazurkiewicz traces is defined over pairs

of racing events (pairs of events, accessing the same shared object, where at least one

event is a write) [1, 3, 35, 70, 89]. Program executions that have the same order of

occurrence on racing events are considered equivalent, let this equivalence relation be

referred to as the classical equivalence relation. Given two execution sequences τ1, τ2,

τ1 ∼c τ2 represents that the sequences are equivalent under the classical equivalence.

Consider the program in Figure 4.1. The program has three pairs of racing events

on each shared object (x and y). Thus under the classical equivalence relation the

program has 27 distinct equivalence classes; computed as 3! × 3! − 9 combinations

that cannot be realized due to a cycle in the required execution resulting from D∪po,

for example, any instance of D such that both (c, d) ∈ D and (e, b) ∈ D cannot be

realized due to a cycle in D ∪ po (where, po represents the total order on the events

of a thread called program order).

The equivalence classes for the example program in Figure 4.1 are shown in Figure 4.2
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Initially x = 0, y = 0
a: W (x, 1) b: R(y) d: R(x) f : W (y, 1)

c: W (x, 1) e: W (y, 1)

Figure 4.1: motivational example
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racing-pairs equivalence: blue, green, red dashed sequences and black solid sequences
observed racing-pairs equivalence: blue, red dashed sequences and black solid sequences
reads-from and reads-value-from equivalence: red dashed sequences and black solid sequences
view-equivalence: black solid sequences

Figure 4.2: Equivalence classes of the input program in Figure 4.1 under various
equivalence relations.

(through representative executions). Every execution depicted in Figure 4.2 (includ-

ing the dashed and the solid sequences) represents a distinct valid equivalence class

under the classical equivalence relation.

The classical notion of equivalence is sound for detecting data-races and violations

of safety properties such as violation of assert conditions. Recent works [7, 12, 13,

14, 19, 24, 26, 27] have explored notions of equivalence that are coarser than the

classical equivalence relation. The coarseness reflects in smaller number of equivalence

classes that are bulkier than Mazurkiewicz traces (i.e. the classes have a larger set

of execution sequences).

The coarser notions of equivalence pivot on detection of safety property (assert) vio-

lations. Essentially, each coarse equivalence relation recognizes some attribute(s) of

the execution sequences that do not contribute to the safety property. The relation is

then designed to equate execution sequences that vary only in the order of occurrence

of non-contributing attributes and, thus, collect them under the same equivalence

class. The coarser equivalence relations are discussed below.
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Equivalence on observed races (∼o). Given an execution sequence (τ), pairs of

events in Eτ that race in τ where (i) either one of the events in the pair is a read event,

or (ii) there exists a read event that occurs after the racing pair in τ are considered

observed. Program executions that have the same order of occurrence on observed

racing event pairs are considered equivalent [14, 19]. Given two execution sequences

τ1, τ2, τ1 ∼o τ2 represents that the sequences are equivalent under equivalence on

observed races.

The program in Figure 4.1 has 16 equivalence classes under this relation, i.e. eleven

fewer equivalence classes from the classical relation. The classical equivalence classes

that are combined with some other class under this equivalence relation are rep-

resented by green dashed sequences in the Figure 4.2. Consider, for instance, the

left-most two sequences in Figure 4.2 (a.b.c.d.f.e and a.b.c.d.e.f). These sequences

vary in the order of execution of the writes e and f , which are not observed. As a

result, the executions are clubbed under the same equivalence class.

Reads-from equivalence (∼r). Two program executions are considered reads-from

equivalent if (i) both the executions contain the same set of read events and (ii) the

reads obtain values from the same write events in both the executions [7, 24, 52].

Given two execution sequences τ1, τ2, τ1 ∼r τ2 represents that the sequences are

reads-from equivalent.

There are two read events in the program in Figure 4.1. Each read event can obtain

values from three corresponding write events (including the initial write event).

Thus, in total there are 6 equivalence classes under the reads-from equivalence. The

red dashed along with the black solid sequences in Figure 4.2 represent those equiv-

alence classes.

Reads-value-from equivalence (∼v). Program executions with the same set of

read events that read the same value and maintain the same causal-ordering on the

read events are considered equivalent [12, 24]. Given two execution sequences τ1, τ2,

τ1 ∼v τ2 represents that the sequences are reads-value-from equivalent.

The two read events of the program in Figure 4.1 can read two values each (i.e. 0
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and 1). If the read d reads the value 1 from the write c, then the read b is causally

ordered before d. However, there is no such causal ordering when d reads the value

1 from the write a. This leads to two separate equivalence classes where d reads

1 and an additional class where d reads 0. Similarly, there exist three equivalence

classes under this relation corresponding to the read b. As a result, the program in

Figure 4.1 has the same set of equivalence classes under this relation as under reads-

from equivalence (represented by the red dashed and the black solid sequences).

4.2 The view-equivalence relation

View-equivalence is a coarser notion of equivalence that relies only on the values of

read events. Program executions with the same set of read events that read the same

values are considered equivalent. Given sequences τ1 and τ2, let τ1 ∼ τ2 represent that

τ1 and τ2 are view-equivalent. Formally,

Definition 3. (view-equivalence)

Given sequences τ1 and τ2,

τ1 ∼ τ2 iff ERτ1 = ERτ2 ∧ ∀er ∈ E
R
τ1
, val[τ1](er) = val[τ2](er).

Theorem 1 shows that view-equivalence (∼) represents an equivalence relation. Note

that, for any given program view-equivalence is at least as coarse as any existing

equivalence relation. The claim is formally stated and proven with Theorem 2.

Theorem 1. ∼ represents an equivalence relation.

Proof. Reflexivity holds trivially from Definition 3.

Given that the operator ‘=’ is symmetric over sets and V , ∼ is Symmetric.

Let τ1 ∼ τ2 and τ2 ∼ τ3

⇒ ERτ1 = ERτ2 = ERτ3 and ∀er ∈ ERτ1 val[τ1](er) = val[τ2](er) = val[τ3](er).

⇒ ∼ is Transitive. �
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Given the program in Figure 4.1, each read event can view two values (i.e. value 0

and 1). Thus, under view-equivalence there are exactly four view-equivalence classes

corresponding to the four combinations of values. The view-equivalence classes are

represented by black solid sequences in Figure 4.2. Each dashed sequence can be

partitioned with the view-equivalence class of one of the black solid sequences.

In moving from finer to coarser partitioning, an equivalence relation associates lesser

ordering on the event of an execution sequence. For instance the classical notion

orders all racing event pairs (including pairs of write events that may not be read in

the program), while the reads-value-from equivalence only orders causal reads. The

proposed view-equivalence relation completely dissociates from ordering on events of

an execution sequence. As a result, view-equivalence is at least as coarse as any exist-

ing equivalence relation. Consequently, view-equivalence forms the smallest number

of partitions for any input program.

The view-equivalence class of a program execution τ is represented by JτK. Each

program execution τ ′ such that τ ′ ∼ τ , τ ′ ∈ JτK. Consider again the program in

Figure 4.1 and its executions τ1 = a.b.c.d.e.f and τ2 = b.c.a.d.e.f , τ1 ∼ τ2, thus Jτ1K
= Jτ2K and τ1, τ2 ∈ Jτ1K (or Jτ2K).

Further, given sequences τ1 and τ2, τ1 is a prefix of τ2 under view-equivalence, repre-

sented as τ1 / τ2 if ∃τ ′1 s.t. τ1.τ
′
1 ∼ τ2.

Applicability of view-equivalence. The applicability of view-equivalence is not

reduced in context of safety property (assert) violations in comparison to the other

coarse equivalence relations [7, 12, 13, 14, 19, 24, 26, 27]. In other words, given

execution sequences τ1 and τ2 and a safety property (assert condition) ψ, τ1 ∼ τ2 ⇔
both τ1 and τ2 satisfy ψ or both τ1 and τ2 satisfy ¬ψ. In essence, an assert condition

ψ is a boolean condition on the values of a set of read events. Thus, if τ1 satisfies

ψ and τ2 satisfies ¬ψ then there is a read e ∈ Eτ1 ∩ Eτ2 s.t. val[τ1](e) 6= val[τ2](e).

However, from Definition 3, then τ1 � τ2.

Intuitively, every observable location and every branching condition in the input

program such as the SSA phi nodes, output statements and assert conditions rely
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Initially x = 0, y = 0
a: W (x, 1) c: if R(y) :
b: W (y, 1) d: R(x)

(a)

a b c d

(b)

a c b

(c)

Figure 4.3: Message passing with condition

on the values of a set of corresponding memory locations. Since, computing the

condition requires accessing the corresponding memory locations, thus, alternatively

we can consider that the conditions rely on the values of a set of read events. Hence,

by considering all combinations of read values in separate equivalence classes, view-

equivalence ensures coverage of every branch of program’s control flow graph, every

program output and every feasible outcome of an assert condition in the program.

Trade-off of causality. The definition of view-equivalence does not incorporate

a causal ordering on execution events, which sets it apart from other equivalence

notions.

Including causal ordering in the definition of equivalence is beneficial as it provides the

necessary information for constructing a coherent ordering, that leads to an execution

of an equivalence class. Incoherent orderings may affect the completeness guarantee

of SMCs. SMCs that detach from any causal ordering, such as ViEqui, must compute

coherence operationally to ensure completeness, which is non-trivial.

Consider the example in Figure 4.3(a) and its execution in Figure 4.3(b). An SMC

based on the classical notion of equivalence considers the order of execution on racing

event pairs i.e., a→ d and b→ c, and flips either of these orders to explore a different

equivalence class, such as the one shown in Figure 4.3(c) where c→ b.

On the other hand, ViEqui computes that the value 1 is read by reads c and d in the

execution shown in Figure 4.3(b) and that value 0 may also be read by the two reads

in some other execution. ViEqui then computes a state where the value can be read

from, for instance, 0 can be read by d from the initial state and from no state after
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Table 4.1: Performance comparison on program in Figure 4.1

ODPOR obs-ODPOR RVF-SMC ViEqui

configuration N #Seq Time #Seq Time #Seq Time #Seq Time

Figure 4.1(10) - To - To 3703196 705.69 40 0.06

Figure 4.1(20) - To - To - To 80 0.28

Figure 4.1(100) - To - To - To 400 43.15

Figure 4.1(200) - To - To - To 800 737.00

the execution of a. Further, it computes a sequence that can enable and execute d

from the initial state ensuring the read of the value 0. Since d can only be enabled

by the sequence a.b.c.d. However, the enabling sequence leads to the read of value 1

by d and hence, ViEqui computes that value 0 cannot be read by d coherently.

However, SMCs such as ViEqui that can ensure completeness can reduce the number

of program executions to explore and achieve higher performance. To demonstrate the

savings with view-equivalence, we conducted experiments on various configurations of

the program in Figure 4.1, where events from threads are repeated N times. Higher

values of N leads to a higher degree of causal ordering, while the set of values read

by the events remains the same. The results of the experiments with the program

in Figure 4.1 are shown in Table 4.1 on the number of sequences explored (#Seq)

and the time of analysis (Time). A timeout of analysis is set at 1800s (To). We

observed exponential savings with view-equivalence compared to other techniques on

finer equivalence relations (refer to §4.5 for details on the other techniques).

Theorem 2. ∀τ1, τ2 ∈ E, τ1 ∼c τ2 ∨ τ1 ∼o τ2 ∨ τ1 ∼r τ2 ∨ τ1 ∼v τ2 ⇒ τ1 ∼ τ2.

(view-equivalence is at least as coarse as any existing equivalence relation.)

Proof. Consider sequences τ1, τ2,

τ1 ∼v τ2 ⇒ τ1 ∼ τ2. (by definitions of ∼v and ∼)

Further, τ1 ∼r τ2 ⇒ poτ1 = poτ2 . (by definition of ∼r)
Let ∃ ew ∈ EWτ1 ∩ E

W
τ2

, er ∈ ERτ1 ∩ E
R
τ2

s.t. ew→rf
τ1
er and ew→rf

τ2
er but val[τ1](er) 6=
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Event Relations
Consider the relations,

program-order (poτ ), modification-order (moτ ), observed-modification-order (o-moτ ),

reads-from (rfτ ), from-reads (frτ ), and causal-order-on-reads (co-rτ ), such that

poτ ∪ moτ ∪ o-moτ ∪ rfτ ∪ frτ ∪ co-rτ ⊆ Eτ × Eτ for a sequence τ .

Given e1<τe2, the relations are defined as:

poτ Consider the relation spawn-order (snoτ ) such that e′ →sno
τ e if e′ belongs to

the thread that spawns the thread of e, and e′ occurs before the spawn event

in its thread. Consider the relation join-order (jnoτ ) such that e′ →jno
τ e if e

belongs to the thread that joins the thread of e′, and e occurs after the join

event in its thread. Further, snoτ
+ ⊆ snoτ and jnoτ

+ ⊆ jnoτ ; then,

e1→po
τ e2 if e1 occurs before e2 in a thread ∨ e1 →sno

τ e2 ∨ e1 →jno
τ e2.

moτ a total order on the write events of an object.

o-moτ e1→o-mo
τ e2 if e1→mo

τ e2 and ∃er ∈ ERτ s.t. obj(er) = obj(e1) ∧ e2<τer, i.e., a

total order on the observed write events of an object.

rfτ e1→rf
τ e2 if e1 = lastW[τ ](e2).

frτ e1→fr
τ e2 if (e1, e2) ∈ rf−1

τ ; moτ .

co-rτ e1→co-r
τ e2 if e1, e2 ∈ ERτ ∧ e1→co

τ e2.

Formal Definitions of Equivalence Relations.

Classical equivalence (∼c). Given sequences τ1, τ2,

τ1 ∼c τ2 if poτ1 ∪ moτ1 ∪ rfτ1 ∪ frτ1 = poτ2 ∪ moτ2 ∪ rfτ2 ∪ frτ2 .

Equivalence on observed races (∼o). Given sequences τ1, τ2,

τ1 ∼o τ2 if poτ1 ∪ o-moτ1 ∪ rfτ1 ∪ frτ1 = poτ2 ∪ o-moτ2 ∪ rfτ2 ∪ frτ2 .

Reads-from equivalence (∼r). Given sequences τ1, τ2,

τ1 ∼r τ2 if poτ1 ∪ rfτ1 = poτ2 ∪ rfτ2 .

Reads-value-from equivalence (∼v). Given sequences τ1, τ2,

τ1 ∼v τ2 if poτ1 ∪ co-rτ1 = poτ2 ∪ co-rτ2 ∧ Vτ1 = Vτ2 .

View-equivalence (∼). Given sequences τ1, τ2,

τ1 ∼ τ2 if poτ1 = poτ2 ∧ Vτ1 = Vτ2 .

Where Vτ represent a map ERτ 7→ V such that ∀er ∈ ERτ , er 7→ val[τ ](er) belongs to Vτ .



42 ViEqui

val[τ2](er).

⇒ ∃e′r ∈ ERτ1 ∩ E
R
τ2

s.t. er→co
τ1
ew ∧ er→co

τ2
ew ∧ lastW[τ1](er) 6= lastW[τ2](er)

⇒ rfτ1 6= rfτ2 that contradicts τ1 ∼r τ2.

⇒ Vτ1 = Vτ2 . (by contradiction)

Thus, τ1 ∼r τ2 ⇒ τ1 ∼ τ2.

Lastly, τ1 ∼c τ2 ∨ τ1 ∼o τ2 ⇒ τ1 ∼r τ2. (by definitions of ∼c, ∼o and ∼r)
⇒ τ1 ∼ τ2 (shown previously)

�

4.3 Stateless model checking based on view equiv-

alence under sequential consistency

To ensure soundness, an SMC must explore at least one execution sequence for each

equivalence class under the corresponding equivalence relation. Figure 4.2 shows that

the number of equivalence classes under view-equivalence may be significantly smaller

in comparison to other notions of equivalence. Evidently, model checking based on

view-equivalence may exhibit significant savings in the model checking effort. The

savings directly translates to a faster verification.

This work proposes ViEqui, an SMC based on view-equivalence under sequential

consistency. The ViEqui technique is

1. Sound. ViEqui explores a representative execution sequence corresponding to

each view-equivalence class of the input program.

2. Complete. Each execution sequence explored by ViEqui represents a view-

equivalence class of the input program.

3. Optimal. ViEqui explores exactly one representative execution sequence corre-

sponding to each view-equivalence class of the input program.
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Operational Assumptions. The set of actions supported by ViEqui is the set

{write, read}. As a consequence, EW ∪ ER = E and EW ∩ ER = ∅. Since, ViEqui

operates under sequential consistency, a read er ∈ ERτ reads the value of the latest

write of obj(er) in the prefix of τ up to er, that is, er reads from lastW[τ ](er). Further,

since sequential consistency does not support out-of-order execution of events, the

execution of an event from a thread Ti enables the next event in program-order from

Ti, thus, the enabled set contains the next event from each thread. This implies that

when a write event ew is enabled in a sequence τ , val[τ ](ew) is already computed for

τ and available as a constant.

ViEqui explores (executes and analyzes) a representative execution sequence corre-

sponding to each view-equivalence class of the input program. However, the set of

view-equivalence classes is not known a priori. Moreover, computing the set of equiv-

alence classes is as hard as exploring the entire state space. Thus, ViEqui computes

view-equivalence classes while exploring execution sequences (on-the-fly).

ViEqui uses a scheduler to order the execution of program events in a way that fa-

cilitates optimal exploration of view-equivalence classes. This enables us to obtain a

representative program execution that belongs to the desired view-equivalence class.

During the exploration of an execution sequence τ , ViEqui gathers scheduling infor-

mation such as the view-equivalence class of τ and other values for reads that are

not read in τ . ViEqui then computes scheduling directives (∆(s[τ ])) for each state of

exploration s[τ ], reached after exploring an execution prefix τ . The directives are sets

of pairs of (next: an event sequence, φ: a boolean formula) where,

• next is a sequence that is to be explored from s[τ ], and

• φ is a summary of the value combinations for the read events appearing in next

that are read in some other execution sequence from s[τ ].

Given a scheduling directive δ ∈ ∆(s[τ ]), its next sequence is represented as δn and its

φ boolean formula is represented as δφ.
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Initially x = 0, y = 0
a: W (x, 1) b: R(x) c: R(y)

d: R(x)
(a)

s[b]
{(c,⊥)}

s[b.c]
{(d, (d, 1)),

(a.d, (d, 0))}

s[b.c.d]
{(a,⊥)}

s[b.c.a]
{(d, (d, 0))}

c

d

a

(b)

s[〈〉]
{(a.b, (b, 0)), (b, (b, 1)),

(c.d.a.b, (b, 0) ∨ (d, 1))}

s[b]
{(a,⊥),

(c.d.a, (d, 1))}
s[a]{(b, (b, 0))}

s[c]{(d.a.b,
(b, 0) ∨ (d, 1))}

s[b.a]{(c,⊥)}
s[b.c]{(d, (d, 1))}

s[a.b]{(c,⊥)}
s[c.d]{(a.b,

(b, 0))}

s[b.a.c]{(d,⊥)}
s[b.c.d]{(a,⊥)}

s[a.b.c]{(d,⊥)}
s[c.d.a]{(b, (b, 0))}

s[b.a.c.d]{}
s[b.c.d.a]{}

s[a.b.c.d]{}
s[c.d.a.b]{}

(τ1) (τ2) (τ3) (τ4)

b
a c

a cb d

c dc a

d ad b

(c)

Figure 4.4: 1W2R. (a) input program, (b)-(c) explorations by ViEqui

Definition 4. (Properties of ∆(s[τ ]))

∆(s[τ ]) at a state s[τ ] must satisfy the following properties.

1. For each view-equivalence class π that has a representative execution with

τ as a prefix, there exists δ ∈ ∆(s[τ ]) that extends τ to a representative

execution of π. (soundness)

2. Each δ ∈ ∆(s[τ ]) extends τ to a valid execution of the input program.

(completeness)

3. No two discrete δ, δ′ ∈ ∆(s[τ ]) can extend τ to equivalent executions.

(optimality)

Consider the input program in Figure 4.4(a). The program has four view-equivalence
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classes corresponding to the values 0 and 1 for the read events b and d. Figure 4.4(c)

shows a complete exploration of the program where each of the four view-equivalence

classes is explored optimally.

ViEqui technique follows a dual approach of eager and lazy analyses to compute

the scheduling directives during exploration, called forward-analysis and backward-

analysis respectively.

Forward-analysis. On reaching a state of exploration s[τ ] after exploring an ex-

ecution prefix τ , ViEqui analyzes the set of events that are enabled (available for

execution) and looks for a read event that can read multiple values from s[τ ]. Con-

sider the initial state s[〈〉] in Figure 4.4(c) where the events a, b, c are enabled. ViEqui

computes that the read b can read two values from s[〈〉] (i.e. 1 and 0), and accord-

ingly, computes ∆(s[〈〉]) = {(a.b, (b, 0)), (b, (b, 1))}. In particular, on exploring the

sequence a.b of the directive (a.b, (b, 0)) from s[〈〉], b reads the value 1, while its cor-

responding formula (b, 0) summarizes that b reads the value 0 in the other directive,

i.e., (b, (b, 1)); similarly, on exploring sequence b of the directive (b, (b, 1)) from s[〈〉], b

reads the value 0, while is corresponding formula (b, 1) summarizes that b reads the

value 1 in the other directive, i.e., (a.b, (b, 0)).

This computation of ∆(s[τ ]) is called forward-analysis since it is eagerly performed

without executing the enabled events. The directives computed using forward-analysis

are shown in green in Figure 4.4(c).

Forward-analysis is formally presented in §4.3.2.

Backward-analysis. Forward-analysis examines only the enabled events at a state

s[τ ], hence, computing ∆(s[τ ]) precisely for all events is not always possible with

forward-analysis. For example, the read event d is not available for analysis at s[〈〉]

in Figure 4.4(c). To address this problem, ViEqui computes scheduling directives at

the end of each execution sequence for states in the execution prefix. This analysis is

called backward-analysis, since it requires examining the prefix of an execution.

Consider the program execution τ1 = a.b.c.d in Figure 4.4(c), where the read d is

enabled after the execution of c at state s[a.b.c]. The order of execution of events
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in τ1 results in the read of value 1 by d, however, a different order of execution of

the events of τ1 could result in the read of value 0 (initial value) by d. Therefore,

with backward-analysis ViEqui would compute a directive that would lead to the

exploration of value 0 for d from a state in the prefix of s[τ1].

However, there may be various such directives and they may not always result in

the exploration of the same view-equivalence class. This is because a read er may

read a certain value v in multiple view-equivalence classes; for example, the read

d in the program in Figure 4.4(a) can read value 0 in two view-equivalence classes,

i.e. those corresponding to b=0, d=0 and b=1, d=0.1 Furthermore, it is possible

that some of the view-equivalence classes where the read er reads v can be explored

by existing directives; for example, in the exploration shown in Figure 4.4(c), the

view-equivalence class corresponding to b=0, d=0 can be explored using the directive

(b, (b, 1)) from s[〈〉].

For optimality and termination it is crucial that ViEqui controls the view-equivalence

classes that will be explored from a directive by carefully choosing its next sequence

from the set of sequences where er reads v; for example, during the backward-analysis

after τ1 in Figure 4.4(c) for d to read 0, ViEqui must compute a directive that results

in precisely the exploration of the view-equivalence class corresponding to b=1, d=0.

Thus, ViEqui computes a directive (c.d.a.b, (b, 0) ∨ (d, 1)) ∈ ∆(s[〈〉]) where the next

sequence c.d.a.b reads value 0 for d in combination of value 1 for b. The corresponding

φ = (b, 0)∨ (d, 1) summarizes the values for d and b read in other sequences from s[〈〉];

specifically, the value 0 for b is covered in program executions τ2 and τ3 and the value

1 for d is covered in τ1 and τ2; note that, φ subsumes (b, 0)∧ (d, 1), which is explored

in τ2. The computed directive is added to a state in the prefix of τ1 from where the

value 0 can indeed be read by d, i.e. ∆(s[〈〉]). Finally, during the exploration of τ4,

resulting from (c.d.a.b, (b, 0) ∨ (d, 1)) ∈ ∆(s[〈〉]), the formula (b, 0) ∨ (d, 1) is used by

ViEqui to determine that no other scheduling directives need to be computed for b

to read 0 or d to read 1 from τ4. The directives computed using backward-analysis

1Note that, (i) we may refer to view-equivalence classes by the combinations of reads and their
values; (ii) such a notation may not contain reads that have the same value in all view-equivalence
classes, such as the read c in Figure 4.4(a).
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are shown in blue in Figure 4.4(c).

Backward-analysis is formally presented in §4.3.2.

Note that, ∆(s[τ ]) at a state s[τ ] may not be unique since various event sequences

may represent the same view-equivalence class. Figure 4.4(b) shows a fragment of an

alternate exploration feasible with ViEqui where the technique selects c from the set

of enabled events instead of a at s[b].

4.3.1 Computation of Scheduling Directives

To satisfy the three properties in Definition 4, scheduling directives are generated

through a two-step process for each ∆(s[τ ]) using both forward- and backward-analysis.

In the first step, individual scheduling directives are computed from available schedul-

ing information and exploration summaries in a sequence. However, since directives

of sequence are computed independently, they may not consider scheduling informa-

tion from other sequences. Therefore, in the second step, the individual scheduling

directives computed in step one are coherently combined with ∆(s[τ ]) to avoid redun-

dancies and ensure soundness and completeness.

Computing the state to update for a directive. To perform the above mentioned

steps, it is necessary to compute an exploration state s[τ ] whose ∆(s[τ ]) can be updated

with the newly computed scheduling directive δ. Thus, prior to discussing these

steps, it is important to consider the process of computing such a state. For example,

during the backward-analysis after τ1 in Figure 4.4(c), for d to read from Ix, a newly

computed directive is added to the state s[〈〉] because at any other state in the prefix

of τ1 the write a overwrites Ix.

A directive (δ) computed during forward-analysis at a state s[τ ] only updates ∆(s[τ ]),

while, backward-analysis after a program execution τ , updates ∆(s[τ ′]) for some τ ′ in

the prefix of τ .

Consider the backward-analysis after the exploration of a program execution τ =
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τ1.τ2.τ3, where τ2 represents the next sequence explored from s[τ1]. The states s[τk]

between, but not including, s[τ1] and s[τ2] are marked hidden for the execution se-

quence τ , which signifies that backward-analysis does not update ∆(s[τk]). Consider

backward-analysis after τ , for er ∈ ERτ to read from ew ∈ EWτ , ViEqui updates ∆(s[τ ′])

of a state s[τ ′] if (i) s[τ ′] is not hidden, and (ii) ∃ a sequence δn on the events of τ s.t.

ew→rf
τ ′.δn

er. Intuitively, condition (ii) states that er can feasibly read from ew after

τ ′. Note that, in the presence of multiple such states, ViEqui selects the state of

the longest prefix τ ′ for operational efficiency. We use pre[τ ](ew, er) to represent such

a state. For example, consider the backward-analysis after τ2 in Figure 4.4(c), for

determining the state where d reads from Ix. While both s[〈〉] and s[b] satisfy the two

conditions outlined earlier, ViEqui selects pre[τ2](Ix, d) = s[b].

Step 1. Accurate computation of individual scheduling directives

In order to compute an accurate scheduling directive (δ = (δn, δφ)), we need to ensure

accurate computation of both components (δn and δφ). This entails (i) computing a

coherent and accurate δn that extends to program executions and precisely explores

the desired view-equivalence classes, and (ii) representing the related exploration

summary δφ succinctly, which can guide ViEqui to prevent redundant explorations

without compromising soundness. The following text discuss these two requirements

in more detail.

Computation of coherent and accurate next event sequence. The coherence

of a sequence next, for a read er to read the value v after τ , means that it can result

in a valid execution after τ . The accuracy of next is determined by its ability to

extend to representative executions of the desired view-equivalence classes while ex-

cluding those of other view-equivalence classes. This notion of accuracy is intuitively

introduced above, under ‘Backward-analysis’. Recall the backward-analysis after τ1

in Figure 4.4(c), for d to read 0 from Ix. It was emphasized that the optimality of

ViEqui relies on computing a next sequence that can exclusively extend to explore

the view-equivalence class corresponding to b=1, d=0, rather than also explore the

one corresponding to b=0, d=0. Therefore, the computed next sequence must include
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e1→po
τ e2 , e1 occurs before e2 in the same thread

ew→rf
τ er , ew, er ∈ Eτ and ew = lastW[τ ](er)

e1→co
τ e2 , (e1, e2) ∈ transitive closure of (poτ ∪ rfτ )

τ1 ⊕ τ2 , if ∃ τ (an event sequence) s.t. Eτ = Eτ1 ∪ Eτ2 and coτ = coτ1 ∪ coτ2 ,
then τ1 ⊕ τ2 = τ , otherwise τ1 ⊕ τ2 = 〈〉.

(a)

nseq-fwd[τ ](ew, er) , w.er (where, w = 〈〉, if ew = lastW[τ ](er); w = ew, otherwise)

(b)

eseq[τ ](e), smallest subsequence of τ s.t. e ∈ eseq[τ ](e) ∧ ∀epo→po
τ e (epo ∈

eseq[τ ](e) ∧ ∀e′→co
τ epo, e

′ ∈ eseq[τ ](e)).
(note, for an initial event Io, eseq[τ ](Io) = 〈〉)

nseq-bkwd[τ ](er, v) , eseq[τ−τ ′](ew) ⊕ eseq[τ−τ ′](er) ⊕ w.er ⊕ δ̄n(s[τ ′])

(where, τ ′ = pre[τ ](er, v), and w = 〈〉, if ew = lastW[τ ′](er); w = ew, otherwise)

δ̄n(s[τ ]) represents the next sequence of δ ∈ ∆(s[τ ]) that is currently being explored,

for example, in Figure 4.4(c), δ̄n(s[b]) = a and c.d.a in τ2 and τ3 respectively.

(c)

Figure 4.5: Computation of (a) well-formed sequence, (b) next sequence using
forward-analysis, (b) next sequence using backward-analysis

a subsequence a.b that mandates the read of value 1 for b. As a result, for this

backward-analysis, the accurate next sequence is c.d.a.b.

The computation of coherent and accurate δn using forward-analysis is formally pre-

sented as nseq-fwd[τ ](ew, er) in Figure 4.5(b), where a read er reads from the last

performed write or from an enabled write (ew) by following it in execution order.

On the other hand, the computation of δn using backward-analysis requires a more

elaborate construct that is formally discussed below.

Consider the event relations program-order (poτ ), reads-from (rfτ ) and coherence-order

(coτ ) on the events of a sequence τ , defined in Figure 4.5(a). Let a sequence τ be
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well-formed if (i) coτ is irreflexive, and (ii) rfτ is feasible under sequential consistency.

Let ⊕ represent the well-formed join to two well-formed sequences, formally defined

in Figure 4.5(a).

A coherent and accurate δn, where er reads from ew, is computed using backward-

analysis, at a state s[τ ′] = pre[τ ](ew, er), by the well-formed join of four sequences: (i)

a sequence that enables ew after τ ′ (computed using enabling sequence, eseq[τ−τ ′](ew),

defined in Figure 4.5(c)); (ii) a sequence that enables er after τ ′ (computed similarly

using eseq[τ−τ ′](er)); (iii) a sequence where er reads from ew; and, (iv) given that δ ∈
∆(s[τ ′]) is currently being explored from s[τ ′], its next sequence δn. The computation

is formally presented as nseq-bkwd[τ ](ew, er) in Figure 4.5(c).

To illustrate the computation of δn using backward-analysis, consider the analysis

after τ1 in Figure 4.4(c) for read d to read from Ix; pre[τ1](Ix, d) = s[〈〉], accordingly,

eseq[τ1−〈〉](Ix) = 〈〉, and eseq[τ1−〈〉](d) = c.d, thus, nseq-bkwd[τ1](Ix, d) = 〈〉 ⊕ c.d ⊕ 〈〉.d
⊕ a.b = c.d.a.b.

Note that, in including the the next sequence of δ that is being explored from s[τ ′] as

sequence (iv), ViEqui avoids redundant explorations with other sequences explored

from s[τ ′]; for instance, in the above example by including a.b in the computed se-

quence c.d.a.b, ViEqui mandates the read of value 1 for b, which subsequently avoids

the exploration of the class corresponding to b=0, d=0. This class is explored from

s[〈〉] in the execution τ3, from another directive at s[〈〉], i.e. (b, (b, 1)).

Succinct representation of exploration summary. ViEqui summarizes the com-

binations of read events and corresponding values read in other explorations for a

scheduling directive (δ) as a boolean formula (δφ). The formula can be formally pre-

sented by the following grammar.

L := > | ⊥ | (er, v)

φ := L | L ∨ L | L ∧ L

The boolean constants true and false are represented by > and ⊥, respectively. The
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simplify(δφ, (er, v)), the resulting formula after replacing (er, v) with > and
(er, v

′) with ⊥ in δφ, where v′ 6= v

(er, v)
δφ , simplify(δφ, (er, v)) = >

(er, v) 6
 δφ , simplify(δφ, (er, v)) 6= >

summary[τ ](δn) ,
∨
l∈L l

where L = {(er, v) | ∃τ ′ prefix of τ , ∃er ∈ ERδn s.t. (er, v)
δ̄φ(s[τ ′])}

δ̄φ(s[τ ]) represents the δφ boolean formula of δ ∈ ∆(s[τ ]) that is currently being explored,

for example, in Figure 4.4(c), δ̄φ(s[b]) = ⊥ and (d, 1) in τ2 and τ3 respectively.

Figure 4.6: Notations and operations on boolean formula δφ

literal (er, v) is a shorthand notation for a predicate that evaluates to true when value

of er is v and evaluates to false when value of er is not v. Figure 4.6 defines notations

and operations on δφ. The operation simplify(δφ, (er, v)) simplifies the formula by

assuming er reads v and thus, replaces literal (er, v) with > and literal (er, v
′) with

⊥, where v 6= v′. The notation (er, v)
δφ represents that the literal (er, v) is a model

of δφ, and the notation (er, v) 6
δφ represents its negation.

To compute an accurate δφ using forward-analysis, ViEqui relies on the fact that a

scheduling directive is created for each value of enabled writes (and the current value

at a state) that can be read by a read er. Thus, δφ corresponding to a directive for

a read er to read v, is computed such that for each value v′ 6= v that can be read by

er using forward-analysis, (er, v
′)
δφ.

As an example recall the forward-analysis at s[〈〉] in Figure 4.4(c). For each of the

two computed scheduling directives, δ ∈ {(a.b, (b, 0)), (b, (b, 1))}, (b, v)
δφ, where v

represents the value of b read from the other directive.

Similarly, in case of backward-analysis after the execution sequence τ , for a read er

to read value v from a write ew, δφ is computed such that, for each value v′ 6= v,

of other writes of the same object in τ , (er, v
′)
δφ. Since a directive is created by

backward-analysis for er to read each such value v′, ensuring (er, v
′)
δφ summarizes

the same. Additionally, literals of the form (e′r, v
′′) on read events e′r of δn from τ
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also satisfy δφ. In including such literals in δφ, ViEqui carries forward the exploration

summary of τ to the newly computed directive. The computation of such summary

of τ is formally presented as summary[τ ](δn) in Figure 4.6.

As an example recall the backward-analysis after τ1 in Figure 4.4(c) for d to read 0

from Ix, where the computed directive is (c.d.a.b, (b, 0)∨(d, 1)). The literal (d, 1)
(b, 0)∨
(d, 1), where value 1 is the value of another write a in τ1, and is explored by other

directives at s[〈〉], i.e. (a.b, (b, 0)) and (b, (b, 1)). Also, the literal (b, 0)
(b, 0) ∨ (d, 1),

that carries forward the summary that value 0 for b is explored from another directive

at s[〈〉], i.e. (b, (b, 1))

The computation of δφ, of a scheduling directive δ, is formally presented as a part of

forward-analysis and backward-analysis, in §4.3.2.

Step 2. Addition of the computed scheduling directives to ∆(s[τ ])

Scheduling directives of a sequence are computed independently of scheduling di-

rectives of other sequences and may redundantly explore the same view-equivalence

classes. To prevent such redundant exploration and ensure soundness and complete-

ness, the set of scheduling directives computed across different execution sequences

from s[τ ], we introduce a coherent-union operator (represented as ]), that combines

a newly computed δ = (δn, δφ) with ∆(s[τ ]). The operation ∆′(s[τ ]) = ∆(s[τ ])]δ is

defined with the following properties.

1. ∆′(s[τ ]) 6= {}.

2. properties concerning δn.

(a) Each δ′n, δ′′n corresponding to δ′, δ′′ ∈ ∆′(s[τ ]) explore distinct view-equivalence

classes.

(b) The same set of view-equivalence classes are explored by extending the

next sequences of ∆(s[τ ]) ∪ {δ} and ∆′(s[τ ]).

3. properties concerning δφ
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Initially x = 0, y = 0
a: W (x, 1) b: W (x, 2) c: R(y)

d: R(x)
(a)

s[〈〉]
{(a,⊥),

(c.d.a, (d, 1) ∨ (d, 2))}

s[a]
{(b,⊥),

(c.d.b, (d, 2))}
s[c]{(d.a.b,

(d, 1) ∨ (d, 2))}

s[a.b]{(c,⊥)}
s[a.c]{(d.b,

(d, 2))}

s[c.d]{(a,⊥)}

s[a.b.c]{(d,⊥)}
s[a.c.d]{(b,⊥)}

s[c.d.a]{(b, (b, 0))}

s[a.b.c.d]{}
s[a.c.d.b]{}

s[c.d.a.b]{}

(τ1) (τ2) (τ3)

a c

b c d

c d a

d b b

(b)

Figure 4.7: 2W1R. (a) input program, (b) exploration by ViEqui

(a) For each δ′′ ∈ ∆′(s[τ ]), δ
′ ∈ ∆(s[τ ]) ∪ {δ} s.t. δ′′n can also extend to explore

a view-equivalence class of δ′n, for each er ∈ ERδ′n ∩ E
R
δ′′n

, if (er, v)
δ′φ then

(er, v)
δ′′φ.

(b) For each δ′′ ∈ ∆′(s[τ ]), if (er, v)
δ′′φ then ∃δ′ ∈ ∆(s[τ ]) ∪ {δ} s.t. δ′′n can

explore a view-equivalence class of δ′n.

Consider the program given in Figure 4.7(a) and its exploration by ViEqui in Fig-

ure 4.7(b). ∆(s[〈〉]) is computed using ] after various executions as:

after τ1: {(a,⊥)} ] (c.d.a, (d, 2)) = {(a,⊥), (c.d.a, (d, 2))}

after τ2: {(a,⊥), (c.d.a, (d, 2))} ] (c.d.a, (d, 1)) = {(a,⊥), (c.d.a, (d, 1) ∨ (d, 2))}

Backward-analysis after τ1 for d from Ix computes a scheduling directive (c.d.a, (d, 2))
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Initially x=0
a: W (x, 0) b: W (x, 1) c: W (x, 1) d: W (x, 2) e: R(x)

Figure 4.8: example of forward-analysis

1 Function fwd(explored sequence τ , read event er): /* let o = obj(er) */

2 Wo := {ew ∈ EW ∩ En(s[τ ]) | obj(ew) = o}
3 W := unique[τ ](W

o\done[τ ](er)) /* co-enabled and unique in value */

4 if lastW[τ ](er)6 
δ̄φ(s[τ ]) then /* include current value in W */

5 W := W ∪ {lastW[τ ](er)}
6 forall ew∈W do
7 δn := nseq-fwd[τ ](ew, er) /* event sequence for ew→rf

τ er */

8 δφ :=
∨
e′w∈W\{ew}

(er, val[τ ](e
′
w)) /* execution summary */

9 ∆(s[τ ]) ]= (δn, δφ) /* add to scheduling directives */

that is added to s[〈〉]. A similar backward-analysis after τ2 computes a scheduling direc-

tive (c.d.a, (d, 1)). To avoid redundant exploration from the two scheduling directives,

ViEqui combines the them into (c.d.a, (d, 1) ∨ (d, 2)) using ], as shown above.

The resulting ∆(s[〈〉]), shown at s[〈〉] in Figure 4.7(b) satisfies the aforementioned

properties (1), (2) and (3).

4.3.2 ViEqui algorithm

Forward-analysis and backward-analysis intuitively introduced earlier in this section

are formally presented as functions fwd and bkwd respectively.

The functions fwd and bkwd use δ̄φ(s[τ ]) to represent δφ of δ ∈ ∆(s[τ ]) that is cur-

rently being explored. Further, the functions use done[τ ](er) to represent a set on

write events that includes writes whose values are read in some other sequence or

can be read at τ ; formally, done[τ ](er) = {ew ∈ (EWτ ∪ En(s[τ ])) ∩Wo | val[τ ](ew) =

val[τ ](lastW[τ ](er)) ∨ (er, v)
δ̄φ(s[τ ])}, where Wo represents writes of object obj(er).
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1 Function bkwd(program execution τ , read event er): /* let o = obj(er) */

2 Wo
τ := {ew ∈ EWτ | obj(ew) = o}

3 W := unique[τ ]({ew ∈ Wo
τ ∪ Io | nseq-bkwd[τ ](ew, er) 6= 〈〉}\done[τ ](er))

4 forall ew∈W do /* writes of τ, unique in value */

5 δn := nseq-bkwd[τ ](ew, er) /* event sequence for ew→rf
τ er */

6 δφ :=
∨
e′w∈W\{ew}

(er, val[τ ](e
′
w)) ∨ summary[τ ](δn) /* exn. summary */

7 ∆(pre[τ ](ew, er)) ]= (δn, δφ) /* add to scheduling directives */

Forward-analysis

The function fwd computes a set of enabled writes Wo that are of object o, same as

that of the read er (line 2). Further from the set Wo, the function computes a subset

W unique in value. The subset contains writes of Wo that are not in done[τ ](er) (line

3). If the value of lastW[τ ](er) is not explored in some other sequence then it is also

included in W (lines 4-5). After computing the set W, function fwd computes the

next event sequence (line 7) and corresponding exploration summary (line 8) for each

write in W as explained in §4.3.1. Finally, the computed directive for each write in

W is added to ∆(s[τ ]) (line 9).

Consider the program in Figure 4.8, ViEqui performs forward-analysis at the initial

state for read e. The set done[〈〉](e) = {a}, since the value of a is same as the

current value of x; accordingly, W = unique[〈〉]({b, c, d})∪{Ix} = {Ix, b, d} or {Ix, c, d}.
Assuming W = {Ix, b, d}, lines 6-9 compute and add (e, (e, 1) ∨ (e, 2)), (b.e, (e, 0) ∨
(e, 2)) and (d.e, (e, 0) ∨ (e, 1)) to s[〈〉].

Backward-analysis

The function bkwd computes a set Wo
τ of writes of τ that are of object o (line 2).

Further from the set Wo
τ , the function computes a subset W unique in value. The

subset contains writes of Wo
τ that are not in done[τ ](er) such that a well-formed

next sequence can be formed for er to read from ew ∈ W (line 3). Function bkwd

then computes the next event sequence (line 5) and the corresponding exploration
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Algorithm 1: ViEqui algorithm (Initially Explore(〈〉, (〈〉,⊥)))

1 Function Explore(explored sequence τ , to explore (δn, δφ)):
2 if En(s[τ ]) = ∅ then /* maximal sequence explored */

3 forall er∈ERτ do bkwd(τ, er) /* do backward-analysis and return */

4 return

5 if δn 6= 〈〉 then /* has sequence to explore (δn) */

6 ∆(s[τ ]) := (δn, δφ)
7 Explore(τ.δn:hd, remaining(δ)); return /* explore next in δn */

8 else /* find next event to explore */

9 if ∃er ∈ ER s.t. |co-en[τ ](er)| > 0 then
10 fwd(τ ,er) /* forward-analysis possible on er */

11 else /* forward-analysis not possible */

12 e := pickAny(En(s[τ ])) /* pick any enabled event to explore */

13 ∆(s[τ ]) := (〈〉.e, ⊥) /* scheduling directive to explore e */

14 forall (δ′n, δ
′
φ) ∈ ∆(s[τ ]) do /* explore all scheduling directives */

15 Explore(τ.δ′n:hd, remaining(δ′n))

where, (i) for a sequence τ = e1.e2...en, τ :hd = e1 and τ :tl = e2...en.
(ii) remaining(δ) = (δn:tl, simplify(δφ, (δn:hd, val[τ ](δn:hd)))).

(iii) co-en[τ ](er) = En(s[τ ]) ∩ EW of obj(er), if er ∈ En(s[τ ]); and {}, otherwise.

summary (line 6) for each write in W as explained in §4.3.1. Finally, the computed

directive for each write in W is added to ∆(s[τ ′]), where s[τ ′] = pre[τ ](ew, er) (line 7).

Consider again the backward-analysis after τ1 in Figure 4.4(c) for d to read from Ix.
The set done[〈〉](e) = {a}, since the value of a is read by d in τ1; accordingly, W =

unique[τ1]({Ix}) = {Ix}; further lines 4-7 compute and add (c.d.b.a, (b, 0) ∨ (d, 1)) to

pre[τ1](Ix, d) = s[〈〉] using ].

The ViEqui algorithm

The algorithm takes an explored sequence (τ) and a previously computed scheduling

directive to be explored (δn, δφ). If there are no enabled events at s[τ ], then the

algorithm has explored a maximal sequence (line 2). As a final step, the algorithm

performs backward-analysis for each read event of τ (line 3). If there are enabled

events then the algorithm continues to explore and add scheduling directives (lines 5-
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15). If the algorithm is in the middle of exploring a scheduling directive (i.e. δn 6= 〈〉),
then it executes the next event in δn (line 7). Additionally, a directive is computed

for the next state to continue the exploration of the current scheduling directive.

The directive for the next state is computed on the remaining next sequence and

simplifying the corresponding formula using the values read by next event of δn (line

7). If the algorithm is not exploring a scheduling directive (i.e. δn = 〈〉), then it

chooses an enabled event to proceed (lines 9,12). The algorithm first looks for an

enabled read with co-enabled writes, for feasible forward-analysis (line 9-10). If

there does not exist such a read then any enabled event is selected to proceed (lines

12-13). Finally, all scheduling directives computed by this algorithm and also by

forward- and backward-analyses are explored from s[τ ] (lines 14-15).

Soundness, completeness and optimality of ViEqui

Let Π represent the set of view-equivalence classes of the input program, and let E be

the set of executions explored by ViEqui. We use JτK to denote the view-equivalence

class represented by the sequence τ .

Theorem 3. ViEqui is complete. ∀τ ∈ E, ∃π ∈ Π s.t. JτK = π.

(each maximal sequence explored by ViEqui represents a view-equivalence class of

the input program.)

Proof. Given that ViEqui is an SMC, the technique can only execute an enabled

event at each state of exploration s[τ ′]. Thus, the theorem can be restated as:

for each states of exploration s[τ ′], ∀δ ∈ ∆(s[τ ′]), δn can be explored from s[τ ′], i.e.

∀e ∈ δn s.t. δn = τ1.e.τ2, e ∈ En(s[τ ′.τ1]).

Case 1. ∆(s[τ ′]) is formed using forward-analysis.

⇒ ∀e ∈ δn, e ∈ En(s[τ ′]). (by construction of sequences using forward-analysis)

Case 2. ∆(s[τ ′]) is formed by backward-analysis. δn is formed by the well-formed join

(⊕) of enabling-sequences and δ̄n(s[τ ′]), defined in Figure 4.5(c).

∀e ∈ τ ′, where, τ ′ is an enabling sequence, e is enabled after its prefix in τ ′ (by
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definition of enabling sequences), similarly, ∀e ∈ δ̄n(s[τ ′]), e is enabled after its prefix

in δ̄n(s[τ ′]) (since, δ̄n(s[τ ′]) is previously explored from s[τ ′]).

As a consequence, an event e in δn is not enabled after its prefix in δn

⇒ well-formed join of enabling sequences and δ̄n(s[τ ′]) does not enable e after it prefix

in δn.

⇒ a program branch that does not contain e will be explored by δn.

⇒ ∃ a read er in the prefix of e in δn s.t. val[δn](er) 6= val[δ̄n(s[τ ′])]
(er), or val[δn](er) 6=

the value read in the corresponding enabling sequence.

⇒ coδn 6= coδ̄n(s[τ ′])
∪ coτe (where, τe represents the enabling sequences).

⇒ the result of well-formed join = 〈〉. (by definition of ⊕) ⇒ δn is not formed by

backward-analysis.

Hence, by contradiction, ViEqui is complete. �

Theorem 4. ViEqui is sound. ∀π ∈ Π, ∃τ ∈ E s.t. JτK = π.

(for each view-equivalence class of the input program there exists a maximal sequence

explored by ViEqui.)

Proof. Consider a state s[τ ′] s.t. a read er can read the value v after s[τ ′]. (cond1)

Let o = obj(er). Let ∃τ ∈ E s.t. τ ′ is prefix of τ .

Assume,

(A1) er is enabled in τ ⇒ ∃τ ′′ s.t. τ ′.τ ′′.er is a prefix of τ .

(A2) ∃ew ∈ EWτ ∪ Io s.t. val[τ ](ew) = v.

(A3) ∀ states s[τi], ∀δi ∈ ∆(s[τi]), δiφ = ⊥, representing an absence of exploration

summary at each state.

There exist three cases for ew in τ , (i) ew ∈ Eτ ′.τ ′′ ∪ Io (explored before er), (ii)

ew ∈ En(s[τ ′.τ ′′]) (enabled with er), and (iii) not cases (i) and (ii) (explored after er).

• In case (i), if ew = lastW[τ ](er), and in case (ii), forward-analysis computes a

scheduling directive δ = (δn, δφ) s.t. val[δn](er) = v.
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• In case (i), where ew 6= lastW[τ ](er), and in case (iii), (cond1)⇒ nseq-bkwd[τ ](ew, er)

6= 〈〉, thus, backward-analysis computes a scheduling directive δ = (δn, δφ) s.t.

val[δn](er) = v.

Hence, in the absence of exploration summary (assumption A3), forward- and backward-

analysis compute a scheduling directive δ for er to read v. inf(1)

Further, let us relax the assumption A3.

Let @ τ ∈ E where τ ′ is a prefix of τ and val[τ ](er) = v.

inf(1) ⇒ ∀δ ∈ ∆(s[τ ′]) either (er, v)
δφ, or (er, v)6
δφ but val[δn](er) 6= v.

Consider a scheduling directive δ ∈ ∆(s[τ ′]).

• (er, v)
δφ and δ is computed using forward-analysis ⇒ ∃δ′ ∈ ∆(s[τ ′]) s.t.

val[δ′n](er) = v. (by construction of δφ using forward-analysis).

• (er, v)
δφ and δ is computed using backward-analysis ⇒ er ∈ δn (by construc-

tion of δφ using backward-analysis) ⇒ δ is computed to explore value v′ for

er from an execution where er reads v, where v′ = val[δn](er) (by definition of

backward-analysis).

• If (er, v) 6
δφ but val[δn](er) 6= v ⇒ backward-analysis computes a scheduling

directive δ′ = (δ′n, δ
′
φ) s.t. val[δn](er) = v (using inf(1)).

Using properties (1), (2)(b), and (3)(b) of ], we know that the view-equivalence

classes of a δ computed using forward- or backward-analysis will not be omitted

because of ].

Thus, by contradiction ViEqui is sound under assumptions A1 and A2.

Corollary 1. Since every value that can be read by a read event at a state is explored

by ViEqui, it implies that ViEqui explores every branch in the control flow graph of

the input program.

Using the corollary stated above, the assumptions A1 and A2 always hold. �
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Theorem 5. ViEqui is optimal. @τ1, τ2 ∈ E, where τ1 6= τ2, s.t. Jτ1K = Jτ2K.
(no two execution sequences explored by ViEqui belong to the same view-equivalence

class.)

Proof. Using properties (1) and (2)(a) of ] we can state that scheduling directives

at a state s[τ ], cannot result in redundant explorations. inf(1)

Further, let ∃δ ∈ ∆(s[τ ]) and ∃δ′ ∈ ∆(s[τ ′]), where τ 6= τ ′, such that δ and δ′can

extend to representative executions of the same view-equivalence class.

The property (3)(a) of ] ensures that the exploration summary δφ computed for a

scheduling directive (δ) from a sequence τ is carried forward to each δ′ computed from

exploration of δ. As a result, property (3)(a) of ] prevents redundant execution of τ .

However, consider the computation of δ ∈ ∆(τ) and δ′ ∈ ∆(τ ′) from two executions

where neither one is computed during the exploration of the other execution. Assume

that δ and δ′ can both explore a view-equivalence class.

Since, all explorations start at a unique initial state s[〈〉]

⇒ ∃τ1 in prefix of both τ and τ ′.

∃δ1, δ
′
1 ∈ ∆(s[τ1]) that extend τ1 to τ and τ ′ respectively. The directives δ1 and δ′1

explore distinct view-equivalence classes. (using inf(1) at s[τ1])

Thus, δ and δ′ can both explore a view-equivalence class

⇒ that τ is a subsequence of δn or τ ′ is a subsequence of δ′n.

⇒ s[τ ] or s[τ ′] is a hidden state (refer to §4.3.1).

⇒ δ1n = δn − τ can only explore the view-equivalence classes of δ, and δ1
′
n = δ′n − τ ′

can only explore the view-equivalence classes of δ′.

Hence, by contradiction, ViEqui is optimal. �

4.3.3 Time and Space complexity

Consider the following observations.
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(o1) Each complete exploration of the input program (exploration of all equivalence

classes) may have at most |V||ER| maximal sequences. This computation includes

a maximal sequence for each combination of |V| values for each read event,

where in the worst case all such combinations are feasible.

(o2) Given the optimal nature of the algorithm, the maximum number of scheduling

directives computed by forward- and backward-analysis is |V||ER|.

Worst-case time complexity. The worst-case time complexity of forward-analysis

is F = O(|T|2 + |T|.log(|V||ER|)) where the component |T|2 corresponds to the com-

putation of the scheduling directives for each write in W (line 3, forward-analysis,

module 1) and the component |T|.log(|V||ER|) corresponds to the computation of W.

The worst-case time complexity of backward-analyses, function bkwd (module 2) is

B = O(|EW|.(|τ |3 + |V||ER|.|τ |)). The component |τ |3 corresponds to the computation

of nseq-bkwd (line 5), and component |V||ER|.|τ | corresponds to the computation of ]
(line 7). The computations are done for each relevant write event.

The complexity analysis of forward- and backward-analyses is detailed in Appendix 1.

The ViEqui algorithm (Algorithm 1) computes forward- and backward-analyses for

each read event in a sequence.

Thus, the complexity of exploring one maximal sequence is O(|ER|.(F +B)) and the

complexity of the ViEqui algorithm is O(|V||ER|.|ER|.(F + B)).

Best-case time complexity. The best-case time can be achieved by the ViEqui

algorithm in case of exclusive forward-analysis. Under such a case the computation of

done would be reduced to O(log(|ER|.|V|)) due to the construction of boolean formula

by forward-analysis.

As a result, the best-case time complexity of the algorithm is θ(|T|2+|T|.log(|ER|.|V|)).

Worst-case space complexity. Given observations (o1) and (o2), in the worst-

case, the number of scheduling directives at a state may be |V||ER|, if each of those

scheduling directives is formed at the same state.
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Further, if the state where |V||ER| scheduling directives are formed is the initial state,

then, in the worst-case the length of each scheduling directive may be |E| i.e. the

length of a maximal sequence (feasible when scheduling directives are formed with

backward-analysis alone). However, in such a case the scheduling directives at the

remaining states would be computed by line 12 of Algorithm 1 and thus, would be

sub-sequences of a scheduling directive of the initial state.

As a result, for each maximal sequence the size of scheduling directives can be com-

puted as |E|+ (|E| − 1) + (|E| − 2) + ...+ 1 = |E|.(|E|+ 1)/2. Given |V||ER| maximal

sequences, each with scheduling directives of size |E|.(|E|+1)/2, the space complexity

of the algorithm, in the worst-case, is O(|E|2.|V||ER|).

Best-case space complexity. Assuming all |V||ER| combinations of read events

and their corresponding values are feasible then, in the best-case, each of the |V||ER|

scheduling directives can be computed using forward-analysis. As the result, the

lengths of the scheduling directives are constant in size (≤2), by design. Thus, given

|V||ER| maximal sequences, each with scheduling directives of constant size, the space

complexity of the algorithm in the best-case is θ(|V||ER|).

4.4 Implementation details of ViEqui SMC

The implementation of the ViEqui technique consists of two major components,

1. an execution component responsible for executing the input program for each

maximal sequence explored by the technique, and

2. an analysis component that applies Algorithm 1 on the executing program and

controls the interleaving order to ensure execution of the desired sequence.

For each maximal sequence the execution component restarts the input program and

awaits directives on the next program instruction to execute. After executing a pro-

gram instruction the component returns back with the set of next available program

instructions (the instructions made available on execution of the last instruction).
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Figure 4.9: Structural overview of ViEqui tool

The set of available program instructions are interpreted as program events and pro-

vided to the analysis component which in turn chooses the next event to execute as

per Algorithm 1. The next event is suitably interpreted as the program instruction

to execute for the execution component.

The process continues till a maximal execution is executed or a violation of a safety

property is detected. Further, the execution component restarts the input program

for the next sequence to be explored when directed by the analysis component (i.e.

when there are unexplored scheduling directives).

The key modules of the implementation design are presented in Figure 4.9 and dis-

cussed below.

• Instrumentation. As the first step, the implementation performs a source-

to-source transformation of the input program called instrumentation. The
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instrumentation inserts code in the input program at relevant control points

such as memory access, thread creation, thread join, assert condition etc.

The instrumentation calls respective modules on reaching the relevant control

points to supply data for the analyses and receive execution instructions. The

instrumentation, thus, allows ViEqui tool to take control of the interleaving

order to realize the desired execution sequence. The instrumentation preserves

program behaviors.

• Runtime Engine. The runtime engine executes the instrumented program as

per the directed execution order.

• Scheduler. The scheduler implements the ViEqui technique. At each explo-

ration state the technique receives a fresh set of enabled events and chooses the

next event to transition on.

• Interpreter. The interpreter forms the communication channel between the

runtime engine and the scheduler. The modules called by the instrumentation,

on reaching the relevant control points, belong to the interpreter.

The interpreter translates the information flowing between the runtime engine

and the scheduler (for instance mapping of program instructions and corre-

sponding events).

4.4.1 Tool description

The implementation of the ViEqui technique is done in C++ language over Nidhugg [71]

tool. The tool takes a C or C++ program as input and uses the pthread library for

multi-threading. The intermediate representation of the source program generated

after compilation is instrumented using LLVM. The instrumentation performs a source-

to-source transformation of the intermediate representation by inserting suitable calls

to interpreter modules. The tool detects the violations of safety properties provided

as assert statements in the input program.
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Initiating the verification of an input program on ViEqui tool invokes a central control

unit called the trace builder. The trace builder invokes the runtime engine and starts a

fresh execution. The trace builder further launches the interpreter and the scheduler.

The interpreter receives the initial set of enabled events and communicates the set to

the scheduler.

The interpreter then starts the exploration and invokes the scheduler requesting for

the next event to execute. The scheduler then applies the ViEqui technique on the

set of enabled events to form suitable scheduling directives and returns the next event

to be executed as per the technique’s analysis. The interpreter in turn instructs the

Runtime Engine to execute the corresponding thread and gather a fresh set of enabled

events that are further communicated to the scheduler.

The trace builder monitors the execution and detects violations of assert conditions.

The tool halts on detecting an assert violation and returns a bug trace, i.e. an event

sequence leading to the assert violation.

If the tool explores a maximal sequence (no assert condition in the input program

was violated) then the scheduler identifies a state s[τ ], where τ is the longest prefix of

the maximal sequence such that s[τ ] has an unexplored scheduling directive. If such

a state exists the the trace builder restarts the input program and the interpreter

and scheduler are given the initial set of enabled events. However, for a restarted

execution the scheduler returns the events of the prefix τ , in the order of occurrence

in τ , on iterative invocations from the interpreter till it reaches the state s[τ ]. At s[τ ]

the scheduler returns the next event of the next sequence of an unexplored scheduling

directive.

Supported data-types and operations

The tool supports atomic and non-atomic data-types and all data structures. The

tool further supports the following operations on global variables (program events):

read, write and the following rmw operations, fetch-and-add, fetch-and-subtract, fetch-

and-and, fetch-and-nand, fetch-and-or, fetch-and-xor, fetch-and-max, fetch-and-min,
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exchange and compare-and-exchange. The tool supports all operations on local vari-

ables. The support for coarse-grained locking is supported through the pthread-mutex

synchronization primitive.

Support for read-modify-write events

The tool supports rmw events (refer to 2) by considering an rmw event as a combination

of a read event followed by a write event. As a consequence, the implementation

reuses the infrastructure for read and write events. However, the implementation

performs additional analysis to ensure atomicity of the read and the write event

corresponding to an rmw event, such as (i) ensuring both the read and the write

belong to a scheduling directive on an rmw event, and (ii) the write event of an rmw

event is explored immediately after the corresponding read event, further all relevant

analysis on the memory location occur only after the occurrence of the write event.

Write value of rmw events. A fundamental difference between a general write

event and the write event corresponding to an rmw event is that the value of a

general write event is known when the write event is enabled (refer to 2). The same

does not hold for the write event of an rmw event whose value is computed after

its corresponding read event gets its value. As a consequence, the implementation

performs dry computation after the read of an rmw event to compute the write value

of the already enabled corresponding write event.

Modification to computation of next sequences. Consider the input program

in Figure 4.10(a), the program contains two fetch-and-add(FAA)2instructions from

different threads. The instructions are handled as separate read and write events

by the ViEqui tool as shown in Figure 4.10(b). Since the write values of the events

are not known until the execution of the corresponding read components, the write

values are represented as v1 and v2 respectively.

Figure 4.10(c) shows an execution sequence of the program where the red values in

2A fetch-and-add instruction FAA(x, v) reads the value of the memory location x, add the value
v to the value read for x and writes the updated value back to the memory location x.
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Initially x = 0
a: FAA(x, 1) b: FAA(x, 2)

(a)

Initially x = 0
a1: R(x) b1: R(x)
a2: W (x, v1) b2: W (x, v2)

(b)

τ1 = s[〈〉] s[a1] s[a1.a2] s[a1.a2.b1] s[a1.a2.b1.b2]
a1(0) a2

v1=1

b1(1) b2

v2=3

(c)

Figure 4.10: 2FAA

bracket represent the values read by the read components of the rmw events and the

concrete values for v1 and v2 are shown in red, below the corresponding write event

labels.

Two backward analyses will be performed in the sequence corresponding to (i) the

initial value 0 for the read event b1, and (ii) the value 3 (from b2) for the read event

a1. No scheduling directive would be formed for analysis (ii) due to the coherence

dependence of b2 on a1. Also, no scheduling directive would be formed for analysis

(i) as a well-formed join for b1 to read 0 and a1 to read 0 would result in 〈〉. The

result of analysis (i) is incorrect and would lead to a fail of completeness.

The above stated condition occurs as a consequence of considering an rmw event as

two separate events. To fix the error of analysis ViEqui tool considers the schedul-

ing directive being explored at state s as (〈〉,⊥) if the conjunction of the following

conditions is met;

1. forward-analysis was performed at s,

2. the forward-analysis was performed for the read of an rmw event, and

3. the event for which the backward-analysis is being performed is an rmw event.
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4.5 Experiments and Results on ViEqui SMC

4.5.1 Experimental setup

The experiments are conducted on an Intel(R) Xeon(R) CPU E5-1650 v4 @ 3.60GHz

with 32GB RAM and 32 cores running Ubuntu 20.04.1 LTS. LLVM 6.0.0 is used for

to perform the instrumentation.

The performance of ViEqui is compared against two techniques that claim optimal-

ity of exploration under their respective equivalence relation, namely, ODPOR [1] and

ODPOR-with-observers (obs-ODPOR) [19]. The technique ODPOR claims optimal-

ity under the classical notion of equivalence and the technique obs-ODPOR claims

optimality under equivalence based on observed races.

Further, ViEqui is also compared against a non-optimal technique that uses read

values to define equivalence called RVF-SMC [12]. The technique is based on reads-

value-from equivalence.

All the four techniques, ODPOR, obs-ODPOR, RVF-SMC, and ViEqui are built on

the Nidhugg [71] tool. The implementation of the techniques are structurally similar

(refer to Figure 4.9). The scheduler modules, of the respective implementations, carry

out the steps of the corresponding techniques and the interpreter modules may be

suitably adapted.

4.5.2 Litmus testing

ViEqui is tested on 16,154 litmus tests of multi-threaded C programs, focusing on

(i) reporting assert violations: if there exists a program execution that violates

an assert condition then the ViEqui tool generates a bug trace;

(ii) completeness: if the ViEqui tool explores a maximal sequence then the se-

quence represents a valid execution of the input program;
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(iii) optimality: the ViEqui tool does not explore a redundant maximal sequence.

Identifying failure in detecting assert violations. For the set of litmus tests, if

an assert condition for a test may violate in some program execution, then ViEqui

must report an assert violation. The set of tests where an assert condition may violate

is known for the set of litmus tests. Note that, as the set of equivalence classes or

the set of all feasible executions is not known a priori, ViEqui uses assert violations

to test the soundness of the implementation.

Identifying failure of completeness. Given that the input program is indeed

executed (and not symbolically inspected) for every sequence explored by the algo-

rithm, a successful completion of an execution implies that the sequence explored

truly represents a program execution. Thus, a completeness failure occurs when a

next sequence scheduled to be explored from a state of exploration cannot be trans-

lated to an execution, for instance, when the next event in the sequence is not enabled

or does not represent a program event.

Identifying failure of optimality. After exploration of a maximal sequence,

ViEqui saves the trace signature as a set of (event, value) pairs representing the read

events of the trace along with the corresponding values read in the trace. ViEqui then

compares the trace signatures using Definition 3. An optimality fail occurs when the

trace signatures of two traces are equal, implying that the corresponding sequences

are equivalent according to Definition 3 and represent the same equivalence class.

Litmus tests

The 16,154 litmus tests contain tests borrowed from previous work, modifications of

borrowed tests and synthesized tests.

8,058 tests are borrowed from [9], a SMC called obs-ODPOR, based on equivalence

of observed races. The entire set of 8,058 tests borrowed from [9] has an assert

condition in the input program that is not violated in any program execution. The

assert condition in the 8,058 tests is negated to generate another 8,058 tests where
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Table 4.2: Litmus Tests

Category #tests Avg. #Seq Avg. Time Total #Seq Total Time #complete+optimal
No assert violation 8091 10.15 0.02s 82124 171.71 8091
Has assert violation 8063 1.00 0.017 8066 137.87 8063

the assert condition is violated in some program execution. The remaining 38 tests

are synthesized to test various features of the ViEqui algorithm. The average length

of litmus tests is 68.46 lines of code.

The results of litmus testing is summarized in Table 4.2. The results are grouped

under two categories.

1. No assert violation. This category represents the tests where the assert condi-

tion in the input program is not violated in any program execution. For such

cases, ViEqui explores the entire set of equivalence classes (through represen-

tative executions) and provides a proof of correctness of the input program by

showing the absence of assert violation for any equivalence class.

This category includes the original set of 8,058 tests borrowed from [9] and 33

synthesized tests, that is, a total of 8,091 tests.

ViEqui performs complete and optimal exploration for each of the 8,091 tests

of this category.

2. Has assert violation. This category represents the tests where the assert con-

dition in the input program is violated in some execution of the program. For

such cases, ViEqui detects the assert violation and reports a bug trace. ViEqui

halts its exploration at the detection of the first assert violation.

This category includes the 8,058 tests generated by modifying the tests from [9]

(by negating the assert condition) and 5 synthesized tests.

ViEqui detected an assert violation for each of the 8,063 tests of this category.

Column ‘Category’ in Table 4.2 represents the category of the tests, column ‘#tests’

shows the number of tests in the category and column ‘#complete+optimal’ rep-
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resents the number of tests in a category that performed a complete and optimal

exploration.

Columns ‘Total #Seq’ and ‘Avg. #Seq’ show the total and average number of se-

quences explored across the tests of a category respectively, that is, the number of

sequences explored for sound exploration, under the ‘No assert violation’ category,

and to reach the first execution sequence that results in an assert violation, under the

‘Has assert violation’ category.

Similarly, columns ‘Total Time’ and ‘Avg. Time’ show the total and average time of

analysis across the tests of a category respectively. The time of analysis is recorded

over 5 runs for each test.

4.5.3 Performance analysis

The performance analysis of ViEqui is done over challenging benchmarks borrowed

from SV-comp benchmark suite [22], SCTBench benchmark suite [66] and previous

works [9, 19]. The performance is measured on various configurations of each bench-

mark, where the configurations vary on the problem size determined by program

features such as the number of loop unrolls and the number of concurrent processing

elements (or threads). In essence, higher configurations of the benchmarks result in

a higher number of program events.

The performance on the benchmarks is measured on three aspects.

1. Time of analysis. The time taken to verify a configuration of a benchmark

input program.

2. Scalability. The highest configuration of a benchmark that can be verified within

a reasonable time of analysis, also known as Timeout of analysis or simply

Timeout (To), set at 1800 seconds.

3. Number of maximal sequences explored. The number of maximal sequences

analyzed for either a complete exploration (in case the input program does not
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violate an assert condition), or reaching the first assert violation (in case the

input program violates an assert condition).

The performance analysis of ViEqui against that of techniques ODPOR, obs-ODPOR,

and RVF-SMC is presented in Table 4.3 and Table 4.4. Table 4.3 shows the results

on benchmarks where the assert condition is not violated in any program execution.

Similar to the respective category of litmus tests, the techniques explore the entire

set of equivalence classes for such benchmarks and provide a proof of correctness

for the input program. On the other hand, Table 4.4 shows results on benchmarks

where the assert condition in the input program is violated in some execution of the

input program. For such cases, the techniques report the assert violation and halt

the exploration after detecting the first assert violation.

The column ‘benchmark’ of Table 4.3 and Table 4.4 represents the name of the bench-

mark along with its configuration and the column ‘Test ID’ represents a unique ID

for each unique configuration of the benchmarks.

The columns ‘#Seq’ represent the number of sequences explored by the respective

techniques. For Table 4.3 this value represents the number of sequences analyzed by

each technique to explore the entire set of equivalence classes, while for Table 4.4

this value represents the number of sequences analyzed for reaching the first sequence

that leads to an assert violation. Note that, since the techniques ODPOR, obs-ODPOR

and ViEqui claim optimality of exploration, the corresponding columns ‘#Seq’ in Ta-

ble 4.3 represent the number of equivalence classes under the respective equivalence

relations. However, the technique RVF-SMC is non-optimal and thus the column

‘#Seq’ of Table 4.3 corresponding to RVF-SMC also includes redundant explorations

(multiple explorations corresponding to the same equivalence class) and partial ex-

plorations (non-maximal explorations due to inaccuracies in scheduling).

The columns ‘Time’ represent the time of analysis recorded in seconds for each tech-

nique. The value in the columns represents the time of analysis, averaged over 5 runs.

The value ‘To’ represents the timeout of analysis set at 1800s.

Configurations of benchmarks. The configurations of a benchmark vary the prob-
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Table 4.3: ViEqui performance analysis (benchmarks with no assert violation)

test ODPOR obs-ODPOR RVF-SMC ViEqui

ID benchmark #Seq Time #Seq Time #Seq Time #Seq Time

1 pgsql(5,5) 781 0.72 781 0.70 19900 3.06 781 0.73

2 pgsql(6,7) 55987 68.57 55987 77.51 2292077 654.66 55987 183.77

3 pgsql(7,7) 137257 171.45 137257 199.18 5356580 1620.66 137257 933.77

4 monabsex(100) To - To - 101 0.99 1 0.08

5 monabsex(500) To - To - 501 162.84 1 2.80

6 unverif(5,5) 14400 2.74 14400 3.13 68890 11.70 14400 198.61

7 unverif(5,10) 14400 2.98 14400 3.31 70890 12.76 14400 201.80

8 unverif(6,5) 518400 110.60 518400 129.32 2625944 699.47 To -

9 redundant-co(10) To - 12431 3.10 11 0.01 7 0.02

10 redundant-co(50) To - To - 11 0.02 7 0.03

11 redundant-co(1000) To - To - 11 0.11 7 3.59

12 swsc-co1(20) To - To - 8060 14.14 7240 4.93

13 swsc-co1(50) To - To - 125150 1705.93 120100 322.98

14 swsc-co1(60) To - To - To - 208920 764.64

15 swsc-co10(10) To - 10 0.06 11 0.02 10 0.02

16 swsc-co10(100) To - 100 42.17 101 7.46 100 0.60

17 swsc-co10(250) To - 250 1732.37 251 278.73 250 6.83

18 alpha2(100) To - To - 10203 741.98 10101 183.67

19 alpha2(150) To - To - To - 22651 1054.27

20 burns(5) 2353602 1046.92 2353602 1155.09 17382 5.14 36 0.05

21 burns(10) To - To - To - 121 0.31

22 burns(40) To - To - To - 1681 185.75

23 burns(60) To - To - To - 3721 1532.97

24 dekker-simple(10) 739021 420.96 739021 468.19 2713870 704.97 21 0.03

25 dekker-simple(100) To - To - To - 201 32.05

26 dekker-simple(150) To - To - To - 301 288.25

27 dekker-simple(200) To - To - To - 401 1269.84

28 peterson(5) 2782162 1432.44 2782162 1584.59 To - 31 0.04

29 peterson(50) To - To - To - 301 19.63

30 peterson(100) To - To - To - 601 474.40

31 peterson(120) To - To - To - 721 1186.56

32 szymanski(4) 396583 198.87 396583 221.96 1444246 319.78 5335 4.87

33 szymanski(5) To - To - To - 19349 25.81

34 szymanski(7) To - To - To - 264209 659.04

35 nondet-array-2(4,4) 2616 0.89 688 0.32 534 0.08 51 0.04

36 nondet-array-2(6,6) To - 711276 519.29 63491 6.50 2163 2.65

37 nondet-array-2(14,7) To - To - 908984 128.72 18731 90.68
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Table 4.4: ViEqui performance analysis (benchmarks with assert violation)

test ODPOR obs-ODPOR RVF-SMC ViEqui

ID benchmark #Seq Time #Seq Time #Seq Time #Seq Time

38 nondet-array-1(100,100) 1 0.22 1 0.05 1 0.04 1 0.22

39 nondet-array-1(1000,500) 1 0.03 1 0.03 1 0.02 1 0.09

40 tas(20,50) To - To - 23 0.08 3 46.05

41 tas(30,50) To - To - 33 0.15 3 100.51

42 tas(40,50) To - To - 43 0.26 3 178.78

43 IBM-incdec(50) To - To - To - 3 9.36

44 IBM-incdec(100) To - To - To - 3 45.57

45 triangular-2(5) 20172 2.69 20172 3.12 26272 2.41 1576 0.85

46 triangular-2(7) 1695856 266.81 1695856 311.04 644193 70.10 32517 470.08

47 triangular-2(8) To - To - 3045756 360.65.10 To -

48 FreeBSD-abd-kbd 1 0.03 1 0.02 1 0.02 1 0.04

49 FreeBSD-rdma-addr 1 0.02 1 0.03 1 0.01 1 0.03

50 NetBSD-sysmon-power 4 0.03 4 0.02 6 0.02 5 0.05

51 Solaris-space-map 2 0.03 2 0.03 1 0.02 1 0.03

lem size such that higher configurations require a higher effort of analysis. The config-

urations typically vary on the number of concurrent elements (threads), the number

of loop iterations, and the number of read or write events. The configurations of

the benchmarks in Tables 4.3, 4.4 vary on the following aspects.

The configurations of benchmark ‘pgsql’ (test IDs 1-3) vary on the number of loop

iterations and the number of threads, where loop body contains read events. The

configurations of benchmark ‘monabsex’ (test IDs 4-5) vary on the number of threads.

The configurations of benchmark ‘unverif’ (test IDs 6-8) vary on the number of

threads and the number of loop iterations, where the loop body contains write and

read events. The configurations of benchmark ‘redundant-co’ (test IDs 9-11) vary

on the loop iterations, where the loop body contains write events.

The configurations of benchmarks ‘SWSC-co1’, ‘SWSC-co10’ and ‘alpha2’, test IDs

12-14, 15-17 and 18-19 respectively, vary on the number of writer threads, that is,

threads that perform write operations. The configurations of benchmarks on mutual
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Figure 4.11: Time of analysis of existing SMCs vs Time of analysis of ViEqui (seconds)

exclusion algorithms ‘burns’, ‘dekker-simple’, ‘perterson’ and ‘szymanski’,

test IDs 20-23, 24-27, 28-31 and 32-34 respectively, vary on the number of attempts

to enter the critical section, where the critical sections contain read and write events.

The configurations of benchmarks ‘nondet-array-1’ and ‘nondet-array-2’, test

IDs 38-39 and 35-37 respectively, vary on the size of the array and the number of

threads.

Observations. A scatter plot contrasting the performance of existing techniques

against ViEqui is shown in Figure 4.11. Each point in the graph represents the time

of analysis of the corresponding technique (on y-axis) against the time of analysis of

ViEqui (on x-axis) on the tests in Table 4.3. It can be observed that the points in

the graph are concentrated near the origin of the x-axis, however, the points are not

concentrated near the origin of the y-axis. This represents that the time of analysis

of the other techniques is typically higher in comparison to that of ViEqui.

A similar trend can also be observed from the Table 4.3 where the time of analysis of

other techniques (for providing a proof of correctness of the tests) is seen to be higher

than that of ViEqui and the other techniques are seen to timeout (To) for a signif-

icantly larger number of tests. Similarly, it can be seen from Table 4.4 that ViEqui

outperforms the techniques ODPOR and obs-ODPOR and performs comparable to

RVF-SMC in detecting violations of assert conditions.
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The time of analysis per execution can be higher for ViEqui in comparison to the

other optimal techniques, ODPOR and obs-ODPOR. The speedup observable from

the Tables 4.3, 4.4 is a result of having to consider fewer equivalence classes dur-

ing examination. The said speed-up is witnessed specifically with the test IDs 4-5

(‘monabsex’), 9-11 (‘redundant-co’), and 43-44 (‘IBM-incdec’). The set of values

for the tests, |V| < 4, and the set of reads (ER) remains the same across configu-

rations for these tests. Hence, increasing the set of writes does not increase the

view-equivalence classes and we witness an exponential saving in the time of analysis.

In contrast, for test IDs 1-3 (‘pgsql’) and 6-8 (‘unverif’) the set of equivalence

classes under the classical equivalence and view-equivalence is the same. A slow-

down is witnessed on the benchmarks with ViEqui, and other SMCs based on coarser

equivalence relations, empirically establishing that SMCs based on coarser equivalence

relations may take a higher time of analysis per execution.

obs-ODPOR shows an exponential saving over ODPOR with ‘SWSC-co10’ (test IDs

15-17). The benchmark has N writes of N different values from separate threads

and a single read event at the end (after the join of the writer threads). As a re-

sult, obs-ODPOR computes an exponentially smaller number of equivalence classes in

comparison to the equivalence classes of ODPOR. ViEqui also computes the same set

of equivalence classes as obs-ODPOR while performing exponentially faster than obs-

ODPOR. ‘SWSC-co1’ and ‘alpha2’ (test IDs 12-14,18-19) are a similar benchmarks

but with more reads, hence they show similar results but take comparatively longer

to analyze.

Benchmarks ‘nondet-array-1’ and ‘nondet-array-2’ (test IDs 35-39) concur-

rently update an array. The reads are performed for determining array indices,

hence, the sets ER and V are small (for an array of length L, |ER| = |V| = L). Thus,

ViEqui performs well on these benchmarks.

Test IDs 43-47 (‘IBM-incdec’, ‘triangular-2’) have long causal chains. The causal

chains add to the time of backward-analysis, slowing down the time of analysis of

ViEqui. However, test IDs 43-44 have, relatively, fewer reads and values allowing

ViEqui to scale better.
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Benchmark ‘tas’ (test IDs 40-42) showcases a scenario where forward-analysis slows-

down the analysis. Various states along the execution present opportunity of forward-

analysis and as a result the assert condition is reached slower. Thus, although the

number of execution sequences explored to reach the assert violation is very small,

the time of analysis is significantly high.

The benchmarks of test IDs 20-34 correspond to benchmarks on mutual-exclusion

algorithms. Such algorithms typically have a large set of writes of a small set of

values. ViEqui thus performs well on the tests.

Test IDs 48-51 represent slices of bugs in FreeBSD, NetBSD and Solaris [22]. The

results show that the bugs can be detected with ViEqui, thereby, empirically showing

the applicability of stateless model checking under view-equivalence.

4.6 Scope, Limitations, and Future directions

Scope of view-equivalence relation. The coarser notion of view-equivalence pivots

on detection of safety property (assert) violations, similar to other notions of equiva-

lence (except the classical equivalence relation) (discussed in §4.1.1). The applicability

of view-equivalence is not reduced in context of assert violations in comparison to the

other coarse equivalence relations (refer to §4.1.1).

All such coarse notions of equivalence cannot detect data-races in the input program.

However, various modern languages, such as C and C++, have introduced atomic data

types3thereby eliminating the harmful effects of data-races.

Furthermore, the definition of view-equivalence is applicable for all memory models.

Difference with view-equivalence of DBMS schedules. View-equivalence as a

term has been previously used to define equivalence of schedules in database man-

agement systems (DBMS). The two concepts are similar only in name.

3Atomic data types ensure that all bytes of an atomic object are accessed atomically. As a result,
the behavior of data-races on atomic objects is well-defined.
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Two schedules S1 and S2 of transactions are said to be view-equivalent in DBMS, if

they satisfy the following conditions:

1. Each reading transaction reads the same value.

2. Each reading transaction reads from the same transaction.

3. Final write is performed by the same transaction.

Here, a reading transaction refers to a transaction performing a read.

If we collapse a transaction to a single memory access operation to enable comparison

against the view-equivalence relation (∼), then by definition the view-equivalence

notion under DBMS is a finer notion of equivalence than the relation ∼.

Scope of ViEqui technique. ViEqui SMC is defined for the sequential-consistency.

Intuitively, the model considers a single shared memory between concurrent process-

ing elements (threads) and the program outcomes are generated by interleavings of

concurrent events. The model does not support out-of-order execution of events from

a program thread (refer to §3.2.1).

φ boolean formula and existing representation for equivalence classes. Vari-

ous orders of occurrence on events may correspond to the same view-equivalence class,

even those where a read event reads from different write events, if they write the

same value. It is non-trivial to associate ordering on events with a view-equivalence

class, where a view-equivalence class is defined on an unordered set of reads and

their values.

As a consequence, representations of equivalence classes that exploit the commutativ-

ity of concurrent events, such as ample sets [74], persistent sets [39], and source sets [4],

become unusable under view-equivalence. Similar representations for previously ex-

plored equivalence classes, such as done sets [35] and sleep sets (over events [39] or

event sequences [13]) cannot effectively represent view-equivalence classes.

Scheduling directives and wakeup trees. Wakeup trees are used by the ODPOR

technique [1] to store sequences that must be explored from a state. Wakeup trees

are a tree data structures that induce an ordering on the sequences to be explored
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Table 4.5: Performance of SMCs on known bugs

benchmark
ODPOR obs-ODPOR RVF-SMC ViEqui violation

#Seq Time #Seq Time #Seq Time #Seq Time detected?

FreeBSD-abd-kbd 1 0.03 1 0.02 1 0.02 1 0.04 Yes

(a)
FreeBSD-rdma-addr 1 0.02 1 0.03 1 0.01 1 0.03 Yes

NetBSD-sysmon-power 4 0.03 4 0.02 6 0.02 5 0.05 Yes

Solaris-space-map 2 0.03 2 0.03 1 0.02 1 0.03 Yes

Safestack oom - oom - To - To - - (b)

from a state. The ordering helps the technique achieve optimality.

On the other hand, scheduling directives are unordered sets of sequences and boolean

formula. As a consequence the operational semantics of the two representations is

unrelated. The representations are same only in purpose.

Threats to Validity

Scalability. SMCs are limited in scalability. While ViEqui outperforms SMCs based

on finer notions of equivalence there is still a significant scope for improvement in

performance of SMCs in terms of the time of analysis and scalability.

Consider the performance of various SMCs on known bugs shown in Table 4.5, where

oom represents that the analysis ran out of memory and To represents a timeout

of analysis which is set at 1800s. The tests in category (a) have a high number of

program branches but the executions are small in length. We can observe that the

SMCs perform well on such tests. However, the test in category (b) has long execution

sequences and none of the SMCs used in this study scale on the test.

Establishing ground truth. The view-equivalence classes are not known to ViEqui

a priori. In this work the ground truth is established based on other techniques as

follows: for each program execution explored by the other techniques (ODPOR, obs-

ODPOR, and RVF-SMC) there exists a view-equivalent execution sequence explored

by ViEqui.
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4.6.1 Future directions

SMC under view-equivalence for RMMs. In future, stateless model checking un-

der view-equivalence can be investigated for relaxed/weak memory models (RMMs).

View-equivalence as a notion is oblivious to a memory consistency model. ViEqui

proposes a SMC under view-equivalence for a strong sequential-consistency memory

model. A ViEqui like approach can be naturally extended to weaker memory models

such as TSO and PSO (refer to 3.2.2) that are still significantly strong. The out-

comes under TSO and PSO memory models can be justified as total occurrence order

on events or execution sequences on a single shared memory. Thus, a ViEqui like

approach with support for out of order execution of events can extend support for

stateless model checking under view-equivalence for TSO and PSO.

Weaker memory models, such as the C11 memory model or the memory model of

ARM architecture (ARM), use a set of events and event relations to define consistent

outcomes (refer to 3.2.3). View-equivalence as a notion is directly applicable to such

memory models, however, a ViEqui like approach cannot encompass all outcomes of

such a weak memory model.

View-equivalence of transactions. As discussed previously, the existing notion of

view-equivalence under DBMS is conceptually different and finer. A notion similar to

view-equivalence that defines equivalence on schedules of transactions that read the

same values can be defined. A model checker for verifying schedules of transactions

based on view-equivalence can also be investigated.

Parallelization of ViEqui. The ViEqui technique presents viable opportunities for

parallelization. For instance the scheduling directives generated by forward-analysis

can be explored in parallel; or the backward-analysis on line 4 of Algorithm 1 may be

performed for different values in parallel. Redundancies of scheduling directives may

likely arise as a result of the parallelization, however, the same may be mitigated by

repeated redundancy check, using a ] like approach.

Support for richer constructs. The ViEqui technique introduced in §4.3 performs

analysis at instruction level on read and write memory accesses. The technique does
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not comprehend coarse-grained synchronization mechanisms such as locks. The main

challenge of introducing lock-awareness in the ViEqui technique is in generating next

sequences (refer to §4.3.1) that enable the respective events and ensure the required

reads-from while maintaining consistency of lock acquisitions and unlocks. the

introduction of lock-awareness introduces the notion of disabling events. An event

once enabled in ViEqui is never disabled throughout an execution sequence. However,

with coarse-grained synchronization, an enabled event may be disabled later in an

execution. The ViEqui technique can be made lock-aware primarily with a lock-

aware construction of next sequences.

4.7 Concluding remarks

This work presents a novel equivalence relation for trace partitioning called view-

equivalence. The relation is shown to be at least as coarse as any existing equivalence

relation, that is, for any input program, the number of equivalence classes formed

under view-equivalence is not larger than the number of equivalence classes formed

under any other equivalence relation.

View-equivalence pivots on detection of safety property (assert) violations same as

other coarse notions of equivalence. However, the applicability of view-equivalence

is not reduced in context of safety property (assert) violations in comparison to the

other coarse equivalence relations.

This work also presents an SMC that performs stateless model checking based on view-

equivalence under sequential consistency memory model, called ViEqui. ViEqui is

shown to be sound, complete, and optimal in its exploration. This work also presents

the worst and best case, time and space complexity analysis for the ViEqui algorithm.

The ViEqui technique is accompanied with an implementation for C and C++ input

programs. This work presents the corresponding implementation details including

the (i) structural overview and key components, (ii) details of libraries and platforms

used, and (iii) details of data-types and operations supported in the input program.
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The implementation of the ViEqui technique is tested over 16000+ litmus tests from

previous works with the focus on reporting assert violations, completeness of explo-

ration and optimality of exploration. The tool passes the 16000+ litmus tests on the

three focal considerations.

To determine the effectiveness of the ViEqui technique and implementation, the tool

is tested on challenging benchmarks. The test results are compared against existing

optimal stateless model checkers and model checkers that use read values to determine

equivalence. The tests compare the techniques on the time of analysis, the number of

execution sequences explored and scalability. The comparative results on benchmarks

highlight that ViEqui significantly outperforms the other techniques in terms of the

time of analysis and scalability, thus, establishing the efficacy of view-equivalence and

the effectiveness of the ViEqui SMC.

In addition to the core ViEqui technique designed for read and write memory access

events, this work presents the extended versions of ViEqui technique that support

read-modify-write events and coarse-grained synchronization primitives. The exten-

sions are presented with formal definitions and algorithmic modifications.

Finally, this work discusses the scope of view-equivalence and ViEqui SMC, and

highlights differences with some popular and similar notions in related fields. Based

on the scope of view-equivalence and ViEqui SMC this work also proposes worthy

future directions.
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Appendix A. ViEqui time complexity details

Complexity of operators.

operator eseq[τ ](e). Computing an enabling sequence requires one pass over the

sequence hence, its worst-case time complexity is O(τ).

operator τ1 ⊕ τ2. The complexity of operator is |τ1|2.|τ2| i.e. O(|τ |3).

operator ]. Given S number of scheduling directives at the state s[τ ] and N calls

to ], the complexity of computing S ]=N is O(N.|τ |+N.S.|τ |) = O(N.S.|τ |).

operator nseq-bkwd[τ ](e
′, e). The worst-case complexity of this operator is domi-

nated by the complexity of computation of causal-join (⊕), i.e. O(|τ |3).

Complexity of module fwd(τ, er) (module 1)

Complexity of done[τ ](er) is O(log(|V||ER|)) corresponding to the largest size of the

boolean formula. Complexity of computing unique[τ ](W
odone[τ ](er)) is O(|T|) as only

one event can be enabled from each thread. Similarly, the complexity of computing

W is O(|T|.log(|V||ER|)).

Since, the enabling sequence for forward analysis are of constant lengths, the compu-

tation of nseq-fwd takes constant time. Thus, the complexity of computing scheduling

directives is dominated by the computation of boolean formula i.e. |T|. Given |T|
number of computations of boolean formula where each computation takes |T| time,

the worst-case complexity of forward-analysis is O(|T|2 + |T|.log(|V||ER|)).

Complexity of module bkwd(τ, er) (module 2)

Computation of W requires computing nseq-bkwd whose complexity is |τ |3. Com-

plexity of computing done is log(|V||ER|). Thus, computation of W is O(|EWτ |.|τ |3 +
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|EWτ |.log(|V||ER|)) (lines 2-3).

In the worst-case, the complexity of computing ] is O(|V||ER|.|τ |) (line 7). The com-

plexity of computing pre is O(|τ |) (line 7).

Thus, the complexity of the steps inside the loop (lines 5-7) is O(|τ |+|τ |3+|V||ER|.|τ |+
|V||ER|) = O(|τ |3+|V||ER|.|τ |). Since, the loop iterates |EWτ | times in the worst-case (for

the maximum number of elements in W) the complexity of the loop is O(|EWτ |.(|τ |3 +

|V||ER|.|τ |)), which is also the complexity of bkwd



Chapter 5

MoCA. Dynamic Verification of C11

Concurrency over Multi Copy

Atomics

5.1 Background

Models of memory consistency, popularly known as Memory Models, describe the

consistent interactions between threads through the shared memory (refer to §3.2).

The memory model specification determine the permitted read and write memory

accesses on shared memory locations by specifying the permitted out-of-order execu-

tion of events from a thread and visibility of an event to other threads and events.

Consequently, the allowed outcomes of an input program under a memory model can

be interpreted by the memory model specification.

Most modern architectures define their memory models, for instance the memory

model TSO of x-86 architecture, PSO of sparc and the ARM and Power memory models

associated with the ARM and Power architectures. The set of feasible orderings

on memory accesses, or execution on an architecture can be interpreted from the

architecture’s memory model. Therefore, the set of possible outcomes for the same

85
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input program may differ across various architectures.

In addition to architectures, modern programming languages, such as C, C++, Java

and OCaml, also specify a memory model. The memory models of languages define the

semantics of memory storage and memory management for the language abstract ma-

chines, such as JVM (Java virtual machine) associated with the Java language. They

are also used by compilers to optimize programs. The consistency specification of the

language memory models helps compilers determine the permitted optimizations.

The 2011 (and subsequent) ISO standard for C/C++ includes the C11 memory model,

which introduces memory orders (refer to §3.2.3). The memory orders can be syn-

tactically associated with atomic memory access events (refer to §3.2.3) and dictate

how other memory accesses (non-atomic or atomic) can be ordered with respect to

the current memory access. By syntactically tagging memory access events, develop-

ers can specify a desired set of permitted event orderings, with the assumption that

the underlying architecture will execute the input program within the developer’s

specification of permitted orderings.

outcomes permitted by
C/C++ developer specification

outcomes feasible
over architecture

strong architecture
implicit ordering

Figure 5.1: Set of feasible outcomes on an architecture with strong implicit ordering
may be smaller than the set of outcomes permitted by C/C++ developer specification.

In some cases, the implicit ordering specified by the underlying architecture’s memory

model may be stronger than the ordering specified in a C/C++ input program using

memory orders. In this scenario, the set of feasible outcomes for the program may

be restricted to a subset of the outcomes permitted by the developer’s specification.

This is illustrated in Figure 5.1.
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outcomes permitted by
C/C++ developer specification

outcomes feasible
over architecture

weak architecture
implicit ordering

insert

appropriate
barriers

Figure 5.2: Set of feasible outcomes on an architecture with weak implicit ordering is
same as the set of outcomes permitted by C/C++ developer specification.

On the other hand, when a C/C++ input program specifies a strong ordering, it

is possible that the underlying architecture does not implicitly form the specified

ordering. In such cases, the architecture still executes the input program within

the developer’s permitted orderings. To achieve this, appropriate barriers are intro-

duced in the intermediate/machine code to restrict the feasible outcomes that are

not permitted under the developer specification. This ensures that the set of feasi-

ble program outcomes is identical to the set of program outcomes permitted by the

developer specification, as illustrated in Figure 5.2.

5.1.1 Verification under various memory models

Verification under sequential consistency

Several prior investigations have focused on stateless model checking to analyze pro-

grams under sequential consistency. Most of these techniques [1, 7, 13, 15, 26, 27, 80,

88] use DPOR [35] as the basis to achieve better scalability. Central to such tech-

niques is the notion of equivalence of execution sequences such that the techniques

must explore any one of the equivalent execution sequences for sound verification.

The techniques explore efficient representation of ample sets [1, 13] to avoid redun-

dant explorations (refer to §4.1). Various techniques use coarser notions of equiv-

alence [7, 12, 26, 27] to reduce the number of execution sequences to explore. To

mitigate the scalability challenge of SMCs based on DPOR, the technique in [80] pro-
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poses a distributed DPOR SMC and the technique in [88] proposes a stateful DPOR

SMC. DPOR has also been combined with parameterized unfolding semantics and

proposed under sequential consistency [70, 78].

Symbolic and predictive trace analysis by encoding the thread interleaving of a pro-

gram is also a popular approach investigated in [37, 44, 87].

Static analysis using either thread modular analysis abstract interpretation has also

been explored in the context of concurrent programs under sequential consistency.

Techniques have been proposed for flow-insensitive [34] and flow-sensitive [58] thread

modular analysis with abstract interpretation.

Verification under architecture specific memory models

SMCs have also been proposed for weak architectural memory models such as TSO

and PSO [2, 24, 89], and Power [8]. An SMC technique for a superset of architectural

memory models (including the TSO, PSO, ARM and RISC-V memory models) is

proposed by [54]. The focus of such techniques is on recognizing ordering on memory

access events that are feasible under the respective memory model and verifying each

such permitted ordering.

Thread modular analysis with abstract interpretation has also been used to verify

programs under weak memory models such as TSO [57, 82], and PSO and sparc-

RMO [82].

Verification under C11 memory model or its variants

The C11 memory model has been the object of intense study in the past decade [5,

20, 51, 53, 72]. The work [20] establish mathematical (axiomatic) semantics for C11

concurrency. The works [5, 51, 53, 72] present verification techniques for C/C++ input

programs under the C11 memory model or its variants. The verification techniques

explore the orderings on memory access events that are feasible under the C11 seman-
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tics and permitted by the developer specification through memory orders specified by

tagging the memory accesses.

The semantics of the C11 model are known to be complex, and for a fragment of the

standard, called release-acquire1(RA) [50, 75], the state-reachability problem is shown

to be undecidable [5].

The techniques in [5, 72] use DPOR to explore the feasible orderings. The technique

in [72] performs verification for the C11 memory model, while the technique in [5]

performs verification under RA fragment of C11.

The techniques in [51, 53] verify C/C++ input programs under a variant of C11 model

called the RC11 model [60]. The techniques form execution graphs representing the

unique program outcomes and perform optimal stateless model checking.

Recently, a technique using thread modular analysis with abstract interpretation has

been proposed for the RA fragment of C11 [79].

5.2 Imprecise analysis of C/C++ programs

Imprecise analysis by C11 verification techniques

The state-of-the-art verification techniques designed for the C11 memory model (or its

variants and fragments), such as CDSChecker [72] and GenMC [51], perform analysis on

the outcomes permitted by the developer specification in the input program. However,

each underlying architecture has its own associated memory model.

As discussed in §5.1, the architecture memory model may have a strong implicit

ordering thereby restricting some of the program outcomes permitted under C11. As

a consequence, notwithstanding the sophistication of the C11 verification techniques,

1Under the RA model all writes are release accesses, while all reads are acquire accesses. RA is
accepted as a useful and well-behaved subset of C11 that provides a good balance between perfor-
mance and reasoning.
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C11 outcomes

⊗
bug

false positive

feasible outcomes

(a)

Initially x = 0, y = 0
a: W rlx(x, 1) c: Rrlx(y, 1)
b: W rlx(y, 1) d: Rrlx(x, 0)

outcome under C11: YES

outcome under TSO: NO

(b)

Figure 5.3: Imprecise analysis under weak C11 and strong architecture specifications.

some of the C11 outcomes flagged buggy by these these techniques would not occur

when the input program executes on an architecture with a strong implicit ordering.

The condition is illustrated in Figure 5.3(a) where a flagged bug exists in the set

of C11 outcomes (yellow blob) but not in the subset of outcomes feasible on the

architecture (orange blob). Thus, the bug is tagged as a false positive.

Consider the outcome shown in Figure 5.3(b), where all memory accesses are tagged

with memory order rlx. The program outcome is permitted under the C11 memory

model with the given rlx specification for memory accesses. However, the outcome

is not feasible under memory models with strong implicit ordering such as TSO. As a

result, if the given outcome is deemed undesirable then the outcome would be flagged

as a bug by any verification technique designed for the C11 model.

Thus, a verification technique designed for the C11 model may flag bugs that may

never manifest as an execution.

Imprecise analysis by architecture specific verification techniques

Further, the state-of-the-art verification techniques designed for memory models such

as TSO, PSO, ARM and Power do not consider the memory orders specified in the

input program. As a result, the techniques disregard the developer specification.

As discussed in §5.1, the underlying architecture may not implicitly form the strong

ordering in the developer specification. In such a case the architecture restricts the
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analysed outcomes

⊗
bug

false positive

feasible outcomes

(a)

Initially x = 0, y = 0
a: W sc(x, 1) c: Rsc(y, 1)
b: W sc(y, 1) d: Rsc(x, 0)

outcome under C11: NO

outcome under PSO + barriers: NO

outcome under PSO − barriers: YES

(b)

Figure 5.4: Imprecise analysis under strong C11 and weak architecture specifications.

additional outcomes (not permitted under C11 specification) by inserting appropriate

barriers. Since the existing verification techniques operate at the source level, no such

barriers are inserted before performing the verification.

As a consequence, some of the outcomes flagged buggy by these these techniques

would not occur when the input program executes on the underlying architecture in

the presence of appropriate barriers. The condition is illustrated in Figure 5.4(a)

where a flagged bug is in the set of outcomes feasible in the absence of barriers (blue

blob) but not with barriers (yellow blob). Thus, the bug is tagged as a false positive.

Consider the outcome shown in Figure 5.4(b), where all memory accesses are tagged

with memory order sc. The program outcome is not permitted under the C11 mem-

ory model with the given sc specification for memory accesses. When the program

is translated for a sparc (PSO) architecture, appropriate full memory barriers are

inserted between the events a and b, and c and d. Thus, the outcome is also not fea-

sible on PSO. However, any existing verification technique for PSO does not consider

the sc memory order and permits the outcome. As a result, if the given outcome

is deemed undesirable then the outcome would be flagged as a bug by a verification

technique designed for a model with weak implicit ordering such as PSO.

Thus, a verification technique designed for architecture specific models may also flag

bugs that may never manifest as an execution.
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Figure 5.5: #feasible program outcomes vs #false positive bugs

5.3 Precise analysis for C11 programs under MCA

As a consequence of the imprecise analysis of C11 programs, if a verification technique

detects a property violation, it must be scrutinized further for viability under C11

and a given architecture memory model. The laborious task of sorting the feasible

from infeasible violations is a burden on the developer.

Our experiments show that even for small programs (less than 100 lines of code)

the verification techniques designed for C11 model and architectural models can flag

hundreds of bugs that can never manifest as an execution. As a consequence the bugs

may be considered false positives. The graph in Figure 5.5 summarizes the results

of the said experiments. The x-axis of the graph represents the number of program

outcomes that are feasible under the C11 model and the underlying architecture2,

while the y-axis represents the number of bugs flagged by a C11 verification technique

called CDSChecker, such that each of the outcomes flagged buggy are not feasible on

the underlying architecture.

As can be seen from the graph in Figure 5.5, the number of false positive bugs reported

by the existing techniques may be hundreds in number and the number of execution

2Note that, ‘-’ for ‘#feasible outcomes’ represents that the number of feasible outcomes could
not be determined because the corresponding analysis could not scale.
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sequences explored by the techniques to detect those bugs may be much higher, when

the actual set of feasible outcomes (shown on the x-axis) may be very small.

As a consequence, the developer may take on the task of fixing the bugs when a large

number of them may never manifest, or the developer may sort the feasible from

infeasible bugs. Both the tasks are highly non-trivial in nature and may be exacting

event for expert programmers.

Therefore, an important desideratum is to engineer analysis tools/techniques to an-

alyze C11 programs under restricted architecture models with precision.

This work investigates the problem of precise dynamic analysis of C11 programs un-

der the Multi-Copy-Atomic model (MCA). MCA is a popular architecture memory

model that is supported by memory models such as Intel’s x-86 TSO, newer versions

of ARM3(version 8 and later), and Alpha, with varying degrees of permitted reorder-

ing. A noteworthy aspect of the MCA model is the assumption of a single abstract

view of shared memory between the processing elements (or threads), leading to the

observation that permitted program behaviors under this model can be explained

solely through interleaving and reordering of thread events (refer to §3.2.2 for details

on MCA). Note that, the number of feasible outcomes depicted on the x-axis of the

graph in Figure 5.5 correspond to the C11 outcomes feasible under MCA.

Precise analysis of C11 concurrent programs over MCA has the following merits

(M1) The analysis takes into consideration the developer C11 specification along with

the architecture implicit ordering guarantees.

(M2) MCA is supported by some of the most widely used architectures. As a result,

correctness results over MCA hold for most systems in use.

(M3) Precise analysis only flags the outcomes as buggy that can indeed manifest as

executions reducing the developer overhead.

3ARM-version-8 calls its model other-MCA [64], however, the difference of other-MCA with MCA
is that of terminology, not semantics (as clarified by [76]).
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(M4) Precise analysis also implies a restricted (to MCA) number of equivalence classes,

reducing the analysis overhead.

5.4 Operational semantics of MCA model

Under the MCA model if a write to an object o from a thread, Ti, is observed by

a different thread, Tj, then the write is coherently observable by all other threads

that access the object o. It is, however, permitted for a thread to observe its own

writes prior to making them visible to other threads in the system [64]. Here, the

term observed refers to the thread Tj becoming aware of a write from the thread Ti,
either directly when a read of Tj reads-from the write or indirectly through a chain

of intra- and inter-thread dependencies [64]. The terms observed and coherent access

are formally revisited in §5.5 after formally defining event interactions.

The MCA model formalized in [31] is used for the formal semantics of MCA, for this

work. The relevant details of the model are briefly presented below.

The model allows for a sequence of events Ti:τ of thread Ti to be reordered to a

sequence Ti:τ ′. Consider two events, e′, e ∈ ETi:τ , such that e originally occurs after e′

in Ti. The reordering of the two events such that now e occurs before e′ is represented

by e′
R⇐= e. In the absence of such a reordering the program executions are outcomes

accepted under the interleaving semantics (refer to §3.1.2). The reordering of program

events of a thread may introduce outcomes that cannot be justified by any interleaved

order and require modification to the order of events from a thread.

Consider the example shown in Figure 5.6(a). The possible outcomes of the input

program are shown in Figure 5.6(b) through the respective read events. The outcomes

ex2-4 can be justified by interleaving of events from the two threads. However, the

outcome ex1 can only be justified by reordering the events of at least one of the two

threads, such as the one shown in Figure 5.6(c), where the edges represent the order

of execution of events after reordering shown in blue.
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Initially x = 0, y = 0

a: W (x, 1)

b: R(y)

c: W (y, 1)

d: R(x)

ex1 : R(y, 0), R(x, 0)

ex2 : R(y, 0), R(x, 1)

ex3 : R(y, 1), R(x, 0)

ex4 : R(y, 1), R(x, 1)

Initially x = 0, y = 0

b: R(y)

a: W (x, 1)

c: W (y, 1)

d: R(x)

(a) (b) (c)

Figure 5.6: Store buffer. (a) input program, (b) outcomes, (c) reordered program

Reordering of events

For any two events e′, e the reordering e′
R⇐= e is defined by a set of rules under an

input memory model. Let the set of event pairs allowed to reorder be referred as

the degree of permitted reordering under a memory model. Note that, larger the set

of event pairs that can reorder from a thread under a memory model, higher is the

memory model’s degree of permitted reordering.

While memory models provide their own set of rules for reordering, all memory models

under MCA follow an invariant restriction on reordering of two events that share

a program dependence (which includes data, address and register). Let dep(e′, e)

represent the dependence of e on e′.

Forwarding of events

In the course of executing the input program a condition may arise where two pro-

gram statements accessing the same shared object translate to independent register

operations. Consider the events W (x, 1) and (r := R(x)) in the event sequence Ti:τ
where x is a shared object and r is a local object and (r := R(x)) represents that

the read value of x is stored in r. Further, let W (x, 1)<Ti:τ (r := R(x)). The effect

of W (x, 1) when captured in (r := R(x)) will translate the event to W (r, 1). As a

consequence, the pair of events which were earlier data dependent have now become

data independent.
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The possible reordering under MCA of events e′, e related as dep(e′, e) where e can

absorb the effect of e′ (represented as e〈e′〉) is called forwarding [31]. Using reordering

with forwarding the event W (x, 1) and (r := R(x)) can be reordered by capturing

the effect of W (x, 1) in (r := R(x)) as W (x, 1)
R⇐= (r := R(x))〈W (x,1)〉, where the event

(r := R(x))〈W (x,1)〉 = W (r, 1).

Intuitively, reordering with forwarding forces the visibility of writes of a thread to

all the reads originally occurring after the write in the same thread, even after any

possible reordering.

Semantic preserving reordering with forwarding

To ensure a semantic preserving reordering with forwarding, the following conditions

must hold [31]:

(spr1) ETi:τ ′ = ETi:τ (the event sets are the same)

(spr2) each read event of Ti:τ must have the same set of writes to read from in Ti:τ
as well as in Ti:τ ′ (thread semantics)

(spr3) Ti:τ ′ preserves the order of updates and accesses of each shared object with

respect to Ti:τ (coherence-per-location).

Language and rules of MCA operational semantics

The language that represents an MCA model as specified by [31] is,

processing element, p := (Ti lcl σ · Ti:τ) | p1 ‖ p2
system, s := (shr σ · p)

The key element of the language is a processing element. A processing element is

identified by a unique identifier (Ti), the local state (lcl σ), and a sequence of events
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Ti:e.τ ′
e−→ Ti:τ e′

R⇐=e〈e′〉

Ti:e′.e.τ ′
e〈e′〉−−→ Ti:e′.τ

(reordering)

p1
e−→ p′1

p1‖p2
e−→ p′1‖p2

p2
e−→ p′2

p1‖p2
e−→ p1‖p′2

(parcom)

τ ′
r:=x−−→ τ shr σ(x) = v

(lcl σ·τ ′)
[x=v]−−−→ (lcl σ[r:=v]·τ)

(r-shared)

τ ′
x:=r−−→ τ σ(r) = v

(lcl σ·τ ′)
x:=v−−→ (lcl σ·τ)

(w-issue)

p
Ti::x:=v−−−−→ p′

(shr σ· p)
∗−→ (shr σ[x:=v]· p′)

(w-update)

Figure 5.7: Operational semantics of MCA model [31]

to be executed (Ti:τ). The entity system is identified with a shared state (shr σ) and

a parallel composition of processing elements. Thus, a system term is of the form

(shr σ · (T0 lcl σ · T0:τ0) ‖ (T1 lcl σ · T1:τ1) ‖ . . .).

The operational semantics for a program P under MCA is listed in Figure 5.7. The

notation x := r represents the write action to an object x with an expression r,

where r can be a local object or a constant value. The notation [x = v] represents

the read action on an object x where v is the value of x in memory. Notation shr

σ[x:=v] represents that the value of the shared object x in the shared memory is v.

The (reordering) rule states that if an event e〈e′〉 can reorder before another event e′

(where e′<Ti:τe) then the processing element Ti can execute e〈e′〉 before e′ and suitably

update the remaining sequence to be executed further.
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The rule (parcom) shows the parallel composition of the processing elements. It states

that one step of the system is taken by one processing element at a time.

The (r-shared) rule captures the read of a shared object from the shared storage

into a local object.

The (w-issue) rule shows that a processing element initiates a write operation of

value v to a shared object x, and moves to the next event.

A write initiated by Ti is updated to the shared storage by the system as shown in

rule (w-update).

5.5 Restricted C11 for MCA

This work proposes a dynamic verification technique called MoCA for the precise anal-

ysis under C11 (discussed in §3.2.3) restricted for MCA (discussed in §5.4). As a result

the MoCA technique analysis only those program outcomes and flags only those bugs

that are permitted by the developer specification in a C11 input program and are

feasible on an MCA architecture.

The key contribution of MoCA is in restricting the C11 outcomes of an input program to

those admissible under an MCA architecture. As discussed in §3.2.3 a C11 outcome

is represented as a C11 trace, i.e. a tuple of 〈Eτ , hbτ , moτ , rfτ 〉, such that the

event relations in the trace satisfy a set of coherence conditions. MoCA redefines the

hbτ relation to [m]::hbτ , the C11-MCA-happens-before relation, that restricts the C11

outcomes to those feasible on a single shared memory. Further, MoCA introduces a set

of C11-MCA coherence conditions such that a trace is coherent under C11 restricted

to MCA if it satisfies these conditions.

A central feature of MoCA that helps realize the precise C11-MCA-happens-before rela-

tion and C11-MCA coherence conditions is the introduction of a new event type called

shadow-writes that simulate reordering through interleaving.
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The above mentioned key features for restriction of C11 to MCA are discussed below.

5.5.1 Shadow-write events

A write event when executed may not be immediately available to all threads under

multi-copy atomics. To accommodate the visibility of a write event to other threads

at a later timestamp, MoCA associates each write or rmw event with a corresponding

shadow-write event. The shadow-write event updates the shared memory with

the value of its corresponding write or rmw event, thus marking its visibility to all

threads.

Shadow-writes break a write operation into two (not necessarily consecutive) events:

(i) the write event from the program that is visible only to events of the same thread,

and (ii) the shadow-write event that updates the shared memory with the write

event’s value at a later timestamp; thus, completing the write operation and making

it visible to all threads. Shadow-write events are issued by shadow-threads that are

spawned by MoCA (separate from the program threads). MoCA maintains a separate

shadow-thread per program thread per object.

For an event e ∈ EW, shw(e) represents the shadow-write event associated with e.

Similarly, prw(e′) denotes the write event corresponding to the shadow-write e′.

The set of shadow-threads associated with thr(e) is denoted by sth(e). Note that,

the shadow-write events of a shadow-thread in sth(e) can interleave with the events

of the corresponding program thread (thr(e)), in other words, a shadow-write event

can interleave with the events of the thread with the write event. Such interleaving

allows a write event ew that occurs before an event e in a thread to take effect in

memory after e (if its corresponding shadow-write (shw(ew)) executes after e). Thus

interleaving with shadow-writes gives rise to reordering in effect thereby enabling

reordering through interleaving.

Consider the example in Figure 5.8(a). The shadow-write events corresponding

to the write events labeled a and c are represented by events labeled a′ and c′

respectively. The shadow-threads sthx(T1) and sthx(T2) execute the shadow-write
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Initially x = 0

(T1) sthx(T1) (T2) sthx(T2)

a: W (x, 1) a′: shw(a) b: R(x) c′: shw(c)

c: W (x, 2)

d: R(x)

(a)

(i)

sh
a
re

d
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em
o
ry

τ = (a) <τ (a′) <τ (b = 1) <τ (c) <τ (d = 2) <τ (c′)

x

0
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0
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1
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1

x

1
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1
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(ii)

τ = (a) <τ (a′) <τ (b = 1) <τ (c) <τ (d = 2) <τ (c′)

[m]::rfτ [m]::rfτ

[m]::sbτ [m]::sbτ

(b)

Figure 5.8: Execution with shadow-writes

events a′ and c′ respectively. Figure 5.8(b)-i shows an execution sequence τ where

updates to the memory by shadow-writes are illustrated. Note that, the values below

x in the gray boxes show the value of the shared object x in the shared memory at

various stages of execution. The values after ‘=’ against labels of read events show

the value read by the read event (i.e. b=1 and d=2). As shown in the Figure 5.8(b)-i

the value of x in the shared memory remains the same as the previous value after

the execution of write events a and c and is updated only when their corresponding

shadow-write events a′ and c′ are executed. The values read by the read events may

be ignored for now and will be discussed after introduction of the C11-MCA-reads-from

relation, in the following section.
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5.5.2 Program executions and traces

A trace under C11 is defined by a tuple 〈Eτ , hbτ ,moτ , rfτ 〉 (refer to Definition 2). The

event relations hbτ , moτ , and rfτ on the set of events of the trace (Eτ ) define the

outcome or behavior represented by the trace.

Therefore, MoCA redefines the relations formed over the events of a trace, to eventually

redefine the set of valid outcomes.

MoCA defines a C11 trace restricted to MCA by a tuple 〈Eτ , [m]::hbτ , [m]::moτ , [m]::rfτ 〉.
The components of C11-MCA trace are discussed below.

Program executions and equivalence of executions

A key feature of the MCA model is that a program execution can be represented as

a total-order on the events of the input program, where every update to the memory

when reflected to the single shared memory is accessible to all threads. The total-order

is represented by the occurs-before relation (<τ ).

The outcome of an execution is captured as a trace, i.e. a tuple 〈Eτ , [m]::hbτ , [m]::moτ ,

[m]::rfτ 〉 representing the set of events of the the execution sequence and the set of

relations formed on the events by MoCA.

The set of executions or non-maximal sequences that represent the same outcome are

called equivalent. Formally two event sequences τ1 and τ2 are equivalent, represented

as τ1 ≈ τ2 if they represent the same trace, that is,

• Eτ1 = Eτ2 ,
• [m]::hbτ1 = [m]::hbτ2 ,

• [m]::moτ1 = [m]::moτ2 , and

• [m]::rfτ1 = [m]::rfτ2 .
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MoCA event categories

For ease of presentation, the memory access events of E are categorized as: (i)

the set of writes (EW) that issue a write (i.e., write events and rmws), (ii) the

set of modifiers (EM) that update the shared memory for an issued write (i.e.

shadow-write events), and (iii) the set of reads (ER) (i.e. read events and rmws).

Accordingly, EWτ , EMτ , and ERτ represent the events of a sequence τ from the respective

event categories; and, EW(m)
τ , EM(m)

τ , and ER(m)
τ represent the events with memory

order m of a sequence τ from the respective event categories.

Reads-from relation for C11 restricted to MCA ([m]::rfτ)

Apart from shadow-writes, a second central contribution to realize the restriction of

C11 for MCA, is a C11-MCA-reads-from relation ([m]::rfτ ) based on the shadow-write

events. As a consequence of representing an execution sequence as a total-order,

consider the notation [m]::lastW[τ ](er) that represents the write corresponding to the

latest shadow-write of obj(er) in the prefix of τ upto er. The reads-from relation for

MoCA is defined as,

Definition 5. ([m]::rfτ relation)

Given er ∈ ERτ , the [m]::rfτ relation for er is defined as:

(general case) [m]::lastW[τ ](er)→[m]::rf
τ er; unless

(special case) ∃ew ∈ EWτ , which is the latest write of obj(er) from thr(er)

s.t. shw([m]::lastW[τ ](er))<τew<τer then ew→[m]::rf
τ er.

Intuitively, a read event takes its value from the last write whose shadow-write

updated the shared memory, unless there is a later write from the same thread.

Consider the execution sequence τ in Figure 5.8(b)-ii corresponding to the input

program in Figure 5.8(a). The event b reads from a (since lastW[a.a′](b) = a); however,
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for event d, lastW[a.a′.b.c](d) = a but write c from same thread occurs after a′, thus,

d reads from c.

Note that, by ensuring read from the write of the same thread whose shadow-write

has not executed, as defined under (special case), MoCA replicates the effects of forward-

ing (introduced in §5.4) through the [m]::rfτ relation. In the input program shown in

Figure 5.8(a), c<T2d, however in the execution τ in Figure 5.8(b), c<τd<τc
′, where

c′ = shw(c). By the special case of [m]::rfτ relation, read d reads the value 2 from the

write c while the value of the write takes effect in memory later. The occurrence

can effectively be interpreted as the write c reordering after the read d while the

effect of the write is forwarded to d for reordering.

Modification-order relation for C11 restricted to MCA ([m]::moτ)

MoCA defines a total-order on the write events of an object in an execution sequence τ ,

called the C11-MCA-modification-order ([m]::moτ ). However, unlike the moτ relation

of C11, the [m]::moτ relation of MoCA is based on the order of occurrence of the

corresponding shadow-writes.

Two writes ew1, ew2 of the same shared object are modification-ordered if shw(ew1)

occurs before shw(ew2) in an execution sequence, formally,

Definition 6. ([m]::moτ relation)

∀ e1, e2 ∈ EMτ , obj(e1) = obj(e2), e1<τe2 ⇒ prw(e1)→[m]::mo
τ prw(e2)

Happens-before relation for C11 restricted to MCA

Based on shadow-writes and the hence defined [m]::rfτ relation, MoCA defines a

C11-MCA-happens-before relation for the restriction of C11 to MCA, represented as

[m]::hbτ . The [m]::hbτ relation is composed of the following relations. The relations

are formally defined in Figure 5.9.
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[m]::sbτ (Sequenced-before): total occurrence order on the events of a thread4.

[m]::swτ (Synchronizes-with) Inter-thread synchronization between a write ew (or-

dered w rel) and a read er (ordered w acq) when ew→[m]::rf
τ er.

[m]::dobτ (Dependency-ordered-before): Inter-thread synchronization between a write

ew (ordered w rel) and a read er (ordered w acq) when e′w→
[m]::rf
τ er for

e′w ∈ release-sequence5of ew in τ .

[m]::ithbτ (Inter-thread-hb): Inter-thread relation computed by extending [m]::swτ

and [m]::dobτ with [m]::sbτ .

[m]::hbτ (Happens-before): Inter-thread relation defined as [m]::sbτ ∪ [m]::ithbτ .

[m]::hbτ relation on C11 fences

C11 fences form [m]::ithbτ relation with other events of the trace τ . Appropriately

placed fences can form [m]::swτ and [m]::dobτ relations from an [m]::rfτ relation

between events of different threads. The conditions for forming [m]::swτ and [m]::dobτ

relations with fences are formally presented in Figure 5.10.

Figure 5.10 also represents the conditions diagrammatically; where the depictions

(a)-(b) represent the conditions in the absence of fences (presented in Figure 5.9);

the depiction (c) represents the condition for forming [m]::dobτ relation with fences;

and, the depictions (d)-(f) represent the conditions for forming [m]::swτ relation with

fences. The relation ew
rs−→ e′w implies that e′w belong to the release sequence of ew.

Intuitively, a write event with a fence placed before it in [m]::sbτ and a read event

with a fence placed after it in [m]::sbτ enact the role of strongly ordered write and

strongly ordered read events respectively.

Theorem 6. [m]::hbτ for a trace τ represents a valid happens-before relation.

4Some events of a thread may not be ordered (for example, the operands of ==). Relation
[m]::sbτ assumes a total order on the events of a thread, similar to previous works on C11 [72, 51].

5release-sequence of ew in τ : maximal contiguous sub-sequence of [m]::moτ that starts at ew and
contains: (i) write events of thr(ew), (ii) rmw events of other threads [20, 46].
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e1→[m]::sb
τ e2 ⇐ ∀e1, e2 ∈ Eτ s.t. thr(e1) = thr(e2) and e1 occurs-before e2 in

their thread.

ew→[m]::sw
τ er ⇐ ew ∈ EW(wrel)

τ , er ∈ ER(wacq)
τ , thr(e) 6= thr(e1) ∧ ew→[m]::rf

τ er.

ew→[m]::dob
τ er ⇐ ew ∈ EW(wrel)

τ , er ∈ ER(wacq)
τ , thr(e) 6= thr(e1) ∧ ∃e′w ∈ release-

sequence of ew s.t. e′w→
[m]::rf
τ er.

e1→[m]::ithb
τ e2 ⇐ ∀e1, e2, e3 ∈ Eτ ,

(e1→[m]::sw
τ e2) ∨

(e1→[m]::dob
τ e2) ∨

(e1→[m]::sw
τ e3 ∧ e3→[m]::sb

τ e2) ∨
(e1→[m]::sb

τ e3 ∧ e3→[m]::ithb
τ e2) ∨

(e1→[m]::ithb
τ e3 ∧ e3→[m]::ithb

τ e2).

e1→[m]::hb
τ e2 ⇐ e1→[m]::sb

τ e2 ∨ e1→[m]::ithb
τ e2.

Figure 5.9: Happen-before relation for C11-MCA model ([m]::hbτ )

A happens-before assignment is valid if ∀ execution sequences E, hbE satisfies the

following properties [1].

1. hbE is a partial order on EE, which is included in <E.

2. Events of each processing element are totally ordered, i.e. 〈Tt, i, a′, o′,m′, l′〉
hbE 〈Tt, i+ 1, a, o,m, l〉, whenever 〈Tt, i+ 1, a, o,m, l〉 ∈ EE.

3. If E ′ is a prefix of E, then hbE′ and hbE are the same on EE′

4. Any linearization E ′ of hbE ∪ rfE is an execution sequence s.t. hbE′ ∪ rfE′ =

hbE ∪ rfE and E ′ and E are equivalent

5. If E ′ is equivalent to E then s[E′] = s[E].

6. If E.E1 is an execution sequence, then E ′ is equivalent to E ⇔ E ′.E1 is equiv-

alent to E.E1
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ew
rel

er
acq

[m]::sw

[m]::rf
ew

rel eacqr

e′w

[m]::dob

[m]::rfrs

ew
rel Facq

e′w er
[m]::rf

rs [m]::sb

[m]::dob

(a) (b) (c)

ew
rel er

Facq
[m]::sw

[m]::rf

[m]::sb

Frel

ew er
acq

[m]::sw

[m]::rf

[m]::sb

Frel Facq

ew er

[m]::sw

[m]::rf

[m]::sb [m]::sb

(d) (e) (f)

[m]::swτ using C11 fences

Given ew→[m]::rf
τ er,

if ord(ew)wrel, ∃F ∈acqEF(wacq)
τ s.t. er→[m]::sb

τ Facq then ew→[m]::sw
τ Facq;

if ord(er)wacq, ∃Frel ∈ EF(wrel)
τ s.t. Frel→[m]::sb

τ ew then Frel→[m]::sw
τ er;

if ∃Frel ∈ EF(wrel)
τ , ∃Facq ∈ EF(wacq)

τ s.t. Frel→[m]::sb
τ ew, er→[m]::sb

τ Facq then
Frel→[m]::sw

τ Facq.

[m]::dobτ using C11 fences

Given e′w→
[m]::rf
τ er, if ∃ew ∈ EW(rel)

τ s.t. e′w ∈ release-sequence of ew and ∃Facq ∈
EF(acq)
τ s.t. er→[m]::sb

τ Facq then ew→[m]::dob
τ Facq.

Figure 5.10: [m]::swτ and [m]::dobτ using C11 fences

7. If e1→hb
E.e1.e2

e2 and e19hb
E.e1.e3

e3 then e1→hb
E.e1.e3.e2

e2.

Proof. Consider a trace τ .

Property 1,3 follow directly from construction of [m]::hbτ .

Property 2 follows from the definition of [m]::sbτ .

For property 4, assume ∃τ1 s.t. τ1 6= τ then ∃e′, e s.t. e→[m]::hb
τ1 e′ but e9[m]::hb

τ e′ ⇒
[m]::hbτ1 6= [m]::hbτ . Thus, Property 4 follows from construction of [m]::hbτ .
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Property 5 is satisfied as follows: τ ′ ≈ τ ⇒ [m]::hbτ ′ ∪ [m]::rfτ ′ = [m]::hbτ ∪ [m]::rfτ ,

E ′τ = Eτ ⇒ ∀e ∈ Eτ , val[τ ′](e) = val[τ ](e). ⇒ s[τ ′] = s[τ ].

Property 6 is satisfied as follows: τ ′ ≈ τ ⇒ [m]::hbτ ′ ∪ [m]::rfτ ′ = [m]::hbτ ∪ [m]::rfτ

⇒ [m]::hbτ ′ ∪ [m]::rfτ ′ ∪ [m]::hbτ1 ∪ [m]::rfτ1 = [m]::hbτ ∪ [m]::rfτ ∪ [m]::hbτ1 ∪ [m]::rfτ1

⇒ τ ′.τ1 ≈ τ.τ1

And similarly, τ ′.τ1 = τ.τ1 ⇒ [m]::hbτ ′ ∪ [m]::rfτ ′ ∪ [m]::hbτ1 ∪ [m]::rfτ1 = [m]::hbτ ∪
[m]::rfτ ∪ [m]::hbτ1 ∪ [m]::rfτ1 ⇒ [m]::hbτ ′ ∪ [m]::rfτ ′ = [m]::hbτ ∪ [m]::rfτ ⇒ τ ′ ≈ τ .

For property 7 consider two sets of relations.

[m]::ithb-rτ (ithb-reversible): e′→[m]::sw
τ e ∨ e′→[m]::dob

τ e ⇒ e′→[m]::ithb-r
τ e

[m]::ithb-iτ (ithb-irreversible): e′→[m]::ithb
τ e ∧ ¬e′→[m]::ithb-r

τ e ⇒ e′→[m]::ithb-i
τ e

Finally, property 7 is satisfied as follows: e1→[m]::hb
τ.e1.e2 e2⇒ e1→[m]::sb

τ.e1.e2 e2 ∨ e1→[m]::ithb-r
τ.e1.e2 e2,

if e1→[m]::sb
τ.e1.e2 e2 then e1→[m]::sb

τ.e1.e3.e2e2 (by definition of [m]::sbτ ), and

if e1→[m]::ithb-r
τ.e1.e2 e2 then e1→[m]::ithb-r

τ.e1.e3.e2 e2 (as e19[m]::hb
τ.e1.e3 e3).

Note that, e19[m]::ithb-i
τ.e1.e2 e2 because they are adjacent. �

Total-order on sc events for C11 restricted to MCA

Further, MoCA also maintains a total order relation [m]::toτ on sc events. The [m]::toτ

relation is computed on the events of τ , as follows.

Definition 7. (sc total-order ([m]::toτ))

Let shw-toτ , {(e′, e) | e′, e ∈ ER(sc)
τ ∪ EM(sc)

τ ∪ EF(sc)
τ , thr(e′) 6= thr(e) ∧

e′<τe}; then,

[m]::toτ , {(e′, e) | e′, e ∈ ER(sc)
τ ∪ EW(sc)

τ ∪ EF(sc)
τ s.t. either e′→[m]::sb

τ e, or (∃
(e′1, e1) ∈ shw-toτ s.t. (e′1 = e′ ∨ e′1 = shw(e′)) ∧ (e1 = e ∨ e1 = shw(e)))}
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Intuitively,

1. all sc events in [m]::sbτ are also in [m]::toτ relation, and

2. sc ordered events from different threads are in [m]::toτ by their occurrence order

in τ , except write events that are in [m]::toτ by the occurrence order of their

shadow-write event in τ .

Non-atomic data races

If a data race exists on na ordered events of an execution sequence τ (a.k.a na race)

then the behavior of τ is considered undefined under the C11 model [20, 46, 62].

MoCA defines an na race in a sequence τ as:

Definition 8. (na race)

if ∃e′, e ∈ E (na)
τ s.t. e′<τe but e′9[m]::hb

τ e then τ has an na race on e′, e.

5.5.3 Trace coherence under C11 for MCA

The [m]::hbτ relation, along with the [m]::moτ and [m]::rfτ relations, is used in spec-

ifying a set of C11-MCA coherence conditions. The coherence conditions bound the

set of traces feasible with shadow-writes and the [m]::hbτ , [m]::moτ , and [m]::rfτ

relations to those valid under C11 and MCA.

C11-MCA coherence conditions

(mca-moWE): If a write ew is [m]::ithbτ or [m]::rfτ ; [m]::ithbτ ordered with an event

e from another thread, then either shw(ew) must occur before shw(e)

(if e ∈ EW) or before e (if e 6∈ EW).
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(mca-moRR): If a read er1 is hb-ordered before another read er2, then the shadow-

write of er1’s source write must occur before the shadow-write of

er2’s source write (where, source write is the write event that a read

reads from);

(mca-moWR): shadow-write of a read’s source must occur after the shadow-write

of all writes hb-ordered before the read.

(mca-cormw): To ensures atomicity, each rmw event must read-from the immediately

ordered before event in the modification order.

(mca-co): A read must not read from a write hb-ordered after it.

Finally, through Theorem 7 demonstrates that traces generated by MoCA are indeed

coherent under C11 by establishing that every C11 coherence condition is satisfied

under MoCA.

Theorem 7. MoCA coherence ⇒ C11 coherence.

Proof. Let �τ represent a relation non-racing-hb that represents hb-ordered events

that do not race to access an object, that is, e1→[m]::hb
τ e2 ∧ ¬ (e1→[m]::sw

τ e2 ∨ e1→[m]::dob
τ e2)

⇒ e1�τe2.

Recall, (coWW): ∀w1, w2 ∈ EWτ , w1→hb
τ w2 ⇒ w1→mo

τ w2.

Now, w1→[m]::hb
τ w2⇒ w1→[m]::sb

τ w2 ∨ w1→[m]::ithb
τ w2 but ¬(w1→[m]::sw

τ w2 ∨ w1→[m]::dob
τ w2)

(as both events are write events).

If w1→[m]::sb
τ w2 and thr(shw(w1)) = Ti then thr(shw(w2)) = thr(shw(w1)) = Ti ∧

shw(w1)<Tishw(w2).

Whereas, if w1→[m]::ithb
τ w2 then w1�τw2 (since ¬(w1→[m]::sw

τ w2 ∨ w1→[m]::dob
τ w2) ⇒

shw(w1)<τshw(w2) (by (mca-moWE))

Each of the two cases ⇒ w1→[m]::mo
τ w2 (using (mca-mo)). inf(1).
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shw(ew1) <shw(ew2)

ew1 ew2
[m]::mo

ew e

er

shw(ew) < shw(e)

[m]::ithb

[m]::ithb

[m]::rf

[m]::moτ (mca-moWE)

er1 er2

ew1 ew2

shw(ew1) shw(ew2)<

[m]::rf[m]::rf

[m]::hb
ew1 er

ew2

shw(ew1) < shw(ew2)

[m]::hb

[m]::rf

(mca-moRR) (mca-moWR)

(mca-co) ∀ er ∈ ERτ , ew→[m]::rf
τ er ⇒ er9[m]::hb

τ ew
(mca-moWE) ∀ ew ∈ EWτ , er ∈ ERτ , e ∈ Eτ , s.t. thr(e) 6= thr(ew),

ew→[m]::ithb
τ e ∨ ew→rf

τ er→
[m]::ithb
τ e ⇒ shw(ew)<τe (if e 6∈ EWτ ) ∧

shw(ew)<τshw(e) (if e ∈ EWτ )

(mca-moRR) ∀ er1, er2 ∈ ERτ s.t. er1→[m]::hb
τ er2 if ∃ ew1, ew2 ∈ EWτ

s.t. ew1→[m]::rf
τ er1 ∧ ew2→[m]::rf

τ er2 where ew1 6= ew2 then
shw(ew1)<τshw(ew2)

(mca-moWR) ∀ ew1,ew2 ∈ EWτ , er ∈ ERτ s.t. ew1→[m]::hb
τ er ∧ ew2→[m]::rf

τ er where
ew1 6= ew2, shw(ew1)<τshw(ew2)

(mca-cormw) ∀ e ∈ Eτ , act(e) = rmw, ∃ ew→[m]::rf
τ e s.t. ew→[m]::mo

τ e ∧ @ e′w s.t.

ew→[m]::mo
τ e′w→

[m]::mo
τ e

Figure 5.11: Coherence conditions for MoCA traces

Recall, (coRR): ∀ r1, r2 ∈ ERτ , w1 ∈ EWτ , r1→hb
τ r2 ∧ w1→rf

τ r1 ⇒ w1→rf
τ r2 ∨ (∃ w2,

w2→rf
τ r2 ∧ w1→mo

τ w2).

Now, r1→[m]::hb
τ r2 ∧ w1 6= w2 ⇒ w1→[m]::mo

τ w2 (using rule (mca-moRR), (mca-mo)).

inf(2).

Recall, (coRW): ∀ r1 ∈ ERτ , w1 ∈ EWτ , r1→hb
τ w1 ⇒ ∃ w2→mo

τ w1 s.t. w2→rf
τ r1.

Now, if r1→[m]::hb
τ w1, ∃w2, w2→[m]::rf

τ r1 (by definition of (mca-co))
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then by definition of [m]::rfτ , either shw(w2)<τr1 ⇒ shw(w2)<τr1<τshw(w1)

or thr(w2) = thr(r1)⇒ w2�τr1�τw1 (as r1→[m]::hb
τ w1⇒ r1→[m]::sb

τ w1 ∨ r1→[m]::ithb
τ w1

but ¬ (w1→[m]::sw
τ w2 ∨ w1→[m]::dob

τ w2)) ⇒ shw(w2)<τshw(w1) (by (mca-moWE)).

Each of the two cases ⇒ w2→mo
τ w1 (using (mca-mo)). inf(3).

Recall, (moWR): ∀ w1 ∈ EWτ , r1 ∈ ERτ , w1→hb
τ r1 ⇒ w1→rf

τ r1 ∨ (∃ w2, w2→rf
τ r1 ∧

w1→mo
τ w2).

Now, w1→[m]::hb
τ r1 ⇒ w1→[m]::sw

τ r1 ∨ w1→[m]::dob
τ r1 ∨ w1→[m]::sb

τ r1 ∨ (w1→[m]::ithb
τ r1

but ¬ (w1→[m]::sw
τ w2 ∨ w1→[m]::dob

τ w2)) (by definition of [m]::hbτ ).

w1→[m]::sw
τ r1 ⇒ w1 = w2;

w1→[m]::dob
τ r1 ⇒ w2 is in release-sequence of w1 ⇒ w1→[m]::mo

τ w2 (by definition of

release-sequence);

w1→[m]::sb
τ r1 ∨ w1→[m]::ithb

τ r1 ⇒ w1�τr1 (since ¬ (w1→[m]::sw
τ w2 ∨ w1→[m]::dob

τ w2))

⇒ shw(w1)<τr1 (using (mca-moWE)) then w2→[m]::rf
τ r1 ⇒ shw(w1) <τ shw(w2) ⇒

w1→[m]::mo
τ w2 (using (mca-mo)).

⇒ (w1 = w2 i.e. w1→rf
τ r1) ∨ w1→mo

τ w2. inf(4).

Recall, (coto): ∀sc1, sc2 ∈ Escτ , hbτ |sc ∪ moτ |sc ⊆ toτ

Now, sc1→[m]::to
τ sc2 ⇒ sc1<τsc2 ∨ shw(sc1)<τsc2 ∨ sc1<τshw(sc2) ∨ shw(sc1)<τshw(sc2)

⇒ sc29[m]::hb
τ sc1 ∧ sc29[m]::mo

τ sc1 (by definition of [m]::toτ ). inf(5).

Note that (rfto1), (rfto2), and (tofen) trivially hold by the definition of [m]::rfτ

and [m]::toτ . inf(6).

Further, (corf) and (cormw) trivially holds from (mca-co) and (mca-cormw) respec-

tively. inf(7).

Inferences (1) to (7) ⇒ all valid MoCA traces are valid C11 traces. Implying, that our

technique does not explore a non-C11 behavior. �
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5.6 Stateless model checking for C11 restricted to

MCA

MoCA technique uses source-DPOR (refer to [1]) a state-of-the-art stateless model

checking technique to explore the MCA outcomes of a C11 input program for de-

tecting safety property (assert) violations and na races. MoCA bases the source-DPOR

model checking technique on the event relations, [m]::hbτ , [m]::moτ and [m]::rfτ , de-

fined for C11 restricted to MCA (presented in §5.5), along with a set of relevant

coherence conditions (refer to Figure 5.11).

The MoCA technique is,

1. Coherent. Each trace represented by the C11-MCA event relations, under the

C11-MCA-coherence conditions, is a valid C11 outcome.

2. Precise. MoCA traces are equivalent to C11 traces feasible over MCA.

3. Sound. For each trace of C11 valid over MCA there exists a program execution

explored by the MoCA technique6.

The shadow-writes, as remarked before, enable reordering through interleaving.

Note, however, that a shadow-write updates the memory for the corresponding

write event at non-deterministic later timestamp. As a consequence, shadow-writes

simulate the reordering of program writes with later events from the same thread.

To simulate the reordering of a write event with an earlier program event from the

same thread, MoCA implicitly assumes that the writes are at the earliest feasible

location in the program (where earlier refers to a lower event index).

To meet this requirement, MoCA performs a static early-write transformation from

input program P to P̂ .

6Since, the source-DPOR technique is sound [1], MoCA is also sound.
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shared-objects: {x, y, z}

a: Rrlx(x) if (k) b: W rlx(y, 1) if (k)

b: W rlx(y, 1) e: Rrlx(x) early−write−−−−−−−→
transform

c: Frel f : W rlx(z, 1)

c: Frel f : W rlx(z, 1) a: Rrlx(x) e: Rrlx(x)

d: W rlx(x, 1) end if d: W rlx(x, 1) end if

(P ) (P̂ )

Figure 5.12: Early-write transformation

5.6.1 Early-write transformation

The transformation rules for each thread sequence Ti:τ of the original program, P ,

are:

if there exists a corresponding thread sequence Ti:τ ′ of P̂ then,

ewt1 ETi:τ = ETi:τ ′
(i.e., the set of events of the original and transformed sequences remain same,

however, their order of occurrence may vary);

ewt2 if ∃e1, e2 s.t. e1<Ti:τe2 ∧ e2<Ti:τ ′e1, then e2 ∈ (EW ∪ EF(rel)), e1 6∈ EF(rel) ∧
(@e3 ∈ ETi:τ s.t. e1 ≤Ti:τ e3<Ti:τe2 ∧ dep(e3, e2)

(i.e. the write and rel fences that may form synchronizations with the

writes (refer Section 5.5.2) are moved earlier than other events while main-

taining their relative order and ensuring program dependence is not violated).

Consider the input program (P ) in Figure 5.12 and its early-write transformation

(P̂ ). The write event b and the rel fence c move earlier than a but event d does

not because there is a data-dependence between a and d.

Further, assuming that control dependence is included in dep, f moves earlier than e

but not earlier than the ‘if’ condition because of the control dependence.
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Initially x = 0, y = 0

(T1) (T2) (T3) (T4)

a: W (x, 1) b: R(x, 1) d: W (y, 1) e: R(y, 1)

c: R(y, 0) f : R(x, 0)

Figure 5.13: IRIW

Early-write transformation along with shadow-writes simulate the reordering of

write events with other events of a thread. To simulate the reordering of read

events of a thread, MoCA proposes a static transformation called, ordered-reads trans-

formation from the early-write transformed program P̂ to P̂ .

5.6.2 Ordered-reads transformation

Consider the outcome of the program IRIW shown in Figure 5.13 where the earlier

reads of the threads T2 and T4 read from the write events a and d while the later

reads read the initial values. The shadow-writes corresponding to the writes a

and d do not perform any effective reordering and the outcome shown in Figure 5.13

is infeasible with shadow-writes and early-write transformation.

The outcome shown in Figure 5.13 is feasible under MCA if the reads are be re-

ordered. To support such reordering consider variants P̂ 1, · · · , P̂m of the early-write

transformed program (P̂ ) that vary on the order of read events of the input program.

The variants are constructed s.t. each variant P̂ k varies in the ordering of at least

one pair of reads. Each of the variants P̂ k are then verified separately.

Consider again the input program shown in Figure 5.13, the program has four read-

order variants, characterized by:

(v1) no reordering,

(v2) reordering of T2 reads,

(v3) reordering of T4 reads, and
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(v4) reordering of T2 and T4 reads.

Note that, the upper bound on the variants can be computed in m =
∏
Ti∈P |E

R
Ti |!.

The above discussed solution effectively reorders the read events. Combining the

solution with early-write transformation and reordering with shadow-writes, soundly

admit the permitted reordering of MCA. However, from the expression on the upper

bound on the variants (m), we can ascertain that the solution is expensive to the

verification process. If the program threads have a large number of read events, then

the solution will inevitably lead to a combinatorial blow-up.

In order to overcome the expensive reordering of reads, consider an effective heuristic

called ordered-reads transformation. The heuristic does not inflate the verification

task and works well in practice.

The transformation chooses a fixed order of occurrence of read events of an object

from all threads. The transformation ranks the objects of read events by program

dependence i.e. if a read of object y in a thread is dependent on a read of object

x and the read of object x has no such dependence on a read of y, then object y is

ranked higher than object x. The transformation then places the reads in increasing

order of object ranks; formally,

escore(e) , |{e′ s.t. dep(e′, e)}|.
(size of the set of events that e is program dependent on).

oscore(o) ,
∑

e∈ER escore(e) where obj(e) = o.

(score of object o based on the number of reads of o that are program

dependent on other events).

rank(o) , any arbitrary unique numeric value s.t. ∀o′ if oscore(o′) > oscore(o)

then rank(o′) > rank(o)

(each object o has a unique rank aligned with the object scores)

Consider the input program in Figure 5.13, oscore(x) = 0 (0+0), and oscore(y) = 1
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(1+0) and accordingly, rank(x) = 0 and rank(y) = 1 (as a read of y from thread T2

is dependent on the read of x).

Given early-write transformed input program P̂ , the rules of ordered-reads transfor-

mation (from P̂ to P̂ ) for each thread sequence Ti:τ of P̂ are:

if exists a corresponding ordered-reads transformed sequence Ti:τ ′ of P̂ then

ort1 ETi:τ = ETi:τ ′
(the set of events of the original and transformed sequences remain same, how-

ever, their order of occurrence may vary);

ort2 if ∃e1, e2 s.t. e1<Ti:τe2 ∧ e2<Ti:τ ′e1, then e1, e2 ∈ ER ∧ rank(obj(e2))< rank(obj(e1))

∧ @e3 ∈ ETi:τ s.t. e1 ≤Ti:τ e3<Ti:τe2 ∧ dep(e3, e2)

(reads e1, e2 can reorder if there is no intervening e3 that introduces program

dependence with e2).

For the input program in Figure 5.13 the order of read events of T4 are reversed to

bring the low ranking object’s read, (f), above the higher ranking object’s read, (e).

The outcome shown in Figure 5.13, feasible under MCA, can be explored by MoCA

with ordered-reads transformation.

Consequently, the ordered-reads transformation reorders the read events in effect.

Further, with the transformation, MoCA needs to invoke stateless model checking ex-

actly once.

Theorem 8. Early-write transformation and ordered-reads transformation (P to

P̂ ) are semantics preserving.

Proof. Consider the sequence of events of a thread Ti:τ of the input program P , and

its corresponding transformed sequence of events in a thread Ti:τ ′ of P̂ . To ensure

a semantic preserving reordering the conditions spr1-3 (refer to §5.4) must hold for

corresponding threads of P and P̂ .
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Let prevW[Ti:τ ](e) represent the previous write event to e in a thread Ti, formally,

ew ∈ EWTi:τ = prevW[Ti:τ ](e) if thr(ew) = thr(e) = Ti, ew<Ti:τe and @e′w ∈ EWTi:τ s.t.

thr(e′w) = Ti ∧ ew<Ti:τe′w<Ti:τe.

spr1 The condition is met by definition of the transformations.

spr2 ∀ e′, e to be executed by thread Ti, dep(e′, e) ⇒ e′<Ti:τe ∧ e′<Ti:τ ′e,
i.e., dependent events are not reordered (by definition of the transformations).

⇒ ∀er ∈ ERTi:τ , prevW[Ti:τ ](er) = prevW[Ti:τ ′](er).

⇒ Ti:τ ′ preserves the sequential semantics of Ti:τ .

spr3 ∀o ∈ O, ∀e′, e ∈ E of Ti:τ s.t. obj(e′) = obj(e) = o, if e′<Ti:τe then e′<Ti:τ ′e,

i.e., events accessing same object are not reordered. (by definition of the trans-

formations).

⇒ Ti:τ ′ preserves coherence-per-location.

Hence, early-write transformation and ordered-reads transformation are semantic pre-

serving. �

Lemma 1. If e′, e can reorder under MCA then they can reorder in effect under MoCA

(with shadow-writes, early-write transformation, and ordered-reads transformation).

Proof. For all events e′, e such that e′
R⇐= e〈e′〉, there are four valid possibilities

considered below.

Case(i). e′, e ∈ ER:

∃ a variant P̂k of early-write transformed P̂ where e occurs before e′.

Case(ii). e′ ∈ ER, e ∈ EW:

(e′
R⇐= e〈e′〉) ⇒ ¬dep(e′, e) ⇒ e′<Ti:τe but e<Ti:τ ′e

′ (the events will be reordered with

early-write transformation) and then shw(e) and e′ can be interleaved.
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Case(iii). e′ ∈ EW, e ∈ ER:

(e′
R⇐= e〈e′〉) ⇒

(i) either obj(e′) 6= obj(e) ⇒ thr(shw(e′)) 6= thr(e) ⇒ shw(e′) and e can be inter-

leaved; or

(ii) obj(e′) = obj(e) but obj(e′) 6= obj(e〈e′〉) (case of interleaving with forwarding) ⇒
shw(e′) and e〈e′〉 can be interleaved while e can still read from e′ (by definition of

[m]::rfτ ).

Case (iv). e′, e ∈ EW:

(e′
R⇐= e〈e′〉)⇒ obj(e′) 6= obj(e)⇒ thr(shw(e′)) 6= thr(shw(e))⇒ shw(e′) and shw(e)

can be interleaved. �

5.6.3 Stateless model checking with source-DPOR

Central to MoCA is source-DPOR (Algorithm 1 of [1]). Source-DPOR is a state-of-the-

art stateless model checking technique proposed as a near-optimal improvement over

DPOR [35]. Source-DPOR was proposed for interleaving semantics and uses a novel

representation of the set of events to be explored from a state called source sets [4]

which is a much compact set of starts in comparison to the classic persistent sets [39]

or ample sets [74]. It is noteworthy that the source-DPOR algorithm used in MoCA is

as is, that is, without any modification, this was feasible because of several reasons:

• Design of a valid happens-before relation (Theorem 6) for restricting C11 under

MCA is directly pluggable in source-DPOR,

• The proposal of shadow-writes, along with early-write transformation and

ordered-reads transformation, makes it possible to avoid reordering instructions

from a thread during exploration and rely on interleaving model of computation

alone (that source-DPOR is designed for), and
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Figure 5.14: Writer-reader

• The parallel composition rule (parcom) (§5.4) satisfies the requirement of source-

DPOR that only one thread executes at a time.

Brief overview of the Source-DPOR Algorithm

Source-DPOR is a non-chronological depth-first search of a directed acyclic graph of

execution states. Much like the quintessential DPOR [35], source-DPOR maintains a

set of threads that should be explored at each state and a set of sleeping threads.

Consider the program in Figure 5.14(a). Figure 5.14(b) shows its exploration by

the source-DPOR algorithm. At each state of exploration, source-DPOR maintains a

backtrack set of threads such that the next events from the threads in the backtrack
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set must be explored from the state. At each state of exploration, source-DPOR also

maintains a sleep set of threads representing the threads whose next event must not

be explored from the state. While the backtrack set helps the algorithm to move

forward for a sound and complete exploration, the sleep set is maintained to avoid

redundant explorations.

Consider the exploration in Figure 5.14(b). The backtrack sets at each state are

shown in green while the sleep sets are shown in red. The exploration starts at the

initial state where thread T1 is randomly chosen for exploration and is added to the

backtrack set. The algorithm similarly selects a random thread to explore at each

state of the first execution sequence τ1. From τ1 source-DPOR recognizes the racing

event pairs a→c and a→e and inserts T2 and T3 to the backtrack set at s[〈〉] to reverse

the order of the racing events. Source-DPOR then backtracks and finds a state that

has unexplored threads in the backtrack set, i.e. s[〈〉] where T2 and T3 are unexplored.

It adds the previously explored thread, T1, to the sleep set at s[〈〉] and continues to

explore the next event of T2, and further the next event of T3.

Note that, the sleep set is carried to the next state of exploration until an event is

explored which races with the next events of the sleeping thread. Hence, the sleep

set at state s[d] is the same as the sleep set at s[〈〉] i.e. {T1,T2} since event d does not

race with a, b, or c. Thread T1 is removed from the sleep set after exploration of e

which races with a and a explores from s[d.e]. Similarly, T2 is removed from the sleep

set after exploration of a which races with c and b explores from s[d.e.a].

Refer to [1] for formal description and algorithm of source-DPOR.

Theorem 9. MoCA traces are equivalent to C11 traces valid over MCA.

Proof. Case →:

∀e′, e s.t. ¬(e′
R⇐= e) ⇒ dep(e′, e) ⇒ if e′<Ti:τe then e′<Ti:τ ′e, for Ti : τ of P and

Ti : τ ′ of P̂ .

Secondly, if dep(e′, e) where e′, e ∈ EW then obj(e′) = obj(e)⇒ shw(e′)<τ1shw(e) for

every execution sequence τ1 (by construction of shadow threads).
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Further, MoCA supports forwarding (by definition of [m]::rfτ , see Section 5.5.2 for

details).

Thus, reordering restricted by C11 over MCA is also restricted by MoCA. inf(i)

Early-write transformation is semantic preserving.

Further, if ∃e′, e ∈ ETi:τ s.t. e′<Ti:τe and e<τ ′shw(e′) for a trace τ ′ and dep(e′, e)

then e′ is observable for e (by definition of [m]::rfτ ) and if effect of e is observed by

another thread then so is effect of e′ (using (mca-co), (mca-moRR) and (mca-WE)).

Thus reordering allowed by MoCA is allowed by MCA. inf(ii)

Since, MoCA traces are coherent C11 traces (Theorem 7) and using inf(i) and inf(ii),

the theorem can be restated as,

if a trace is valid under MoCA then it is valid under MCA.

Events ew ∈ EW along with shw(ew) perform (w-issue) and (w-update) while preserv-

ing semantics (using (shco)); er ∈ ER perform (r-shared). Source-DPOR algorithm

ensures (parcom). Sequences of operations performed by MoCA to generate traces are

sequences of MCA operations. inf(iii)

Thus, from inf(i), (ii), and (iii) traces of MoCA have equivalent C11 MCA traces.

Case ←:

Assume MoCA restricts the reordering of events e′, e then e′<Ti:τe and e′<Ti:τ ′e for

Ti : τ of P and Ti : τ ′ of P̂ .

Further if e′, e ∈ EW then for all MoCA traces τ then shw(e′)<τshw(e)⇒ thr(shw(e′)) =

thr(shw(e)) ⇒ dep(e′, e) (by construction).

Hence, reordering restricted by MoCA is also restricted by C11 over MCA. inf(iv)

Reordering allowed by C11 over MCA are allowed by MoCA. (Lemma 1).
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Since, MoCA traces are coherent C11 traces (Theorem 7) and using inf(iv) and Lemma 1,

the theorem can be restated as,

if a trace is valid under MCA then it must be valid under MoCA.

(r-shared) is performed by ER, (w-issue), and (w-update) by EW and EM, (parcom)

is ensured by source-DPOR algorithm. Hence, sequences of operations produced by

MCA semantics can be replicated by MoCA traces. inf(v)

Thus, from inf(iv) and (v) C11 MCA traces are valid MoCA traces. �

5.6.4 Time complexity analysis

The worst-case time complexity of the source-DPOR algorithm is O(|T|2|E|2S), where

S is the number of sequences explored7.

The relation [m]::hbτ (or [t]::hbτ or [a]::hbτ ) has the same computational complexity

as its counterpart in the original source-DPOR work, i.e., O(|E|2).

The addition of shadow-threads, however, increases the number of processing elements

and makes the worst-case complexity of MoCA O(|O|2|T|2|E|2S), where |O|2|T|2 is the

number of threads for MoCA including the program threads and a shadow-thread per

program thread per object.

5.7 Implementation details of MoCA SMC

The implementation starts by statically converting the input program P to P̂ , using

early-write transformation, and then to P̂ , using ordered-reads transformation. The

static transformation is performed once for every input program, and the stateless

model checking is performed on the transformed program P̂ .

7Source-DPOR is not an optimal technique and may explore redundant sequences and sleep set
blocked [1] sequences.
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Figure 5.15: Structural overview of MoCA tool

The implementation of MoCA technique has two major components,

1. an execution component responsible for executing the input program for each

maximal sequence explored by the technique, and

2. a scheduler that schedules the program executions and analysis the execution

sequences for coherence and correctness.

The processing of MoCA tool starts by invoking the scheduler. The scheduler in turn

starts a fresh execution of the statically transformed input program (P̂ ) and receives

the first set of enabled events. The scheduler then applies the source-DPOR algorithm

on the enabled events and informs the runtime engine of the next event to execute.

Source-DPOR computes the event relations ([m]::hbτ , [m]::rfτ , and [m]::moτ ) on the

events of the sequence and relies on the MoCA coherence conditions (refer to Fig-

ure 5.11) to compute an execution sequence coherent under C11 restricted to MCA.

On execution of an event, the runtime engine receives a set of newly enabled events

that it forwards to the scheduler.

The process continues till a maximal sequence is executed, or an assert violation or

na race is detected. Further, the scheduler restarts the transformed input program
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(P̂ ) for the next execution sequence using the runtime engine when there are more

traces to explore.

The key modules of the implementation design are presented in Figure 5.15 and

discussed below.

• Static Transformation. As the first step, the implementation performs a

source-to-source transformation of the input program P , using early-write trans-

formation and ordered-reads transformation, to P̂ . The transformation is se-

mantic preserving (shown formally with Theorem 8).

After the transformation all valid program outcomes can be explored by schedul-

ing various interleavings alone. The effects of feasible reorderings can be achieved

with interleaving on P̂ .

• Instrumentation. The transformed input program (P̂ ) is then instrumented

by inserting code in P̂ at relevant control points such as memory access, thread

creation, thread join, assert condition etc.

The instrumentation calls respective modules on reaching the relevant control

points to supply data for the analyses and receive execution instructions. The

instrumentation, thus, allows MoCA tool to take control of the interleaving or-

der to realize the desired execution sequence. The instrumentation preserves

program behaviors.

• Runtime Engine. The runtime engine starts the program P̂ , and executes

the instrumented program as per the directed execution order.

• Scheduler. The scheduler is control center of the implementation that perform

various tasks, such as,

– It controls the interleaving order of program threads (by directing the run-

time engine on next event to execute), and thus schedules various execution

sequences. It also directs the runtime engine to restart the program if it

computes that there are more traces to explore.
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– It computes the event relations on the explored event sequence and uses the

MoCA coherence conditions to help compute the next event of the sequence

and the next execution sequence.

– It implements the source-DPOR algorithm based on the MoCA event rela-

tions and MoCA coherence conditions.

– It creates and maintains shadow-threads and shadow-writes.

– It invokes an Analyzer module on each maximal execution to analyze the

program for correctness.

• Analyzer. Each maximal sequence is analyzed for assert violations and na

races. On detection of either of the two conditions MoCA halts the stateless

model checking and returns an error trace.

5.7.1 Tool description

The implementation of MoCA technique is done in C++ language over rInspect [77]

tool. The tool takes a C or C++ program as input and uses the pthread library for

multi-threading. The intermediate representation of the source program generated

after compilation is instrumented using LLVM. The instrumentation performs a source-

to-source transformation of the intermediate representation by inserting suitable calls

to interpreter modules. The tool detects the violations of safety properties provided

as assert statements in the input program.

The scheduler module controls the execution and analysis of program sequences. At

each state of exploration the scheduler maintains two sets of events, called the source

set and the sleep set (refer to [1]). The two sets contain events that must be explored

and must not be explored from the state respectively.

If the tool explores a maximal sequence (no assert condition was violated and no na

race was detected in the sequence) then the scheduler identifies a state (s[τ ]) where

the sleep set is a subset of the source set signifying that a different schedule has to

be explored from the state. If such a state (s[τ ]) exists then the scheduler restarts the
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input program and schedules the execution of the event sequence, upto the state s[τ ],

in the previously explored order. At the state s[τ ] the scheduler adds the previously

explored event in the sleep set and executes the next event in the source set.

Exploring shadow-writes

For each program thread Ti, the scheduler creates shadow-threads of Ti corresponding

to each object. A program thread receives events from the runtime engine, while the

events of a shadow-thread are created by the scheduler. The source-DPOR algorithm

does not differentiate between program threads and shadow-threads.

Shadow-write events are created by the scheduler and added to the corresponding

shadow-thread as follows: when an event e ∈ EW of thread Ti is executed from a

state s[τ ], a corresponding shadow-write event shw(e) is generated and added to

the shadow-thread Tsi ∈ sth(e) corresponding to obj(e). Similar to program threads,

execution of an enabled shadow-write event shw(e) of a shadow-thread Tsi from a

state s[τ ] enables the next event of Tsi at state s[τ.shw(e)].

Supported data-types and operations

The tool supports atomic and non-atomic data-types and all data structures. The

tool further supports the following operations on global variables (program events):

read, write and the following rmw operations, fetch-and-add, fetch-and-subtract, fetch-

and-and, fetch-and-nand, fetch-and-or, fetch-and-xor, fetch-and-max, fetch-and-min,

exchange and compare-and-exchange. The tool supports all operations on local vari-

ables.
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5.8 Experiments and Results on MoCA SMC

5.8.1 Experimental setup

The experiments are conducted on an Intel(R) Xeon(R) CPU E5-1650 v4 @ 3.60GHz

with 32GB RAM and 32 cores running Ubuntu 16.04.1 LTS. LLVM 3.3 is used for to

perform the instrumentation due to the dependence of rInspect on this version.

The performance of MoCA is compared against two state-of-the-art stateless model

checkers for C11 (and its variants), namely CDSChecker [72], and GenMC [53]; and a

hardware model checker called HMC [54].

CDSChecker is a SMC for C11 programs. CDSChecker forms potential pairs of reads

and its sources called promises and attempts to generate traces where the read can

coherently read from the source write in the pair.

GenMC analysis programs under a variant of C11 called RC11. GenMC generates

execution graphs, in essence, partial orders of event relations representing a trace, to

perform the analysis. The design of execution graphs ensures GenMC does not explore

any redundant sequences, also known as an optimal exploration.

HMC is a stateless model checker that takes C11 programs as input and analyzes them

for a hardware memory model called IMM, a superset of hardware memory models

such as POWER, RISC-V, and ARM. Like GenMC, HMC uses execution graphs to

generate traces and claims optimality of exploration.

5.8.2 Coherence validation

To validate the coherence of the MoCA technique and its implementation, the MoCA

tool is tested on a set of litmus tests for the MCA model and for the C11 model.

Coherence of MoCA with respect to MCA is validated the diy7 family of litmus tests [47].

Table 5.1 lists a sample set of the tests. Coherence of MoCA with respect to C11 is vali-
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Table 5.1: MCA tests

Test #Seq Time

CoRR 3 0.02s

CO-RSDWI 6 0.02s

R+fn+fn 5 0.02s

RSDWI 22 0.11s

WRR+2W 29 0.12s

Luc17 12 0.07s

Luc10 MV 0.02s

S-popl MV 0.01s

Table 5.2: C11 tests

Test #Seq Time race? #Rseq

simple-sw 3 0.006s Y 2

simple-ithb 4 0.034s Y 2

RS-blk MV 0.07s Y 8

CSE-no-blk 12 0.158s N -

no-fence-sync MV 0.054s Y 5

fib-no-assert 26 0.14 N -

fmax-cas 31 0.21s N -

flipper 1628 9.29s N -

dated on a set of 56 synthesized litmus tests and multi-threaded benchmarks borrowed

from SV-Comp benchmark suite [22]. The SV-Comp benchmarks are remodeled with

the use of atomic data types and associated memory orders. Table 5.2 lists a sample

set of the tests, where rows 1-4 depict results on the synthesized tests and rows 5-8

depict results on the SV-Comp benchmarks.

The column ‘Time’ shows the time of analysis and the column ‘#Seq’ shows the

number of maximal sequences explored, which includes at least one execution corre-

sponding to each program trace and (possibly) a few redundant executions owing to

the non-optimal nature of the underlying source-DPOR algorithm. The value ‘MV’ in

the column ‘#Seq’ signifies that an assert violation is detected in a C11 trace of the

program that is valid over MCA. Further, in Table 5.2, a ‘Y’ in the column ‘race?’

signifies that the test contains an na races. In such a case the number of maximal

sequences that contain na race(s) is reported in the column (column ‘#Rseq’).

5.8.3 Litmus testing

To demonstrate the effectiveness of a precise analysis of C11 programs over MCA, we

collect a set of litmus tests from SV-Comp benchmark suite and previous works [51,

54, 76] that produce a strict subset of C11 behaviors when restricted to MCA. The
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Table 5.3: Comparative Results on litmus tests

Test(#MCA traces)
MoCA CDSChecker GenMC HMC

M N Time M N Time M N Time M N Time

WRC+addrs(7) 7 0 0.03s 7 1 0.01s 7 1 0.02s 7 1 0.03s

WR-ctrl(4) 7 0 0.03s 4 2 0.01s 4 2 0.02s 4 2 0.02s

Z6+poxxs(4) 18 0 0.12s 14 4 0.01s 4 4 0.03s 4 4 0.03s

IRIW+addrs(15) 15 0 0.07s 15 1 0.01s 15 1 0.02s 15 1 0.02s

WW+RR(15) 96 0 0.53s 15 66 0.02s 15 66 0.02s 15 66 0.02s

M: #MCA sequences, N: #non-MCA sequences

outcome of MoCA on such tests is compared against CDSChecker, GenMC and HMC.

The focus of litmus testing is on demonstrating that

1. MoCA indeed does not explore any program outcomes that represent non-MCA

traces, while other existing verification techniques for C11 input programs ex-

plore MCA and non-MCA outcomes.

2. A significantly large number of program outcomes may be non-MCA in nature.

The litmus testing is performed on small tests with 15 or less MCA traces. Since the

tests are small, the number of MCA outcomes for the input programs are computed

manually.

Table 5.3 shows the results of the litmus testing. The number of C11 traces valid

under MCA have been shown in bracket accompanying the name of the test. For

instance, ‘WRC+addrs(7)’, shows that the test ‘WRC+addrs’ has 7 C11 traces valid

over MCA (computed manually). Columns ‘M’ and ‘N’ represent, respectively, the

number of MCA sequences and non-MCA sequences explored by the corresponding

technique. Columns ‘Time’ represent the time of analysis.

Note that, MoCA is not an optimal technique (since the underlying source-DPOR algo-

rithm is not an optimal algorithm). Thus, for tests where the explored MCA sequences
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Table 5.4: MoCA performance analysis

Benchmark
MoCA CDSChecker GenMC HMC

#Seq Time #Seq Time #Seq Time #Seq Time

mutex 5 0.02s 2-NVs 0.01s NV 0.03s NV 0.02s

peterson 13 0.15s 666-NVs 2.73s NV 0.02s NV 0.02s

RW-lock 246 0.52s 193-NVs 0.38s NV 0.02s NV 0.04s

spinlock 506 16.98s To - NV 0.08s NV 0.15s

fibonacci-2 667 5.57s To - NV 0.04s NV 0.03s

fibonacci-3 10628 2m14s To - NV 0.06s NV 0.07s

fibonacci-4 92421 56m21s To - NV 0.13s NV 0.31s

counter-5 3599 39.78s 25-NVs 0.31s NV 0.06s NV 0.03s

counter-10 55927 12m53s 100-NVs 9.21s NV 0.05s NV 0.07s

counter-15 To - 225-NVs 50.31s NV 0.11s NV 0.16s

flipper-5 2489 20.19s 201-NVs 3.26s NV 0.03s NV 0.04s

flipper-10 96737 6m12s To - NV 0.04s NV 0.02s

flipper-15 To - To - NV 0.03s NV 0.03s

prod-cons-10 9373 1m23s To - NV 0.04s NV 0.04s

prod-cons-15 38593 6m46s To - NV 0.02s NV 0.02s

prod-cons-20 109838 20m28s To - NV 0.02s NV 0.02s

(‘M’) is larger than the number of MCA traces, that is tests ‘WR-ctrl’, ‘Z6+poxxs’,

and ‘WW+RR’, MoCA has explored redundant or sleep set blocked sequences (refer

to [1]). Similarly, CDSChecker is not an optimal technique while GenMC and HMC

are. Thus, tests where CDSChecker has explored more sequences than GenMC and

HMC it implies that CDSChecker has explored redundant sequences.

As can be seen from Table 5.3, MoCA only explores MCA traces, while all other tech-

niques explore non-MCA traces along with MCA traces. It can also be observed that

the set of non-MCA outcomes can be significantly large.
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5.8.4 Performance analysis

The performance analysis of MoCA is done over challenging benchmarks borrowed

from SV-comp benchmark suite [22]. The performance is measured on various con-

figurations of each benchmark, where the configurations vary on the problem size

determined by program features such as the number of loop unrolls and the number

of concurrent processing elements (or threads). In essence, higher configurations of

benchmarks typically result in a higher number of program events.

The performance on the benchmarks is measured on three aspects.

1. Time of analysis. The time taken to verify a configuration of a benchmark

input program.

2. Scalability. The highest configuration of a benchmark that can be verified within

a reasonable time of analysis, also known as Timeout of analysis or simply

Timeout (To), set at 3600 seconds.

3. Number of non-MCA assert violations. The number of execution sequences that

report an assert violation which is infeasible on an MCA architecture.

The performance analysis of MoCA against that of techniques CDSChecker, GenMC, and

HMC is presented in Table 5.4. The number of program outcomes of the benchmarks

is much larger than that of the litmus tests. It is infeasible to compute the number of

MCA outcomes manually. Therefore, appropriate assert conditions are added to the

tests in Table 5.4 that are not violated under the MCA model but may violate under

a non-MCA model. The goal of the testing is to ensure that MoCA does not report an

assert condition while the other techniques do.

Configurations of benchmarks. The configurations of a benchmark vary the

problem size such that higher configurations require a higher effort of analysis. The

configurations typically vary on the number of concurrent elements (threads), the

number of loop iterations, and the number of events. The configurations of the

benchmarks in Table 5.4 vary on the following aspects.
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The benchmark ‘fibonacci’ uses N which represents that the program can generate

not larger than the Nth fibonacci term. The configurations of ‘fibonacci’ vary

on N. The configurations of ‘counter’ vary on the number of times increment and

decrement is performed on a shared object. Similarly configurations of ‘flipper’

vary on the number of times the value of a shared object is atomically flipped (between

0 and 1). Configurations of ‘prod-cons’ vary on the number of times the producer

thread produces and the consumer thread consumes.

Observations. The value ‘NV’ in the column ‘#Seq’ indicates assert violation(s)

in non-MCA execution sequences. On detecting an assert violation the techniques

GenMC and HMC halt their verification process. However, CDSChecker continues

the exploration after the detection of an assert violation and reports all execution

sequences with assert violations. As a consequence, the total number of non-MCA

violations are reported for CDSChecker, as ‘x-NVs’, where ‘x’ is the number of assert

violations in non-MCA sequences. The number of assert violations is not known for

GenMC and HMC (since they halt at the first violation). Hence, for GenMC and HMC

the value ‘NV’ indicates that an assert violation is detected in a non-MCA execution

sequence.

Note that, the time reported for GenMC and HMC is the time to encounter the first

assert violation and is therefore much lower than the time reported by CDSChecker

and MoCA that perform complete exploration. As the result, the reported time of

analysis is incomparable and is added only for reference.

Consider again the bar graph shown in Figure 5.5. On the x-axis, the graph represents

the number of MCA outcomes explored by MoCA over various tests of Table 5.4, and

on the y-axis the graph shows the number of non-MCA assert violations explored by

CDSChecker. Note that, the value ‘-’ on the x-axis represents the test ‘counter-15’

for which MoCA timed-out and the value for the x-axis is not known.

It can be observed from Table 5.4 and Figure 5.5 that benchmarks can produce

hundreds of assert violations that may not be reproducible on an actual architecture.

The result is witnessed especially for the benchmark ‘peterson’ where CDSChecker

reports assert violations in 666 execution sequences that can never manifest on an
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Figure 5.16: Time of analysis of CDSChecker vs Time of analysis of MoCA (seconds)

MCA architecture while the feasible outcomes is only 13. Thus, a precise technique

for MCA such as MoCA can be useful.

A bar graph contrasting the performance of MoCA and CDSChecker, the two techniques

that perform complete exploration, is shown in Figure 5.16 on the benchmarks of

Table 5.4. The graph compares the time of analysis of MoCA (represented by yellow

bars) against the time of analysis of CDSChecker (represented by gray bars).

The graph demonstrates that MoCA outperforms CDSChecker on the benchmarks of

Table 5.4. CDSChecker performs analysis for the C11 traces while MoCA performs

analysis for a restricted (for MCA) set of C11 traces. Hence, MoCA has to analyze a

smaller set of equivalence classes and, thus, it outperforms CDSChecker.

The observation from the graph in Figure 5.16 empirically establishes that precise

analysis restricts the number of equivalence classes reducing the analysis overhead

(merit (M4), §5.3).

na race detection. The subset of execution sequences of the benchmarks ‘mutex’,

and ‘counter’ exhibit na data races. The na data races on these benchmarks were

successfully detected by MoCA.
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5.9 Scope, Limitations, and Future directions

Scope of C11-MCA happens-before relation and coherence conditions. The

happens-before relation, presented for MoCA in §5.5.2, and its corresponding coherence

conditions, presented in §5.5.3, admit traces valid under the memory model presented

in the ISO 2011 standard of C/C++. The relation and the coherence conditions are

not directly applicable to the memory models presented in the subsequent standards.

However, the subsequent models are closely related to the C11 model and nominal

modification to the happens-before relation and the coherence conditions can extend

support for the subsequent models. The MoCA technique can then be extended to sup-

port the the subsequent models by plugging-in the respective happens-before relations

and corresponding coherence conditions.

Threats to Validity

Scalability. SMCs are limited in scalability. There is a significant scope for improve-

ment in performance of SMCs in terms of the time of analysis and scalability. MoCA

does not scale to tests larger than those shown in §5.8.4.

Availability of benchmarks. There exist very few benchmarks of C11 programs

that utilize C11 weak ordering guarantees, and there are even fewer benchmarks that

highlight the difference in C11 outcomes and multi-copy atomic outcomes which are

required for this work.

Memory orders for testing. The benchmark suites such as SV-Comp [22] and

SCT [66] contain C programs without associated memory orders. The memory ac-

cess operations are thus associated with the default memory order under C11, i.e.

sc. To test the weaker behaviors the memory access operations are associated with

appropriate weak memory orders which are chosen by the authors.

Establishing ground truth. The equivalence classes are not known to MoCA a

priori. In this work, the ground truth is established by manually computing the set

of outcomes of the input program.
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Legacy limitations of rInspect. Due to low modularity in rInspect’s design it

invokes various legacy modules that may not be necessary for the analysis. The

tool also has dependence on a considerably older version of LLVM (i.e. LLVM 3.3).

rInspect legacy design adds a considerable analysis overhead on MoCA.

5.9.1 Future directions

Extension for other MCA models and other C/C++ models. The MCA model

can be concretized for specific MCA architecture models by defining a concrete set of

reordering rules. Accordingly, MoCA’s support can be extended for specific architec-

ture models by capturing their respective reordering rules through a corresponding

happens-before relation.

Further, the modular design of the MoCA tool supports an easy extension for other

memory models that follow MCA semantics. The support can be extended by ap-

propriately replacing the MCA-hb component shown in Figure 5.15 for the respective

happens-before relation.

MoCA’s support may also be extended for newer versions of the C/C++ memory model,

by appropriately adapting the [m]::hbτ relation and the C11-MCA-coherence condi-

tions (presented in §5.5.3).

Support for coarse grained synchronization mechanisms. The MoCA technique

does not comprehend any coarse-grained synchronization primitives such as locks, in

other words, it not lock-aware. MoCA’s support may be extended for mutex locks or

other synchronization primitives by appropriately extending the [m]::hbτ relation.

5.10 Concluding remarks

This work presents a restriction of the C11 model for MCA. The restriction admits

only those traces of the input program that are valid C11 trace and can manifest on
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an architecture that supports MCA. The motivation of such a restriction is that it

considers the developer specification along with the implicit ordering of the underlying

architecture. Further, since MCA is supported my some of the most widely used

architectures, traces of MCA relate to most systems in use.

This work recognizes the fundamental components the define a valid C11 trace as the

event relations (hbτ , moτ , and rfτ ), and a set of corresponding coherence conditions

(refer to §3.2.3). Accordingly, the restriction of C11 for MCA is designed by redefin-

ing the two components to the C11-MCA event relations ([m]::hbτ , [m]::moτ , and

[m]::rfτ ), and a set of corresponding coherence conditions (refer to §5.5.2 and §5.5.3

respectively). It is established with relevant theorems that the [m]::hbτ relation is a

valid happens-before relation and the restriction of C11 for MCA preserves coherence

under C11.

Two key features allow a coherent restriction of C11 to MCA. The first feature is a

novel event type called shadow-writes that update the shared memory for a write

event at a later timestamp. The shadow-write events simulate reordering through

interleaving by interleaving with the events in the corresponding write event’s thread.

Shadow-writes also simulate updates to a single shared memory. The second feature

is a reads-from relation ([m]::rfτ ), defined using the shadow-writes, that simulates

the effect of reading from a single shared memory.

This work also presents a stateless model checking technique for precise verification

of C11 traces that can manifest on an underlying MCA architecture. The technique is

called MoCA. MoCA uses the source-DPOR algorithm based on the [m]::hbτ , , [m]::moτ ,

and [m]::rfτ relations and the C11-MCA-coherence conditions.

The technique uses two static transformations, called early-write transformation and

ordered-reads transformation, performed prior to the model checking. Essentially,

the transformations reshape the input program so that the use of shadow-writes can

indeed simulate all feasible renderings permitted under C11 and MCA. It is shown that

the transformations are semantic preserving, and that with the use of shadow-writes

and the transformations, MoCA can capture the effect all feasible reorderings under

C11 and MCA.
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The MoCA technique, that includes the use of shadow-writes, C11-MCA event rela-

tions and coherence conditions, and the static transformations, is sound (explores a

program execution for each trace), and precise (does not explore a trace that is not

valid under C11 or MCA). This work also presents the worst-case time complexity

analysis of the MoCA technique.

The MoCA technique is accompanied with an implementation for C and C++ input

programs. This work presents the corresponding implementation details including

the (i) structural overview and key components, (ii) details of libraries and platforms

used, and (iii) details of data-types and operations supported in the input program.

The MoCA tool is tested for coherence wrt C11 and coherence wrt MCA. The implemen-

tation is further tested on small litmus tests to highlight the imprecision of existing

techniques wrt to MCA and the effectiveness of MoCA is precisely recognizing the C11

outcomes valid over MCA.

The performance of MoCA is compared, on competitive benchmarks, against SMCs that

verify a C11 input program. The techniques are compared on the time of analysis,

scalability, and precision for MCA. The results on the benchmarks highlight that a

significantly large number of program outcomes may not be valid on MCA. Further,

it is observed that the precise analysis (for a smaller set of equivalence classes) may

result in a smaller time of analysis.

It is imperative to emphasize that the techniques CDSChecker and GenMC are designed

for C11 (or its variants) and HMC is for a collection of hardware models subsuming

MCA. Naturally, these techniques explore a larger set of traces, and the non-MCA

violation(s) reported by them are indeed true violations under their respective mod-

els. However, some of the violations reported by them may never manifest on the

underlying architecture.

Finally, this work discusses the scope of MoCA, focusing on the scope of the proposed

event relations and coherence conditions. Based on the scope, this work also proposes

worthy future directions.
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Chapter 6

(fast)FenSying. Fence Synthesis

for the C11 Memory Model

6.1 Background

The C11 memory model is classified as a weak memory model. Its semantics are

weaker than most memory models associated with architectures and programming

languages. Specifically, C11 falls into the non-multi-copy atomic class of memory

models, as explained in §3.2.3.

Under C11, potentially every pair of events in an input program can be reordered, and

write events can have staggered visibility to program threads. However, coherence

conditions (refer to Figure 3.6) are used to restrict the possible incoherent outcomes

resulting from such reordering or visibility.

Given the weak design of C11, the outcomes of a program executed under this model

are more accurately represented as C11 traces - a tuple of 〈Eτ , hbτ ,moτ , rfτ 〉. All

program executions with the same set of events and event relations, hbτ , moτ , and

rfτ , represent the same program trace or outcome. For further details on the C11

memory model, refer to §3.2.3.

139
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Table 6.1: Number of buggy traces against size of input program

Benchmark name #threads LoC #buggy traces

store-buffer(2) 2 56 6

store-buffer(4) 2 70 20

peterson(2,2) 2 68 30

peterson(2,3) 2 77 198

linuxrwlocks(2,1) 2 143 10

linuxrwlocks(3,8) 2 1462 353

seqlock(2,1,2) 3 81 500

seqlock(1,2,2) 3 88 592

dekker(2) 2 171 54

dekker(3) 2 242 1596

dekker-fen(3,2) 2 197 730

dekker-fen(3,4) 2 293 3076

burns(1) 2 46 36

burns(2) 2 64 10150

barrier(10) 3 78 416

barrier(100) 3 348 31106

bakery(4,3) 2 142 7272

bakery(4,4) 2 157 50402

burns-fen(2) 2 72 100708

C11 has been widely accepted in real-world applications such as Firefox and Chromium

web browsers, Bitcoin-core, and Tensorflow. The memory ordering constructs in C11

are general in their scope and are also being adopted in programming APIs such

as CUDA and OpenMP. Nonetheless, the ordering guarantees under C11 are known

to have complex axiomatic semantics. Comprehending the set of feasible outcomes

under C11 is formidable even for the experts of C/C++ language.

Due to its underlying complexity, the C11 model has become a subject of intense

study. Efforts have been made to manage the complexity of the model by designing

useful subsets of C11 [25, 50, 59, 60], that offer more intuitive reasoning and easier
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programming. Effective SMCs have also been proposed for automated detection of

the set of feasible outcomes under C11 [72], and its subsets [5, 51, 79, 81], including

MoCA (refer to Chapter 5).

The large reachable state space of an input program under C11 poses a challenge in its

analysis . Consequently, C11 bugs in input programs are tough to find, and it is equally

laborious to fix them. Note that, a bug in the input program, or a buggy outcome

of the input program, refers to a program trace that is valid under the coherence

conditions, but is regarded undesirable and may violate a user (programmer) defined

property.

Table 6.1 presents a list of tests and the corresponding number of buggy outcomes

(detected by a model checker for C11 called CDSChecker [32]). The column ‘Bench-

mark name’ contains the names of the tests. Columns ‘#threads’ and ‘LoC’ represent

the size of the input program in terms of the number of threads and the lines of code

respectively. Column ‘#buggy traces’ represents the number of buggy traces detected

by CDSChecker. It can be observed that C11 programs comprising of less than 100

lines of code (after loop unrolling) and involving just two threads can generate tens,

and even hundreds, of thousands of buggy traces.

A buggy outcome may emerge in the absence of a necessary ordering between program

events due to the weak semantics of C11. As a result, preserving the necessary

ordering between program events is essential for eliminating such bugs.

6.1.1 Ordering with fences

Memory barriers and fences are used under weak memory models to preserve order-

ing between program events. Consequently, careful placement of fences in a buggy

program may exclude the bugs. However, computing the correct combination of the

type and location of fences is challenging. Too few or incorrectly placed fences may

not preserve the necessary ordering, while too many fences can negatively impact

the performance. Computing the correct combination of fences may be as tricky as

comprehending the set of program outcomes. As a result, striking a balance between
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preserving the correctness and obtaining performance with fences is non-trivial even

for expert programmers. A recent study [73] suggests that memory order specification

to ensure performance and correctness should not be left to humans.

Cleverly designed automated techniques for placing fences in the input program

may effectively tackle the challenge. The process of placing additional fences in the

input program to eliminate program bugs is called fence synthesis. Most existing

techniques perform fence synthesis for a fixed architecture. The literature on fence

synthesis is rich with techniques targeting the TSO [6, 11, 16, 17, 21] and PSO [10, 63]

memory models or both [49, 55, 67]. Techniques have also been proposed for ARM

(version 7) [21], sparc-RMO [55], Power [10, 17, 33], and IA-32 [33] memory models.

However, the axiomatic definition of ordering varies with memory models. As a con-

sequence, most existing techniques (such as those for TSO and PSO) may not detect

C11 buggy traces due to a strong implicit ordering. Existing techniques, parametric

in or oblivious to the memory model [16, 17, 83], also assume an ordering between

pairs of events that is globally visible (to all threads). Such an ordering constraint is

restrictive for the C11 model. Another, memory model oblivious technique [49] is

proposed for outcomes resulting purely from interleaving with reordering. Program

outcomes under C11 may not be feasible under such a restriction.

Furthermore, C and C++ are portable languages and the C11 memory model is de-

signed for the C/C++ abstract machine. Synthesis of architecture specific memory

barriers reduces the portability of a C11 input program.

C11 fences

The C11 model supports C11 fences that serve as tools for imposing ordering restric-

tions between program events. The semantics of C11 fences are defined in the C11

model and briefly discussed in §3.2.3. The C11 fences do not simulate the semantics

of any architectural specific memory barriers. As a result, synthesis of C11 fences

in a C/C++ input program maintains its portability.

For the remainder of this chapter, the event type fence refers to a C11 fence.
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6.2 Ordering with C11 fences

This work proposes the first fence synthesis technique for C11 memory model. The

technique takes a buggy C11 program as input and synthesizes fences in the input

program that introduce additional ordering between program events. The additional

ordering extends the hbτ ordering of a buggy trace τ , as explained in Figure 3.5. The

C11 coherence conditions (presented in Figure 3.6), in essence, restrict the visibility

of writes, or reads from writes in presence of certain inter-thread ordering. As a

consequence, in the presence of the additional inter-thread ordering with fences, a

read in the buggy trace may violate a coherence constraint under C11. The buggy

trace τ is then invalidated (represented as τ inv); in other words, given the input

program with the synthesized fences the buggy trace cannot manifest as a program

execution. Further, if the synthesis of fences in the input program P invalidates all

buggy traces of P then the program is fixed or bug-free (represented as P fx).

C11 associates fences with memory orders, and hence, supports various degrees of

ordering guarantees through fences. As a consequence, various combinations of

fences may fix a buggy input program (program with buggy traces), where some

fence combinations may add a higher performance overhead in the fixed program

than others.

Consider the input program in Figure 6.1(a), where the superscripts of read and

write events represents the associated memory orders. The program is buggy since

the assert condition may violate in a program execution. Figure 6.1(b) represents

a buggy trace of the program, where the set of events and the event relations are

diagrammatically shown. The assert condition of Figure 6.1(a) is violated because

the read events are not ordered before the write events of the same object, allowing

reads from later writes.

Consider the following three sets of fences that can invalidate the trace in Fig-

ure 6.1(b): c1 = {Fsc12,Fsc22}, c2 = {Frel12 ,F
acq
22 } and c3 = {Frel12 }, where the superscripts

indicate the memory orders and the subscripts represent the synthesis locations of

the fences. Each such set of fences is called a candidate solution. The candidate
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Initially x = 0, y = 0

a: Rsc(y) c: Rsc(x)

b: W rlx(x, 1) d: W rlx(y, 1)

assert ¬(a = 1 ∧ c = 1)
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Figure 6.1: OTA. (a) input program, (b) buggy trace, (c)-(e) invalidated traces

solutions c1, c2 and c3 are depicted in Figures 6.1(c), (d), and (e) respectively.

The candidate solution c1 prevents a total order on the sc ordered events that does

not violate the coherence condition (coto) of (tosc) (refer to Figure 3.6).

The fences of the candidate solution c2 form a happens-before ordering Frel12 →hbFacq22

based on the condition depicted in Figure 3.5(d). The happens-before ordering in

turn orders the read a before the write d of the same object, by forming a→ithbd,

as described in Figure 3.4. The ordering between a and d violates the coherence

condition (coRW), shown in Figure 3.6.

Candidate solution c3 establishes a similar ordering a→ithbd, however c3 uses the

strong memory order of c to form Frel12 →hbc.

All three candidate solutions can invalidate the buggy trace and fix the input program

shown in Figures 6.1(a). However, c2 and c3 invalidate the buggy trace using weaker

fences than c1, and c3 also uses the least number of fences. As a result, candidate

solution c3 adds the least performance overhead for fixing the input program.
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6.2.1 Optimal fence synthesis

An optimal fence synthesis is the process of computing a candidate solution that

fixes the input program while incurring the least performance overhead. The process

involves finding solutions to two problems:

1. computing an optimal (minimal) set of locations to synthesize fences, and

2. computing an optimal (weakest) memory order to be associated with the fences.

The notion of optimality may vary with context. Consider two candidate solutions

{Fsci } and {Frelj ,Facqk } where the superscripts represent the memory orders. The

two solutions are incomparable under C11, since one solution uses a smaller set of

fences while the other uses weaker fences. Further, the performance efficiency of

the solutions is subject to the input program and the underlying architecture.

This work chooses a candidate solution c as an optimal solution if:

1. c has the smallest number of synthesized fences, and

2. each fence of c has the weakest memory order compared to other candidate

solutions that satisfy the condition 1.

Formal definition of optimal synthesis

To formally define the optimality condition, assume that each candidate solution is

assigned a weight wt(c) such that, a weaker solution is assigned a lower weight. The

weights are computed as the summation of the weights of fences in a solution, where

• a fence ordered rel or acq is assigned the weight 1,

• a fence ordered acq-rel is assigned the weight 2, and

• a fence ordered sc is assigned the weight 3.
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Further, let sz(c) represent the size of the candidate solution c, and given the set of

all candidate solutions {c1, ..., cn} to fix P , let sz(P ) = min(sz(c1), ..., sz(cn)).

Optimality for this work is formally defined as:

Definition 9. (Optimality of fence synthesis.)

Consider a set of candidate solutions c1, ..., cn.

A solution ci (for i ∈ [1, n]) is considered optimal if:

1. sz(ci) = sz(P ) ∧

2. ∀j ∈ [1, n] s.t. sz(cj) = sz(P ), wt(ci) ≤ wt(cj).

Consider the candidate solutions c1 = {Fsc12,Fsc22}, c2 = {Frel12 ,F
acq
22 } and c3 = {Frel12 },

shown in Figures 6.1(c), (d) and (e) respectively. The weights of the solutions are

computed as: wt(c1) = 3 + 3 = 6, wt(c2) = 1 + 1 = 2, wt(c3) = 1, and their sizes are

sz(c1) = 2, sz(c2) = 2, sz(c3) = 1. Accordingly sz(P ) = min(2,2,1) = 1 = sz(c3).

Hence, according to Definition 9, c3 represents the optimal solution.

Further, consider again the two candidate solutions ci = {Fsci } and cjk = {Frelj ,Facqk };
where, wt(ci) = 3, wt(cjk) = 2, and sz(ci) = 1, sz(cjk) = 2. Hence, according to

Definition 9, ci represents the optimal solution of the two (since, sz(P ) = min(2,1) =

1 = sz(ci)).

Therefore, this work prefers candidate solutions that synthesize lesser number of

fences over weakly ordered solutions with more fences.

Optimal fence synthesis is a computationally expensive process. Optimal fence

synthesis with multiple types of fences (as with C11 fences) can be reduced from

the minimum set cover problem. Using the reduction, it is shown that optimal fence

synthesis problem with multiple types of fences is NP-hard even for straight-line

programs [83].
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Figure 6.2: OTA-imm. Intermediate trace of the buggy trace in Figure 6.1(b)

6.3 Invalidating buggy trace with C11 fences

6.3.1 Intermediate trace

Given a buggy trace of the input program τ , consider its transformation into an

intermediate trace (τ imm) generated by inserting untyped fences above and below

each memory access event (read, write, and rmw) in the trace. The fences inserted

in the program are called candidate fences. For instance, Figure 6.2 represents the

intermediate trace corresponding to the buggy trace shown in Figure 6.1(b), that

contains six candidate fences.

The candidate fences inflate the relations sbτ , swτ , and dobτ with the additional

ordering introduced with fences (assuming they are strongly ordered). The corre-

sponding relations for the intermediate trace are represented by sbτimm , swτimm , and

dobτimm . The ithbτ and hbτ relations (defined over sbτ , swτ , and dobτ ) are accord-

ingly updated to ithbτimm and hbτimm (defined over sbτimm , swτimm , and dobτimm). Fences

do not contribute to the relations moτ and rfτ , hence, moτimm = moτ and rfτimm = rfτ .

Additionally, sc ordered fences also contribute to the total order on sc events. The

total order for the intermediate trace is represented as toτimm .
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The intermediate version contains a fence at each feasible location of synthesis. As

a result, the relations hbτimm , moτimm , and rfτimm represent the maximal ordering that

can be introduced by synthesizing fences. Therefore, if it is feasible to invalidate a

buggy trace with C11 fences then each candidate solution is within the corresponding

intermediate trace.

6.3.2 Weak-FenSying. Invalidating buggy trace with weak

fences

C11 coherence conditions that describe incoherence of hbτ relation wrt the moτ and

rfτ can be violated with weak fences, where weak fences represents the set {rel,

acq, acq-rel}. The coherence condition that constitute this category are (corf),

(coWW), (coWR), (coRW), and (coRR), presented formally in Figure 3.6.

Recall that, the conditions can be interpreted as the conjunction of the following

constraints [60], (refer to §3.2.3).

hbτ is irreflexive. (co-h)

rfτ ; hbτ is irreflexive. (co-rh)

moτ ; hbτ is irreflexive. (co-mh)

moτ ; rfτ ; hbτ is irreflexive. (co-mrh)

moτ ; hbτ ; rf−1
τ is irreflexive. (co-mhi)

moτ ; rfτ ; hbτ ; rf−1
τ is irreflexive. (co-mrhi)

Candidate solutions that violate the coherence conditions of this category can be

computed by detecting reflexive ordering in the relation compositions of the above

stated constraints. The problem can be viewed as a cycle detection problem in the

compositions of relations hbτimm , moτimm , and rfτimm corresponding to the constraints.

Weak-FenSying assumes the memory order acq-rel for candidate fences for com-

puting the hbτimm ordering with fences.
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Figure 6.3: MP-invalidated. (a) buggy trace, (b) invalidated trace
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Figure 6.4: OTA-invalidated. (a), (b) invalidated traces of trace in Figure 6.1(a)

Consider the buggy trace, τ , in Figure 6.3(a), where Ix(0) and Iy(0) represent the

initial values for the objects x and y. The corresponding intermediate trace τ imm

would form an inter-thread ordering using fences Frel1 and Facq2 at the locations

shown in Figure 6.3(b). The ordering on the fences forms a reflexive ordering in

Ix(0)→mo
τimma→hb

τimmd →
rf−1

τimm Ix(0), where a→hb
τimmd ordering is formed using candidate

fences as, a→sb
τimmFrel1 →sw

τimmF
acq
2 →sb

τimmd (since, sbτimm and swτimm contribute to hbτimm).

The reflexive ordering violates moτimm ; hbτimm ; rf−1
τimm irreflexivity (constraint (co-mhi)),

invalidating the buggy trace τ , as shown in Figure 6.3(b). Note that, the intermediate

trace has a fence at every feasible program location, however for readability, the figure

only shows the fences relevant for the ordering.

Similarly, Figures 6.4(a) and (b) show two candidate solutions that invalidate the
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buggy trace shown in Figure 6.1(b) using weak fences. Ordering between fences Frel12

and Facq22 forms a reflexive ordering in the rfτimm ; hbτimm relation composition (constraint

(co-rh)), invalidating the buggy trace, as shown in Figure 6.4(a). Figure 6.4(b)

shows another candidate solution that violates the (co-rh) coherence constraint with

a single fence. Note that, the candidate solutions in Figures 6.4(a) and (b) represent

the same solutions as in Figures 6.1(d) and (e) respectively, with additional details.

Lemma 2. Weak-FenSying is sound.

Let C= { hbτimm , rfτimm ; hbτimm , moτimm ; rfτimm ; hbτimm , moτimm ; hbτimm , moτimm ; hbτimm ; rf−1
τimm ,

moτimm ; rfτimm ; hbτimm ; rf−1
τimm }.

Given a buggy trace τ of input program P , let weakCyclesτ represent the set of cycles

detected by Weak-FenSying for τ imm. The lemma can be formally stated as,

∃cond ∈ C s.t. cond is reflexive ⇔ weakCyclesτ 6= ∅.
(There exists a violation of a coherence condition if-and-only-if Weak-FenSying de-

tects a cycle in the corresponding relation compositions.)

Proof. Case ⇒: ∃cond ∈ C s.t. cond is reflexive ⇒ weakCyclesτ 6= ∅.

Assume that, given a set of ordered event pairs, the technique soundly detects all

cycles. (A1)

Then, Weak-FenSying is sound if the event relations hbτimm , rfτimm , moτimm , and rf−1
τimm

are correctly computed, i.e. @e1, e2 ∈ Eτimm s.t. a cycle would be formed containing

an ordering of e1, e2 but the pair is not in the corresponding relation hbτimm or rfτimm

or moτimm or rf−1
τimm .

Given a buggy trace τ , Weak-FenSying computes the relation hbτimm using candidate

fences, while rfτimm , moτimm , and rf−1
τimm are same as the corresponding relations of τ .

Since, computation of hbτimm using fences is defined under C11 (refer to §3.2.3) , the

soundness condition can be defined as:

Weak-FenSying soundly detects all weak cycle without recomputing rfτimm , moτimm , and

rf−1
τimm relations for the events of τ imm.
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rfτ The relation is formed from write (or rmw) events to read (or rmw) events,

since fences cannot be both, the rfτ relations remains unchanged i.e. rfτimm

= rfτ .

rf−1
τ The relation remains unchanged as rfτ remains unchanged i.e. rf−1

τimm = rf−1
τ .

moτ Assume ∃w,w′ ∈ Eτ s.t. as a consequence of synthesizing fences in the buggy

trace τ to form τ imm, w is modification-ordered before w′. However, w9mo
τimmw

′

since we consider moτimm = moτ .

Consider the following four cases of coherence involving moτ (refer to Fig-

ure 3.6).

(coWW) Let ∃w1, w2 ∈ EW s.t. w1→hb
τimmw2.

If w1→mo
τ w2 then there does not exist a violation.

However, if w2→mo
τ w1 then a cycle is detected in moτimm ; hbτimm vio-

lating the constraint (co-mh).

(coWR): Let ∃r1 ∈ ER, ∃w1, w2 ∈ EW s.t. w1→hb
τimmr1 and w2→rf

τimmr1.

If w1→mo
τ w2 then there does not exist a violation.

However, if w2→mo
τ w1 then a cycle is detected in moτimm ; hbτimm ; rf−1

τimm

violating the constraint (co-mhi).

(coRW): Let ∃r1 ∈ ER, ∃w1, w2 ∈ EW s.t. w1→rf
τimmr1 and r1→hb

τimmw2.

If w1→mo
τ w2 then there does not exist a violation.

However, if w2→mo
τ w1 then a cycle is detected in moτimm ; rfτimm ; hbτimm

violating the constraint (co-mrh).

(coRR): Let ∃r1, r2 ∈ ER, ∃w1, w2 ∈ EW s.t. w1→rf
τimmr1, w2→rf

τimmr2 and

r1→hb
τimmr2.

If w1→mo
τ w2 then there does not exist a violation.

However, if w2→mo
τ w1 then a cycle is detected in moτimm ; rfτimm ; hbτimm ; rf−1

τimm

violating the constraint (co-mrhi).

Thus, Weak-FenSying does not miss a cycle in an irreflexive coherence constraint.
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Case ⇐: ∃cond ∈ C s.t. cond is reflexive ⇐ weakCyclesτ 6= ∅.

The computation of hbτimm using fences is defined under C11 (refer to §3.2.3). Further,

moτimm and rfτimm are the same as the corresponding relations of τ .

Thus, if Weak-FenSying detects a cycle e→C e where e ∈ Eτimm and C ∈ C then the

condition C is indeed reflexive.

Hence, if Weak-FenSying detects a weak cycle then a corresponding coherence con-

dition is violated. �

6.3.3 Strong-FenSying. Invalidating buggy trace with strong

fences

C11 coherence conditions that describe the necessary constraints of a total order on

sc ordered events can be violated only with strong sc ordered fences. Hence, this

technique assumes that all candidate fences have the memory order sc. The coher-

ence condition that constitute this category are (tosc) (including (coto), (rfto1),

and (rfto2)), and (tofen) , presented formally in Figure 3.6.

Intuitively, Strong-FenSying constructs an ordering on sc ordered events in coherence

with the hbτimm , moτimm and rfτimm relations in the intermediate trace τ imm. If the ordering

is reflexive then it implies that a valid total order cannot be formed on the sc ordered

events of τ imm. Thus, Strong-FenSying invalidates a buggy trace τ by introducing

additional sc ordering with sc fences to prohibit a total order on the sc events.

Strong-FenSying introduces a relation soτimm (called sc-order) such that a total order

cannot be formed on the sc events of τ imm iff a cycle exists in soτimm . Thus, Strong-

FenSying can also be viewed as a cycle detection problem, in the relation soτimm .

Consider an irreflexive relation called from-reads for ordering reads with later writes,

computed as
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esc1

esc2

soR

esc1 e2

Fsc
so

R

sb

Fsc

e1 esc2

so

R

sb

Fsc1 Fsc2

e1 e2

so

R

sb sb

(soee) (soef) (sofe) (soff)

Figure 6.5: Conditions for construction soτimm relation

frτimm , rf−1
τimm ;moτimm

The relation frτimm supports the hbτimm , moτimm , and rfτimm relations in computing the

soτimm relation. The relation from-reads is typically used for stronger memory models

such as the sequentially-consistent memory model (refer to §3.2.1) that relates all

events of a trace by a total order. Strong-FenSying introduces the relation under

C11, since toτimm constitutes a similar requirement on the sc ordered events of an

intermediate trace.

The rules for constructing the soτimm relation are formally presented in Definition 10

and diagrammatically represented in Figure 6.5.

Definition 10. (sc-order (soτimm))

∀e1, e2 ∈ Eτimm s.t. (e1, e2) ∈ R, where R = hbτimm ∪ moτimm ∪ rfτimm ∪ frτimm

• if e1, e2 ∈ E (sc)
τimm then e1→so

τimme2; (soee)

• if e1 ∈ E (sc)
τimm , ∃Fsc ∈ EF(sc)

τimm s.t. e2→sb
τimmFsc then e1→so

τimmFsc; (soef)

• if e2 ∈ E (sc)
τimm , ∃Fsc ∈ EF(sc)

τimm s.t. Fsc→sb
τimme1 then Fsc→so

τimme2; (sofe)

• if ∃Fsc1 , Fsc2 ∈ E
F(sc)
τimm s.t. Fsc1 →sb

τimme1 and e2→sb
τimmFsc2 then Fsc1 →so

τimmFsc2 . (soff)

Consider the buggy trace, τ , in Figure 6.6(a). Figure 6.6(b) shows a reflexive soτimm

ordering using fences Fsc1 and Fsc2 : a→so
τimmFsc1 →so

τimmc→so
τimmFsc2 →so

τimma, where a→so
τimmFsc1

and c→so
τimmFsc2 are formed from the condition (soee) (due to a→sb

τimmFsc1 and c→sb
τimmFsc2
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a: W sc(x, 1) c: W sc(y, 1)

Fsc1 : Fsc2 :

b: Rrlx(y, 0): d: Rrlx(x, 0):

Ix(0) Iy(0)

sb sb

fr fr

a: W sc(x, 1) c: W sc(y, 1)

Fsc1 : Fsc2 :

b: Rrlx(y, 0): d: Rrlx(x, 0):

Ix(0) Iy(0)

so so

so so

fr fr

(a) (b)

Figure 6.6: SB-invalidated. (a) buggy trace, (b) invalidated trace

Ix Iy
a c

Fsc12 Fsc22

b d

sb

sb

sb

sb

mo mo

rfrf
so

so
so

so

Figure 6.7: Invalidated traces of buggy trace in Figure 6.1(a)

respectively), and Fsc1 →so
τimmc and Fsc2 →so

τimma are formed from the condition (sofe) (due

to b→fr
τimmc and d→fr

τimma respectively).

Similarly, Figure 6.7 shows a candidate solution that invalidates the buggy trace

shown in Figure 6.1(b) using strong fences, where the soτimm relations are formed

from the conditions (soee) and (sofe).

Observations on soτimm

1. Pairs of sc events that do not have a definite order are not ordered by soτimm .

Consider the buggy trace in Figure 6.6(a), a→toc and c→toa are both valid

total orders on the sc events of the trace. The set soτimm does not contain either

of the two event pairs.
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The intuition for not ordering such pairs of events is that if the pair is involved

in a cycle then their order can be freely flipped to eliminate the cycle. As a

consequence, such pairs of events cannot contribute to the reflexivity of soτimm

and can be safely ignored.

The observation is formally presented in Lemma 4.

2. As a consequence of observation (1), so+
τimm ⊆ toτimm .

The observation is formally presented as Lemma 3.

Lemma 3. so+
τimm ⊆ toτimm

For any valid C11 trace τ , each pair of events related by soτimm are also ordered by

toτimm .

As a consequence, soτimm does not order events if the ordering violates (to-sc).

Proof. Let ∃e1, e2 ∈ Eτimm s.t. e1→so
τimme2. Consider the exhaustive four conditions of

constructing e1→so
τimme2 (by definition of soτimm),

soee: e1, e2 6∈ EF(sc)
τimm ⇒ e1→to

τimme2 (since e2→to
τimme1 violates (coto) or (rfto1)).

soef: e1 6∈ EF(sc)
τimm , e2 ∈ EF(sc)

τimm ⇒ e1→to
τimme2 (since e2→to

τimme1 violates (coto) or (rfto1)).

sofe: e1 ∈ EF(sc)
τimm , e2 6∈ EF(sc)

τimm ⇒ e1→to
τimme2 (since e2→to

τimme1 violates (coto) or (rfto1)

or (rfto2)).

soff: e1, e2 ∈ EF(sc)
τimm ⇒ e1→to

τimme2 (since e2→to
τimme1 violates (coto) or (tofen)).

Since, toτimm is total, thus, so+
τimm ⊆ toτimm . �

Lemma 4. Strong-FenSying is sound:

Given a buggy trace τ of input program P , let strongCyclesτ represent the set of

cycles detected by Strong-FenSying in soτimm .

¬(total(E (sc), toτimm) ∧ order(E (sc), toτimm)) ⇔ strongCyclesτ 6= ∅.
There does not exist a total order on the sc ordered events of an intermediate trace

τ imm if-and-only-if there exists a cycle in soτimm .
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Proof. Assume that, given a set soτimm , the technique soundly detects all cycles. (A1)

Case ⇒: ¬(total(E (sc), toτimm) ∧ order(E (sc), toτimm)) ⇒ strongCyclesτ 6= ∅.
Consider e1, e2 ∈ E (sc)

τ s.t. both e1→to
τ e2 and e2→to

τ e1 do not violate the conditions

(coto), (rfto1), (rfto2) and (tofen). To form the total order we can assume either

one of the two orders [46]. Assume e1→to
τ e2.

Further, consider a total order cannot be formed on sc events of τ imm s.t. e →to
τimm

... →to
τimm e1 →to

τimm e2 →to
τimm ... →to

τimm e then we simply flip e1→to
τimme2 to e2→to

τimme1 and

eliminate the cycle.

Further, if a cycle in toτimm includes e1→to
τimme2 and another cycle includes e2→to

τimme1

then there exists a cycle e1→to
τimm ...→to

τimme2→to
τimm ...→to

τimme1 (by by definition of toτimm),

as shown in the figure below). Thus, pairs of sc ordered events that don’t have a

fixed toτimm order cannot contribute to a strong cycle. inf(i).

e1 e2

Now, if there does not exist a total order on the sc ordered events of τ imm then

¬(total(E (sc), toτimm) ∧ order(E (sc), toτimm)), i.e.

¬(total(E (sc), toτimm)) ∨ ∃e ∈ E (sc)
τimm s.t. e→to

τimme ∨ ¬(to+
τimm ⊆ toτimm))

(by definition of order(E (sc), toτimm), Figure 3.6).

By definition of toτimm , ¬total(E (sc), toτimm) and ¬(to+
τimm ⊆ toτimm) are not feasible.

Thus, ∃e ∈ E (sc)
τimm s.t. e→to

τimme

⇒ sc events of τ imm violate (coto), (rfto1), (rfto2) or (tofen).

[coto] Let ∃esc ∈ E (sc)
τimm s.t. (e, e) ∈ (hbτimm ∪ moτimm). Thus, (coto) is violated by

esc.

Since, moτimm|sc ∪ hbτimm|sc ⊆ so+
τimm thus a cycle esc→so

τimm ...→so
τimme

sc is formed.
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[rfto1] Let ∃wsc
1 , w

sc
2 ∈ E

W(sc)
τimm , rsc1 ∈ E

R(sc)
τimm s.t. wsc

1 →to
τimmw

sc
2 →to

τimmr
sc
1 and wsc

1 →rf
τimmr

sc
1 .

Thus, (rfto1) is violated by wsc
1 , wsc

2 and rsc1 .

Since, τ is a valid trace, ¬wsc
1 →to

τ w
sc
2 ∨ ¬wsc

2 →to
τ r

sc
1 .

Further, since inserting fences only modifies the hbτ relation, if ¬wsc
1 →to

τ w
sc
2

then wsc
1 →hb

τimmw
sc
2 (because wsc

1 →to
τimmw

sc
2 ). Similarly, if ¬wsc

2 →to
τ r

sc
1 then wsc

2 →hb
τimmr

sc
1 .

Also, wsc
1 →to

τimmw
sc
2 ⇒ wsc

1 →mo
τimmw

sc
2 (assuming (co-mh) is not violated) ⇒

rsc1 →fr
τimmw

sc
2 .

Since, frτimm|sc ∪ hbτimm|sc ⊆ so+
τimm thus a cycle rsc1 →so

τimmw
sc
2 →so

τimmr
sc
1 is formed.

[rfto2] Let ∃w1, w
sc
2 ∈ EWτimm , rsc1 ∈ E

R(sc)
τimm s.t. ord(wsc

2 ) is sc, w1→rf
τimmr

sc
1 , w1→hb

τimmw
sc
2

and wsc
2 →to

τimmr
sc
1 .

Thus, (rfto2) is violated by w1, wsc
2 and rsc1 .

Since, τ is a valid trace, ¬w1→hb
τ wsc

2 ∨ ¬wsc
2 →to

τ r
sc
1 .

Further, since inserting fences only modifies the hbτimm relation, if ¬wsc
2 →to

τ r
sc
1

then wsc
2 →hb

τimmr
sc
1 (because wsc

2 →to
τimmr

sc
1 ).

Also, w1→hb
τimmw

sc
2 ⇒ w1→mo

τimmw
sc
2 (assuming (co-mh) is not violated)⇒ rsc1 →fr

τimmw
sc
2 .

Since, frτimm|sc ∪ hbτimm|sc ⊆ so+
τimm thus a cycle rsc1 →so

τimmw
sc
2 →so

τimmr
sc
1 is formed.

[tofen] Let ∃wsc
1 , w

sc
2 ∈ E

W(sc)
τimm , r1 ∈ ERτimm , Fsc ∈ E

F(sc)
τimm s.t. wsc

1 →to
τimmw

sc
2 →to

τimmFsc,
Fsc→sb

τimmr1 and wsc
1 →rf

τimmr1.

Thus, (tofen) is violated by wsc
1 , wsc

2 , r1 and Fsc.

Since, τ is a valid trace, ¬wsc
1 →to

τ w
sc
2 ∨ ¬wsc

2 →to
τ Fsc.

Further, since inserting fences only modifies the hbτimm relation, if ¬wsc
1 →to

τ w
sc
2

then wsc
1 →hb

τimmw
sc
2 (because wsc

1 →to
τimmw

sc
2 ). Similarly, if ¬wsc

2 →to
τ Fsc then wsc

2 →hb
τimmFsc.

Also, wsc
1 →to

τimmw
sc
2 ⇒ wsc

1 →mo
τimmw

sc
2 (assuming (co-mh) is not violated) ⇒

r1→fr
τimmw

sc
2 ⇒ Fsc→so

τimmw
sc
2 (using (sofe)).

Since, hbτimm|sc ⊆ soτimm thus a cycle rsc1 →so
τimmw

sc
2 →so

τimmr
sc
1 is formed.

Case ⇐: ¬(total(E (sc), toτimm) ∧ order(E (sc), toτimm)) ⇐ strongCyclesτ 6= ∅.
strongCyclesτ 6= ∅ ⇒ ∃e ∈ Eτimm s.t. e→so+

τimme ⇒ e→to
τimme (using Lemma 3).

⇒, ¬(order(E (sc), toτimm)) ⇒ ¬(total(E (sc), toτimm) ∧ order(E (sc), toτimm)). �
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1 Function synthesisCore(τ): /* τ = 〈Eτ , hbτ , moτ , rfτ 〉 */

2 Eτimm := Eτ ∪ candidateFences(τ)
3 (hbτimm ,moτimm , rfτimm , rf

−1
τimm , frτimm , soτimm) := computeRelations(τ, Eτimm)

4 weakCyclesτ := weakFensying(τ imm)
5 strongCyclesτ := strongFensying(τ imm)
6 if weakCyclesτ = ∅ ∧ strongCyclesτ = ∅ then
7 abort /* cannot stop τ with C11 fences */

8 return weakCyclesτ , strongCyclesτ

6.3.4 Computing candidate solutions using Weak-FenSying

and Strong-FenSying

The detection of violation of C11 coherence conditions is formally presented as func-

tion synthesisCore. The function takes a buggy trace τ as input and computes the

candidate solutions for invalidating τ using Weak-FenSying and Strong-FenSying.

The function starts its processing by inserting candidate fences to obtain τ imm (line

2). The function then computes the relations hbτimm , moτimm , rfτimm , rf−1
τimm , frτimm , and

soτimm on the candidate fences and program events (line 3). The function performs

Weak-FenSying (line 4) and Strong-FenSying (line 5) as described in §6.3.2 and

§6.3.3 respectively. Johnson’s cycle detection algorithm [48] is used to detect cycles

in the event relations for Weak-FenSying and Strong-FenSying.

As remarked before, the relations on the events of τ imm represent the maximal order-

ing that can be introduced by synthesizing fences. Hence, if a buggy trace can be

invalidated using fences then the function synthesisCore would detect candidate

solutions as cycles using Weak-FenSying and Strong-FenSying. If no cycles are de-

tected by the function then the process if aborted (line 6-7) signifying that the buggy

trace cannot be invalidated with additional ordering from fences.

Note that, given a set of related event pairs, Johnson’s cycle detection algorithm

soundly detects all cycles, hence, the assumption (A1) of Lemmas 2 and 4 hold.
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6.4 FenSying. Optimal fence synthesis for C11

This work proposes the first fence synthesis technique under the C11 memory model,

called FenSying, and claims its optimality. This work is distinct from prior works in

the following ways.

1. FenSying is the first technique that performs precise analysis for fence synthesis

under the C11 model.

2. FenSying technique synthesizes C11 synchronization fences that are portable.

FenSying uses the Weak-FenSying and Strong-FenSying techniques to introduce

additional ordering in the buggy traces of an input program using fences, such that,

the additional orderings lead to the violation of a coherence condition under C11.

The FenSying technique is,

1. Sound. If a buggy trace can be fixed with C11 fences then FenSying can find

a candidate solution.

2. Optimal. FenSying synthesizes the smallest set of fences with weakest orders.

Algorithm 2 formally presents the FenSying technique. The steps of the algorithm

are discussed below.

Buggy traces

FenSying takes a finite set of buggy traces of a C11 program P as input. FenSying

relies on an external buggy trace generator (BTG) for the set of buggy traces of P

(line 3). Note that, given the assumption in Chapter 2 that the input program has

terminating executions, where each thread has deterministic computations, the set of

buggy traces returned by the BTG would be finite.
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Algorithm 2: FenSying (P )

1 Φ := > /* SAT query for all buggy traces of P */

2 W := ∅; S := ∅ /* cycles of all traces */

3 forall τ ∈ buggyTraces(P) do /* set of buggy traces from BTG */

4 Wτ , Sτ := synthesisCore(τ) /* Weak-FenSying and Strong-FenSying */

5 Φτ := Q(Wτ , Sτ ) /* SAT query using Equation 6.1 */

6 Φ := Φ ∧ Φτ /* conjunct to retain a solution for each trace */

7 W :=W ∪ Wτ ; S :=S ∪ Sτ
8 minΦ := minModel(Φ) /* min-model across all traces for optimality */

9 F := assignMO(minΦ, W, S) /* weakest order for optimal fences */

10 return syn(P , F) /* synthesize optimal fences in P */

Detecting violation of trace coherence

For each buggy trace τ in the set returned by the BTG, FenSying invokes the function

synthesisCore (refer to §6.3.4). The function inserts candidate fences above and

below each event in τ to generate the intermediate trace τ imm. The function then

proceeds to compute cycles in event relations to violate coherence of the trace.

The function receives the set of weakCyclesτ and strongCyclesτ from synthesisCore

that are computed from Weak-FenSying and Strong-FenSying respectively (line 4).

If for a buggy trace the set of cycles is empty then it implies that the buggy trace

cannot be invalidated. Further, if a buggy trace of P cannot be invalidated then the

program P cannot be fixed. As a result, the fence synthesis process is aborted on

encountering such a buggy trace (lines 6-7, function synthesisCore).

Reduction for optimal set of fences using SAT

Given the set of candidate solutions to invalidate a buggy trace τ , the optimal set of

fences is the smallest set of candidate fences that can form sufficient ordering to

invalidate the buggy trace.

The set of candidate solutions are represented as a SAT query. A SAT solver is then
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be used to compute the optimal set of candidate fences. Let Wτ and Sτ represent

weakCyclesτ and strongCyclesτ of a buggy trace τ computed using the function

synthesisCore. Further, for each w ∈ Wτ and s ∈ Sτ , let WF and SF respectively

represent the set of candidate fences in cycles w and s. The computation of the SAT

query corresponding to a buggy trace τ is formally presented in Equation 6.1.

Q(Wτ , Sτ ) = (
∨
W∈Wτ

∧
Fw∈WF

Fw) ∨ (
∨
S∈Sτ

∧
Fs∈SF

Fs) (6.1)

Intuitively, the computation first conjuncts the candidate fences from each candidate

solution. Further, to retain at least one solution corresponding to τ the computation

takes a disjunction of the conjuncts (line 5).

Further, if a candidate solution is found for each buggy trace (the process is not

aborted for any trace) then the corresponding SAT queries are conjuncted to represent

that a solution must be retained for each buggy trace (line 6).

The final SAT query (Φ) is given to a SAT solver to compute the min-model of the query,

that is, the smallest set fo fences that satisfy the query (line 8). The min-model

returns the optimal (minimal) set of fences to invalidate each buggy trace of P .

Consider the three candidate solutions shown in Figures 6.1(c)-(e). The SAT query

corresponding to the three solutions is Φτ = (F12) ∨ (F12 ∧ F22) ∨ (F12 ∧ F22).

Further, assuming that Figures 6.1(b) represents the only buggy trace of the input

program, Φ = Φτ and min-model(Φ), minΦ = {F12}.

Type of fences in query. The SAT query is computed on untyped fences. The

untyped fences do not differentiate between the use of a fence in a candidate solution

computed by Weak-FenSying or Strong-FenSying. Thus, the computation of the

min-model can select the smallest set of fences across weaker and stronger solutions.

Ignoring program fences in SAT query. The SAT query is formed on the set of

candidate fences from each candidate solution. A candidate solution may also have

fences that were present in the input program (and not inserted by synthesisCore),
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called program fences. The program fences are not included in the SAT query to

receive the smallest number of fence to be synthesized. For instance, consider the

set of fences in two candidate solutions, c1 = {F1,P1,P2} and c2 = {F1,F2}, where Fi
represent synthesized fences while Pi represent program fences. If program fences

are considered along with synthesized fences in the SAT query, then min-model would

return the solution c2. However, in such a case the fixed program would have four

fences (two synthesized and two program fences). On the other hand, solution c1

would result in the synthesis of a single fence, and hence, a total of three fences in

the fixed program. Considering only synthesized fences in the SAT query results in

the solution c1 as the min-model.

Weakest type for optimal fences

The min-model computed using a SAT solver returns a solution minΦ that is optimal

in the number of fences. The fences in minΦ are further assigned the weakest

memory order that can invalidate each buggy trace of P , using function assignMO

(line 9). Let min-cycles represent a set of cycles such that each candidate fence in

the cycles belongs to minΦ.

Weakest memory orders to invalidate individual cycles. Recall that, syn-

thesized fences form the relations sbτimm , swτimm , and dobτimm with the events of τ imm.

Further, since a buggy trace τ is a valid C11 trace, a coherence condition cannot be

violated on the events of a thread, even with the addition of candidate fences. Thus,

the candidate fences of a candidate solution must form a swτimm or a dobτimm ordering

(the inter-thread relations formed with fences).

Let R = swτimm ∪ dobτimm .

Weakest memory orders for fences of a cycle in min-cycles is computed as:

• Consider a cycle c ∈ min-cycles ∩ weakCyclesτ ,

– if a fence F in c is related to an event e in c as e→R F, then F is assigned

the memory order acq;
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– if a fence F in c is related to an event e in c as F→R e, then F is assigned

the memory order rel;

– if a fence F in c is related to events e′, e in c as e′ →R F→R e, then F is

assigned the memory order acq-rel.

• Consider a cycle c ∈ min-cycles ∩ strongCyclesτ , each fence in c is assigned

the memory order sc.

Consider a cycle c: e→sb
τ1imm
F1→sw

τ1imm
F2→sw

τ1imm
F3→sb

τ1imm
e′→rf

τ1imm
e representing a violation

of rfτ1imm ; hbτ1imm irreflexivity (coherence constraint (co-rh)). Let minΦ = {F1,F2,F3}.
According to the rules discussed above, the fences F1, F2 and F3 are assigned the

memory orders rel, acq-rel and acq respectively.

Consider the three candidate solutions shown in Figures 6.1(c)-(e); the computed

minΦ = {F12}. Since, F12 forms the ordering F12→swc in Figure 6.1(e), thus, the

memory order assigned to F12 is rel.

Weakest memory orders to invalidate all buggy traces of P . After computing

the memory orders for each cycle in min-cycles, the function assignMO iterates over

all buggy traces and detects the sound weakest memory order for each fence across

traces. For each fence F in min-model, assignMO assigns the weakest memory order

that is at least as strong as the order of F computed for individual min-cycles.

Assume a cycle c1 in τ1
imm and a cycle c2 in τ2

imm. The function computes a union

of the fences in c1 and c2 while choosing the stronger memory order for each fence

that is present in both the cycles. In doing so, both τ1 and τ2 are invalidated. If two

candidate solutions have the same set of fences, the function selects the solution with

the lower weight. Computation of the weight of a cycle is discussed in §6.2.1.

Consider the cycles τ1c1 and τ1c2 of buggy trace τ1, and τ2c1 of buggy trace τ2 shown

in Figure 6.8. Let minΦ = {F1,F2,F3}. The memory orders of the fences for each

cycle are shown with superscripts and the weights of the cycles are written against

the name of the cycles. The candidate solutions τ1c1 and τ1c2 are combined with

τ2c1 to form τ12c11 and τ12c21 of weights 5 (2 + 2 + 1) and 4 (1 + 1 + 2), respectively.

The solution τ12c11 is of higher weight and is discarded. Memory orders rel, acq
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τ1c1(4): Facq-rel1 ∧ Facq-rel2

τ1c2(4): Frel1 ∧ Facq2 ∧ Facq-rel3

cycles of τ1

τ2c1(3): Frel1 ∧ Facq2 ∧ Facq3

cycle of τ2

τ12c11(5): Facq-rel1 ∧ Facq-rel2 ∧ Facq3

τ12c21(4): Frel1 ∧ Facq2 ∧ Facq-rel3

Figure 6.8: Weakest memory orders of optimal fences

and acq-rel assigned to fences F1, F2 and F3 respectively represent the optimal

(weakest) memory orders for the fences.

Fixed input program

The optimal (minimal) set of fences (computed using min-model in line 8), with the

optimal (weakest) memory orders (computed using assignMO in line 9) are synthesized

in P at the program locations corresponding to the synthesis locations (line 10). The

transformed program with the synthesized fences is fixed or bug free.

Lemma 5. AssignMO is sound:

∀ cycles c = e →R1 ...e1 →R2 F →R3 e2... →R4 e ∈ min-cycles (where Ri ∈
{hbτimm , moτimm , rfτimm , rf−1

τimm , soτimm}), if fence F is assigned the memory order m then

e1 →R2 Fm →R3 e2.

If a min-cycle c is formed due to event relations introduced by a fence F then after

assigning a memory order m for F using assignMO the event relations still hold; i.e.

FenSying does not assign a memory order to a fence that is too weak to stop the

buggy trace.

Proof. As defined by the computation of event relations using fences under C11,

if there exists a weak cycle in the intermediate trace τ imm then ∃ e→sw
τimme

′ ∨ e→dob
τimm e

′

s.t. ¬e→sw
τ e′ ∧ ¬e→dob

τ e′ (where e, e′ ∈ Eτ ).
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By definitions of e→sw
τimme

′ and e→dob
τimm e

′ (refer to Figure 3.4) if e is a fence then its

memory order must be rel or stronger, if e′ is a fence then its memory order must

be acq or stronger.

Since, assignMO assigns rel for e and acq for e′, thus, the locally assigned memory

orders are sufficiently strong. inf(i)

If there exists a fence, F, that was locally assigned a memory order m and after

coalescing with other buggy trace the final memory order of F is m′ then either

m′ = m or m′ is stronger than m (by construction of coalesced candidate solutions).

Since, we know that m was sufficiently strong (using inf(i)) then the final memory

order m′ is also sufficiently strong. �

Lemma 6. FenSying is sound for 1 trace.

Given an input program P s.t. buggyTraces(P ) = {τ}.
∃E ′ s.t. buggyTraces(syn(P, E ′)) = ∅ ⇒ FenSying can construct τ inv.

Proof. Firstly, using Lemma 2 and Lemma 4 we can state that (i) each weak and

strong cycle is detected by FenSying, and (ii) a cycle detected by FenSying is indeed

represents a true violation under C11.

Secondly, the fences introduced for at least 1 of the violations exist in the final

solution (by construction of SAT query).

Thirdly, The memory order assigned to the fences in minΦ is sufficiently strong to

stop the buggy trace (Lemma 5(inf(i))).

Hence, FenSying is sound for 1 trace �

Theorem 10. FenSying is sound.

Given an input program P s.t. buggyTraces(P ) 6= ∅. ∃E ′ s.t. buggyTraces(syn(P, E ′))
= ∅ ⇒ ∀τ ∈ buggyTraces(P ) FenSying can construct τ inv.

If P can be fixed by synthesizing C11 fences then FenSying fixes P .
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Proof. Let BT = buggyTraces(P ). Consider induction on |BT|.

Base Case: Consider |BT| = 1.

Using Lemma 6, FenSying is sound for 1 trace.

Induction Hypothesis: Assume that FenSying is sound for |BT| = N.

Induction Step: Consider |BT| = N+1.

Since, we take a conjunction on the SAT formulas from various traces thus at least 1

cycle from each trace exists in the min-model (by construction of SAT query).

Further, we know from Lemma 5 that FenSying assigns memory orders that can

invalidate all buggy traces.

Thus, FenSying is sound for N+1 buggy traces. �

Lemma 7. min-model returns the optimal number of fences.

Let EFfx represent the set of events of P fx. min-model returns the optimal number

of fences if @Eo s.t. |Eo| < |EFfx| and buggyTraces(syn(P, Eo)) = ∅.

Proof. Let F represent the set of fences returned by min-model and let Fo represent

an optimal set of fences. Assume |Fo| < |F|.

The min-model is computed using a SAT solver and the computation is assumed to

be correct. As the consequence, |Fo| < |F| ⇒ the optimal result was not a part of

the SAT query.

Using Lemma 2 and Lemma 4 we know that FenSying does not miss any weak or

strong cycle⇒ every set of fences that forms a correct solution, including the optimal

solution, is contained in the SAT query.

Thus, |F| = |Fo| i.e.min-model returns the optimal number of fences. �

Theorem 11. FenSying synthesizes the optimal number of fences with the optimal

memory orders.

Let EFfx represent the set of events of P fx then @Eo s.t. |Eo| < |EFfx| or (∃eo ∈ Eo, e ∈
EFfx s.t. thr(eo) = thr(e), idx(eo) = idx(e), act(eo) = act(e), obj(eo) = obj(e) and
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loc(eo) = loc(e) but ord(eo)vord(e)) and buggyTraces(syn(P, Eo)) = ∅.

Proof. AssignMO iterates over cycles in min-cycles and takes union over fences

of cycles from min-cycles. As minΦ consists of the optimal number of fences

(Lemma 7) then union over cycles of min-cycles is the same set of fences as minΦ.

Thus, FenSying is optimal in the number of fences.

Let BT = buggyTraces(P ). Consider induction on |BT|.

Base Case: Consider |BT| = 1.

Each fence is locally assigned the weakest memory order that is sound (Lemma 5).

Thus, FenSying is optimal in the memory order of fences for 1 buggy trace.

Induction Hypothesis: Assume, FenSying is optimal in the memory order of fences

when |BT| = N.

Induction Step: Consider |BT| = N+1.

Let s1, ..., sM represent the M coalesced solutions for buggy traces τ1, ..., τN and τN+1ci

for i ∈ {1, ..., q} represent the q cycles of (N + 1)th trace.

Every coalesced solution τN+1sj has the same number of fences = fences of minΦ

because minΦ returns the minimum number of fences required to stop τ1, ..., τN+1.

If there exists a fence F with memory order m in a cycle τN+1ci but the final solution

of FenSying assigns memory order m′ to F s.t. m′ is stronger than m

then, ∃sj where memory order of F is m′ (by construction of coalesced solutions),

Further, @sk where memory order of F is m s.t. wt(τN+1ci-sk) < wt(τN+1ci-sj) (where

wt(x-y) represents the weight of the solution formed by coalescing cycle x with can-

didate solution y).

Thus, FenSying is optimal in the memory order of fences for N+1 buggy traces. �
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6.4.1 Time complexity analysis

Time complexity of synthesisCore. The complexity of detecting all cycles for a

trace is C = O((|Eτ |+E).(C+1)) where C represents the number of cycles of a buggy

trace τ and E represents the number of pairs of events in Eτ . Note that E is in O(|Eτ |2)

and C is in O(|Eτ |!). Thus, Weak-FenSying and Strong-FenSying have exponential

complexities in the number of traces and the number of events per trace.

Time complexity of SAT solving. The complexity of constructing the query Φτ is

S = O(C.F), where C is the number of cycles of τ and F is the number of fences per

cycle. The structure of the query Φ corresponds to the Head-cycle-free (HCF) class of

CNF theories; hence, the min-model computation falls in the FP complexity class [18].

Time complexity of assignMO. Determining the optimal memory orders has a

complexity A = O(BT.C.F+MBT), where BT if the number of buggy traces of P , C and

F are defined as before, and M is the number of min-cycles per trace.

Thus, the time complexity of FenSying is computed as O(BT.(C + S ) + A ).

6.5 fastFenSying. Efficient fence synthesis for C11

Optimal fence synthesis problem with multiple types of fences is NP-hard even

for straight-line (refer to §6.2.1 for details). The hardness is witnessed empirically

with proposed optimal fence synthesis solution even for the simplest C11 programs.

Experiments with FenSying (§6.7) show an exponential increase in the analysis time

with the increase in the program size.

To address scalability, this work proposes a near-optimal fence synthesis technique

called fastFenSying. fastFenSying fixes one buggy trace at a time optimally. Note

that, fixing one buggy trace optimally may not guarantee optimality across all buggy

traces. In the process, this technique may add a small number of extra fences than

what an optimal solution would compute. Experiments with fastFenSying show
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Algorithm 3: fastFenSying (P )

1 if ∃τ ∈ buggyTraces(P) then /* next buggy trace from BTG */

2 Wτ , Sτ := synthesisCore(τ) /* Weak-FenSying and Strong-FenSying */

3 Φ := Q(Wτ , Sτ ) /* SAT query using Equation 6.1 */

4 minΦ := minModel(Φ) /* optimal fences to invalidate τ */

5 F := assignMO(minΦ, Wτ , Sτ) /* weakest order for optimal fences */

6 P ′ := syn(P , F) /* synthesize fences optimal for τ */

7 return fastFenSying (P ′) /* fences synthesis on transformed P */

8 else return P /* no more buggy traces */

that it performs exponentially better than FenSying, in terms of the time of analysis

and scalability. Further, fastFenSying computes the optimal synthesis result in over

99.5% of the experiments. The fastFenSying technique is,

1. Sound. If a buggy trace can be fixed with C11 fences then fastFenSying can

find a candidate solution.

2. Optimal for one buggy trace. fastFenSying synthesizes the smallest set of

fences with weakest orders for a single buggy trace.

Similar to FenSying, fastFenSying performs precise analysis for fence synthesis

under the C11 model, and synthesizes portable C11 fences. Algorithm 3 formally

presents the fastFenSying technique. The steps of the algorithm are discussed below.

Unlike the FenSying technique, fastFenSying takes any one buggy traces of a

C11 program P from BTG as input (line 1). fastFenSying invokes the function

synthesisCore (refer to §6.3.4) on the buggy trace τ , received from BTG, and ob-

tains weakCyclesτ and strongCyclesτ (line 2). Similar to FenSying if the set

of weakCyclesτ and strongCyclesτ is empty then the fence synthesis process is

aborted, since τ cannot be invalidated and, hence, P cannot be fixed (lines 6-7, func-

tion synthesisCore).

fastFenSying forms a SAT query on weakCyclesτ and strongCyclesτ using Equa-

tion 6.1 (line 3) and invokes a SAT solver to compute the min-model, minΦ, of the
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cycles in τ1 (Cτ1):
{F1,F2, e1} and {F1,F3,F4}

Φτ1= (F1 ∧ F2)∨(F1 ∧ F3 ∧ F4)

cycles in τ2 (Cτ2): {F3,F4}
Φτ2= (F3 ∧ F4)

Figure 6.9: Example of non-optimal computation of fastFenSying

query (line 4). The set minΦ represents the smallest set of fences that can invali-

date a single buggy trace τ . On the set minΦ, fastFenSying invokes assignMO that

computes the weakest memory orders for the fences in minΦ to invalidate τ (line 5).

assignMO first computes the weakest memory orders to invalidate individual cycles

and chooses the cycle with the weakest memory orders for fences (as described under

‘Weakest type for optimal fences’ in §6.4).

The optimal (minimal) set of fences (computed using min-model in line 4), with the

optimal (weakest) memory orders (computed using assignMO in line 5) are synthesized

in P at the program locations corresponding to the synthesis locations (line 6).

The transformed program P ′ is then passed as input to the BTG to receive any one

buggy trace of P ′ (line 7). The process repeats till fastFenSying generates a program

by synthesis that has no buggy traces (line 8).

Non-optimality of fastFenSying

The non-optimality of fastFenSying is a result of the reduction in information that

the technique has to work with (from all buggy traces to just one at a time).

Consider the example in Figure 6.9. The figure shows cycles in two buggy traces τ1

and τ2 of an input program.

FenSying provides the formula Φτ1 ∧ Φτ2 to the SAT solver and the optimal solution

obtained is (F1 ∧ F3 ∧ F4). On the other hand, fastFenSying considers the formulas
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Φτ1 and Φτ2 in separate iterations. As a result, fastFenSying may compute the set

F1∧F2 in one iteration and the set F3∧F4 in the next iteration, and thus, synthesize

four fence ({F1,F2,F3,F4}).

Theorem 12. fastFenSying is sound

Given an input program P , and τ ∈ buggyTraces(P ).

∃E ′ s.t. buggyTraces(syn(prg(P, E ′))= ∅ ⇒ fastFenSying can compute τ inv.

Note that, the proof of Theorem 12 follows from the proof of Lemma 6.

Theorem 13. fastFenSying is optimal for one buggy trace.

Proof. fastFenSying is optimal in the number of fences (using Lemma 7).

Let min-cycles represent a set of cycles such that each candidate fences in the

cycles belongs to minΦ. For each cycle c in min-cycles, assignMO computes the

weakest memory order for the fences in c (inf(i), Lemma 5) . Since, assignMO

chooses the cycle with fences of weakest memory orders (by definition of assignMO),

fastFenSying is optimal for one buggy trace. �

6.5.1 Time complexity analysis

Time complexity of synthesisCore and SAT solving. Similar to FenSying (refer

to 6.4.1), the time complexity of synthesisCore is C = O((|Eτ |+E).(C+1)) where C

represents the number of cycles of the buggy trace τ and E represents the number

of pairs of events in Eτ , and SAT solving is S = O(C.F), where F is the number of

fences per cycle of τ .

Time complexity of assignMO. Since, fastFenSying does not coalesce memory

orders across traces the time complexity of assignMO is reduced to A ′ = O(C.F+M),

where C and F are defined as before, and M is the number of min-cycles per trace.

Assuming BT if the number of buggy traces of P , the time complexity of fastFenSying

is computed as O(BT.(C + S + A ′)).
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Figure 6.10: Structural overview of FenSying tool

Although, the time complexity of fastFenSying is similar to that of FenSying, em-

pirically it is observed (refer to §6.7) that the number of buggy traces analyzed by

fastFenSying is significantly lesser than |BT|. Therefore, in practice, the complexity

of various steps of fastFenSying, that are dependent on |BT|, reduces exponentially

by a factor of |BT|.

6.6 Implementation details of (fast)FenSying

The implementations of the FenSying and fastFenSying techniques have internal

modules that execute the steps of the respective Algorithms 2 and 3, and external

modules of preexisting techniques used by Algorithms 2 and 3. The preexisting tech-

niques used by FenSying and fastFenSying include a BTG and a SAT solver.
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Figure 6.11: Structural overview of fastFenSying tool

Figure 6.10 represents the overview of the FenSying implementation where the inter-

nal modules are shown within the dashed box. FenSying receives the set of buggy

traces of the input program P from an external BTG and sends one trace at a time

to the synthesisCore. Modules ‘intermediate trace’ and ‘Weak-FenSying Strong-

FenSying’ in Figure 6.10 together represent the synthesisCore. synthesisCore

computes the set of cycles using Johnson’s cycle detection and sends them to the

module ‘SAT query’ to generate the query Q. The query Q is given to an external

‘SAT solver’ module that computes the min-model. FenSying computes the weakest

memory orders for the fences in min-model using the internal module ‘assignMO’

and synthesizes the optimal set of fences back in the input program using the module

‘syn’ to generate the fixed program P fx.

Figure 6.11 represents the overview of the fastFenSying implementation where again

the internal modules are shown within the dashed box and external modules are

outside the dashed box. In contrast to FenSying, fastFenSying receives a single
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buggy trace from BTG. It then follows similar interaction between the internal and

external modules to generate the transformed program P ′ with fences synthesized

to invalidate the input buggy trace. fastFenSying invokes BTG repeatedly by sending

the transformed P ′ as input. The process continues till P ′ is buggy. When a bug free

P ′ is generated, fastFenSying returns the bug free P ′ as P fx.

Interpreter. An ‘interpreter’ module takes a set of raw buggy traces and interprets

them in the format readable for FenSying and fastFenSying. Given an external BTG,

the raw format of buggy traces refers to the output format used by the BTG for the

bug trace dump. Interpreter converts the dump into a tuple of 〈Eτ , hbτ ,moτ , rfτ 〉 i.e.

the format of a trace that is recognized by the techniques. If a relation, hbτ , moτ , or

rfτ , is not provided by the BTG, then the interpreter computes the relation from the

available data in the dump. Therefore, to use a tool as the BTG module a suitable

interpreter is created for the tool.

6.6.1 Strengthening of program fences

Consider that the fence synthesis, by FenSying or fastFenSying, computes the

synthesis of a fence F with a memory order m at a program location l in the input

program P . If there exists a program fence P (fence already in the input program)

at l with a memory order weaker than m, then as a design choice the techniques

strengthen the memory order of P to m instead of synthesizing F. Such a choice

reduces the performance overhead of an additional fence in the fixed program.

6.6.2 Tool description

The techniques FenSying and fastFenSying are implemented in Python3. Weak-

FenSying and Strong-FenSying use Johnson’s cycle detection algorithm in the net-

workx library version 2.6.3 [45]. The Z3 theorem prover is used as the SAT solver to

find the min-model of SAT queries. As a BTG, a model checker called CDSChecker [32]

is preferred for the following reasons;
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1. CDSChecker is a model checker and thus it can soundly compute the complete

set of buggy traces (unlike a testing or simulation alternative).

2. CDSChecker supports the C11 semantics. Most other techniques are designed

for a variant [51] or a subset [5, 9, 81] of C11.

3. CDSChecker returns buggy traces along with the corresponding hbτ , moτ , and

rfτ relations.

4. CDSChecker does not halt at the detection of the first buggy trace; instead, it

continues to provide all buggy traces as required by FenSying.

5. CDSChecker is open-source and is actively maintained [38].

CDSChecker’s source code is modified to accept program location as an attribute of the

program events and to halt at the first buggy trace when specified (for fastFenSying).

The modifications do not alter the core technique, and thus, are semantic preserving.

The data types and data structures supported by an input program is limited to

CDSChecker support. Since, CDSChecker is a dynamic technique it supports typical

atomic and non-atomic memory accesses and C11 fences.

CDSChecker takes a C/C++ program as input and dumps the buggy traces as a struc-

tured list that contains the set of events, and the hbτ and rfτ relations. The relation

moτ is separately dumped as a graph in the format of a dot file. The interpreter

module accordingly reads the dumps and generates the tuple of events and relations

representing a C11 trace.

6.7 Experiments and Results on FenSying and

fastFenSying

6.7.1 Experimental setup

The experiments are conducted on an Intel(R) Xeon(R) CPU E5-1650 v4 @ 3.60GHz

with 32GB RAM and 32 cores running Ubuntu 20.04.1 LTS. The experiments are run

on Python3 version 3.6.9 and Z3 version 4.4.1.
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FenSying and fastFenSying are the first techniques that perform fence synthe-

sis under the C11 memory model. The existing fence synthesis technique work on

a different set of buggy traces (buggy under their memory model) and accordingly

synthesize fences assuming the implicit ordering under their memory model. Con-

sequently, the outcome of FenSying and fastFenSying is incomparable with any

existing techniques.

6.7.2 Litmus testing

FenSying and fastFenSying are tested on 1,389 litmus tests of buggy C11 programs

(programs where the assert condition in violated in some program run), with the

focus on,

(i) soundness: if a buggy program can be fixed with C11 fences then both

FenSying and fastFenSying can do so;

(ii) optimality of FenSying: FenSying synthesizes the smallest number of weakest

fences.

Identifying failure of soundness. The fence synthesis process, of FenSying

or fastFenSying, is aborted for a program P when the set of weakCyclesτ and

strongCyclesτ for a buggy trace τ of P is empty (refer to §6.3.4). A failure of

soundness indicates that the buggy trace could be invalidated with C11 fences and

the technique wrongly aborted. The following process is followed to detect failure of

soundness for the buggy trace τ that could not be invalidated.

1. For each candidate fence in τ imm, assign memory order sc.

2. Synthesize the fences in P at the locations indicated by τ imm to form a trans-

formed program P ′.

3. Invoke BTG on P ′.
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Table 6.2: Details of litmus tests

Tests min-BT max-BT avg-BT min-syn max-syn avg-syn min-str max-str avg-str
1389 1 9 1.05 1 4 2.25 0 0 0

Table 6.3: Litmus test results

completed (syn+no fix) TO NO Tbtg (total) TF (total) Ttotal
FenSying 1333 (1185+148) 56 0 50453.19 36896.06 87266.09
fastFenSying 1355 (1207+148) 34 0 30703.71 49068.61 79772.32

The strong order of the synthesized fences in P ′ form the maximal ordering feasible

with C11 fences. If the BTG returns a buggy trace still, then the program indeed

cannot be fixed with C11 fences.

Identifying failure of optimality for FenSying. Failure of optimality occurs when

there exists a weaker version of the fixed program P fx that is bug free. Here, a weaker

version refers to a transformation of P fx with lesser or weaker fences than P fx. The

following processes is followed to detect failure of optimality for a fixed program P fx.

1. For each synthesized fence F in P fx, for each memory order weaker than the

order of F, create a transformed program P fx(i) with the weaker orders for F.

2. Create a transformed program from P fx by removing F.

3. Invoke BTG on each version created in the previous two steps.

If the BTG returns a buggy trace for each of the weaker versions of P fx then there does

not exist a weaker fix for the input program P .

Litmus tests. The set of 1,389 litmus tests is borrowed from a previous work [9].

The work proposes a larger set of tests but apart from the 1,389 tests used, the

others are bug free. The details of the litmus tests are give in Table 6.2, where

‘BT’ represents the number of buggy traces, and ‘syn’, ‘str’ represent the number of

fences synthesized, strengthened respectively. Prefixes ‘min’, ‘max’, and ‘avg’ refer

to minimum, maximum, and average respectively.
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As shown in the table, the number of buggy traces for the litmus tests range between

1 to 9 with an average of 1.05, while the number of fences synthesized range between

2 to 4. None of the litmus tests contained fences in the input program. Hence, no

fences were strengthened for any of the litmus tests. Additionally, the average length

of litmus tests is 70.46 lines of code.

The results of FenSying and fastFenSying on the litmus tests are presented in

Table 6.3.

The column ‘completed’ represents the number of tests successfully completed for

the respective technique. A successful completion signifies that the technique could

complete within a timeout of analysis (set at 900s for BTG, and an additional 900s

for FenSying or fastFenSying), and that the outcome of the synthesis process is

sound and optimal (for FenSying). Further, the values in the bracket represent the

number of tests that could be fixed (‘syn’) and the number of tests that the techniques

detected cannot be fixed with C11 fences (‘no fix’).

The column ‘TO’ represents the number of tests that the corresponding techniques

timed out for, and ‘NO’ represents the number of tests for which the techniques

computed a non-optimal result. Note that, the non-optimal fastFenSying technique

also computed the optimal solution for all the litmus tests that it did not timeout

for. Further, observe that the sum total of the number of tests completed and the

number of tests that the techniques timed out for is equal to the number of litmus

tests, indicating that the techniques were not unsound for any test. The columns

‘Tbtg’, ‘TF’, and ‘Ttotal’ represent the time of analysis (in seconds) of the BTG, the

technique (FenSying or fastFenSying) and the total of the two. The time of analysis

is recorded over 5 runs with a timeout of analysis set at 900s each for the BTG and

the technique.

Note that, the time of analysis of BTG is significant in comparison to the time of

analysis of the FenSying or fastFenSying technique itself. Therefore, it is reported

separately for an accurate indication of the time of analysis of the techniques. The

time of analysis of the SAT solver is negligible, and therefore, it is included in ‘TF’.
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6.7.3 Performance analysis

The performance analysis of FenSying and fastFenSying is done over challenging

benchmarks, that produce buggy traces under C11, borrowed from previous works on

model checking under the C11 memory model and its variants [5, 9, 72, 81].

The performance is measured on various configurations of each benchmark, where

the configurations vary on the problem size determined by program features such

as the number of loop unrolls and the number of concurrent processing elements

(or threads). In essence, higher configurations of the benchmarks result in a higher

number of program events.

The performance on the benchmarks is measured on four aspects.

1. Number of fences synthesized + strengthened. The number of candidate fences

synthesized and the number of program fences strengthened.

2. Time of analysis of BTG. The time taken by the BTG to generate the set of buggy

traces for FenSying and the total time across various iterations to generate the

next buggy trace for fastFenSying.

3. Time of analysis of the technique. The time of analysis of the internal mod-

ules of FenSying and fastFenSying. This includes the time of computing the

min-model using SAT solver.

4. Number of iterations to reach the result. Relevant for fastFenSying.

The performance analysis of FenSying and fastFenSying is presented in Table 6.4.

The columns ‘Tbtg’, ‘TF’, and ‘Ttotal’ represent the time of analysis (in seconds)

of the BTG, the technique (FenSying or fastFenSying), and the total of the two.

The time of analysis is recorded over 5 runs with a timeout of analysis set at 900s

each for the BTG (‘BTo’) and the technique (‘FTo’). Column ‘#BT’ shows the num-

ber of buggy traces in the input program. A ‘?’ in ‘#BT’ signifies that BTG could
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Table 6.4: Comparative performance analysis

FenSying fastFenSying

Id Name #BT syn+str Tbtg TF Ttotal iter syn+str Tbtg TF Ttotal

1 peterson(2,2) 30 1+0 2.63 54.31 56.94 1:1 1:1+0:0 0.18 2.07 2.25

2 peterson(2,3) 198 1+0 29.96 594.34 624.3 1:1 1:1+0:0 0.53 3.58 4.11

3 peterson(4,5) ? − BTo − − 1:1 1:1+0:0 397.51 21.07 418.58

4 peterson(5,5) ? − BTo − − 1:1 1:1+0:0 BTo 31.52 *931.52

5 barrier(5) 136 1+0 1.09 207.74 208.83 1:1 1:1+0:0 0.13 1.40 1.53

6 barrier(10) 416 1+0 3.37 565.44 568.81 1:1 1:1+0:0 0.2 2.70 2.9

7 barrier(100) 31106 − − FTo − 1:1 1:1+0:0 34.2 198.54 232.74

8 barrier(150) ? − BTo − − 1:1 1:1+0:0 117.09 399.20 516.29

9 barrier(200) ? − BTo − − − − − FTo −
10 store-buffer(2) 6 2+0 0.08 0.91 0.99 1:1 2:2+0:0 0.04 0.05 0.09

11 store-buffer(4) 20 2+0 1.61 195.35 196.96 1:1 2:2+0:0 1.20 0.05 1.25

12 store-buffer(5) 30 − − FTo − 1:1 2:2+0:0 14.07 0.22 14.29

13 store-buffer(6) 42 − − FTo − 1:1 2:2+0:0 171.09 0.15 171.24

14 store-buffer(10) ? − BTo − − 1:1 2:2+0:0 BTo 0.05 *900.05

15 dekker(2) 54 2+0 0.17 0.27 0.44 1:1 2:2+0:0 0.26 0.04 0.3

16 dekker(3) 1596 − − FTo − 1:1 2:2+0:0 586.46 1.34 587.8

17 dekker-fen(2,3) 54 1+1 0.15 0.29 0.44 1:1 1:1+1:1 0.25 0.05 0.3

18 dekker-fen(3,2) 730 − − FTo − 1:1 1:1+1:1 159.84 5.56 165.4

19 dekker-fen(3,4) 3076 − − FTo − 1:1 1:1+1:1 BTo 6.06 *906.06

20 burns(1) 36 − − FTo − 7:8 8:10+2:2 0.61 4.69 5.3

21 burns(2) 10150 − − FTo − 6:7 8:10+0:1 71.53 554.6 626.13

22 burns(3) ? − BTo − − − − − FTo −
23 burns-fen(2) 100708 − − FTo − 5:7 4:6+3:3 329.41 43.96 373.37

24 burns-fen(3) ? − BTo − − 5:7 4:6+3:3 BTo 70.14 *970.14

25 linuxrwlocks(2,1) 10 − − FTo − 1:1 2:2+0:0 0.13 0.12 0.25

26 linuxrwlocks(3,8) 353 − − FTo − 2:2 3:4+0:0 686.52 0.41 *686.93

27 seqlock(2,1,2) 500 − − FTo − 1:1 1:1+0:0 341.54 2.38 343.92

28 seqlock(1,2,2) 592 − − FTo − 1:2 1:2+0:0 119.88 27.69 147.57

29 seqlock(2,2,3) ? − BTo − − 1:2 1:2+0:0 BTo 88.52 *988.52

30 bakery(2,1) 6 1+0 0.25 25.42 2.88 1:1 1:1+0:0 0.07 0.18 0.25

31 bakery(4,3) 7272 − − FTo − 1:1 1:1+0:0 166.11 5.68 171.79

32 bakery(4,4) 50402 − − FTo − 1:1 1:1+0:0 BTo 18.17 *918.17

33 lamport(1,1,2) 1 No fix. 0.06 0.05 0.11 1:1 No fix. 0.04 0.05 0.09

34 lamport(2,2,1) 1 No fix. 411.94 0.05 411.99 1:1 No fix. 53.34 0.05 53.39

35 lamport(2,2,3) ? − BTo − − 1:1 No fix. 389.77 0.05 389.82

36 flipper(5) 297 2+0 6.22 254.18 260.40 1:1 2+0 2.51 0.02 2.53

37 flipper(7) 4493 − − FTo − 1:1 2+0 119.21 0.02 119.23

38 flipper(10) ? − BTo − − 1:1 2+0 BTo 0.03 *900.03
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not scale for the test, so the number of buggy traces is unknown. Column ‘iter’

shows the minimum:maximum number of iterations performed by fastFenSying

across five runs. The column ‘syn+str’ under FenSying report the number of fences

synthesized+strengthened. Under fastFenSying ‘syn+str’ reports the minimum:

maximum number of fences synthesized+strengthened across five runs. A ‘*’ against

the total time (column ‘Ttotal’) under fastFenSying signifies that the input program

is fixed but the BTG timed out in detecting that the program has no more buggy traces.

The assessment that the program is fixed is drawn from manual analysis with help

from the fixed programs for lower configurations1.

Configurations of benchmarks. The configurations of a benchmark vary the

problem size such that higher configurations require a higher effort of analysis. The

configurations typically vary on the number of concurrent elements (threads), the

number of loop iterations, and the number of events. The configurations of the

benchmarks in Table 6.4 vary on the following aspects.

The configurations of the benchmark ‘barrier’ (test IDs 5-9) vary on the number

of loop iterations and the number of writer threads. Similarly, the configurations of

the benchmark ‘seqlock’ (test IDs 27-29) vary on the number of loop iterations and

the number of reader threads. The configurations of all other benchmarks vary on the

number of loop iterations of various loops in the program.

Observations. A graph contrasting the performance of FenSying and fastFenSying

is shown in Figure 6.12. The graph represents the time of analysis of FenSying

and fastFenSying, on the y-axis, for the tests in Table 6.4, indicated on x-axis in

increasing order of time of analysis of FenSying and fastFenSying, (‘*’ on the x-axis

represents tests that both techniques timeout for). It can be observed that the time

of analysis of FenSying is notably higher than that of fastFenSying.

A similar trend can also be observed from the Table 6.4 where fastFenSying signifi-

cantly outperforms FenSying in terms of the time of analysis and scalability (indicated

1Typically, increasing the problem size between configurations increases the set of events not the
set of program locations (such as with increasing the number of loop iterations). For such tests the
synthesis solution remains same across configurations and so the solution for a lower configuration
can be used as an indicator to determine whether the tests marked with ‘*’ are indeed fixed.
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Figure 6.12: Time of analysis of FenSying against fastFenSying (seconds)

by lesser number of ‘FTo’). Another noteworthy observation is that fastFenSying

adds extra fences in only 7 tests with an average of 1.57 additional fences.

With the increase in the number of buggy traces, FenSying’s time of analysis grows

exponential leading to FTo; except in case of test IDs 12, 13, 20, and 25, where

FenSying times out with as low as 10 traces. The tests time-out in Johnson’s cycle

detection due to a high density of the number of related events or the number of

cycles. The event relations of some buggy traces form as many as 2-3 millions cycles

for test IDs 12-13, 14 million for test ID 20, and over 36 million for test ID 25,

eventually leading to the timeout.

fastFenSying analyzes a remarkably smaller number of buggy traces in comparison

to ‘#BT’ (≤2 traces for ∼85% of tests), as shown in column ‘iter’. Thus, it can be

concluded that a solution corresponding to a single buggy trace fixes more than one

buggy traces. As a result, fastFenSying scales to tests with thousands of buggy

traces with an average speedup of over 67x, with over 100x speedup in ∼41% of tests,

against FenSying. fastFenSying could also scale for the tests with traces of millions

of cycles because such traces were not encountered by the technique.

Consider test ID 16, BTG times out in 3/5 runs and completes in∼100s in the remaining

2 runs. A fence is synthesized between two events that are inside a loop. Additionally,

the later event is within a condition. Depending on where the fence is synthesized
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Figure 6.13: Time of analysis of BTG against fastFenSying internal modules (seconds)

(within the condition or outside), BTG either runs out of time or finishes promptly.

BTG times out in 3/5 runs for test ID 26 as well. However, the reason here is the

additional non-optimal fences synthesized that increase the analysis overhead of the

chosen BTG (CDSChecker).

Note that, for most benchmarks, fastFenSying’s scalability is limited by BTo. Ob-

servably, fastFenSying’s time of analysis is much lesser than FTo for such cases.

Consider the bar graph in Figure 6.13 where the bars indicate the total time of anal-

ysis of fastFenSying on various tests in Table 6.4, ordered in increasing order of the

total time of analysis (column ‘Ttotal’ of fastFenSying). The yellow components

represent the portion of ‘Ttotal’ corresponding to ‘Tbtg’, while the black components

represent ‘TF’. It is evident from the graph that BTG takes up the major share of the

total time of analysis. As a consequence, higher configurations of benchmarks could

not be tested as BTG did not scale for the current configurations.
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6.8 Scope, Limitations, and Future directions

Applicability under other version C/C++ memory model. The Weak-FenSying

and Strong-FenSying techniques presented in §6.3.2 and §6.3.3 respectively are de-

signed for the ISO 2011 standard of C/C++. The analyses are not directly applicable

to the memory models presented in the subsequent standards. By defining suit-

able analysis corresponding to Weak-FenSying and Strong-FenSying, FenSying and

fastFenSying techniques can be extended to support the the subsequent models of

C/C++.

fence synthesis to restore sequential consistency. Some earlier works syn-

thesize fences to restrict the program outcomes to those allowed under sequential

consistency [6, 17, 33] or its variant [11]. Such restriction provides compatibility

with existing analysis techniques for sequential consistency. However, most fences

synthesis techniques [10, 49, 55, 63, 67], attempt to remove traces violating a safety

property specification under their respective axiomatic definition of memory model,

similar to FenSying and fastFenSying.

Alternate definition of optimality. Technique [16] assigns weights to various types

of fences (similar to this work) and defines optimality on the weights of candidate

solutions. Consequently, out of the candidate solutions {Fsci } and {Frelj ,Facqk }, dis-

cussed in §6.2.1, a similar definition of optimality as in [16] would prefer the solution

{Frelj ,Facqk }, whereas FenSying and fastFenSying prefer {Fsci }.

The definition of optimality in [16] is incomparable with that presented in §6.2.1, and

their efficiency is subject to the input program and the underlying architecture. No

prior work establishes the advantage of one definition over the other.

Modifying memory orders against synthesis of fences. A recent technique [73]

fixes a buggy C11 program by strengthening memory access events instead of synthe-

sizing fences. This work synthesizes C11 fences and stands fundamentally different

from techniques that modify the memory orders of program events.

sc fences cannot restore sequential consistency [60], hence, strengthening memory
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Figure 6.14: IRIW-rlx. (a) buggy trace (b) with strong memory orders, (c) with
strong fences

orders may invalidate buggy traces that the strongest C11 fences cannot.

Consider the outcome IRIW with rlx memory orders for the read and write events,

shown in Figure 6.14(a) (where → depicts the total-order on sc events). Assume

that the outcome is buggy. Figure 6.14(b) and (c) show two transformations of the

program. In Figure 6.14(b), let the memory order sc as superscripts represent that

the memory orders of the respective read and write events are strengthened to sc.

In Figure 6.14(c) the strongest kind of C11 fences are synthesized at all feasible

synthesis locations.

The fences of Figure 6.14(c) do not introduce an ordering between the write events

and the corresponding read events thereby allowing reads from initial events. Thus,

the trace shown in Figure 6.14(c) cannot be invalidated by C11 fences. Whereas,

changing the memory order of read and write events achieves the desired ordering

and invalidates the outcome, as shown in Figure 6.14(b). FenSying and fastFenSying

invalidate traces by synthesizing C11 fences, thus, the outcome in Figure 6.14(a)
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Figure 6.15: SB. (a) with strong memory orders, (b) with strong fences

cannot be invalidated by the techniques.

On the other hand, architectures translate the strongly ordered memory access events

to memory access operation and supporting barriers. The translation of strongly

ordered events to barriers may be sub-optimal.

Consider the two versions of the program store buffer (Figure 3.3(a)) shown in Fig-

ures 6.15(a) and (b), (where→ depicts the total-order on sc events). In Figure 6.15(a)

the memory orders of the read and write events are strengthened, while in Fig-

ure 6.15(b) C11 fences are synthesized. The translation of Figure 6.15(a) on ARM-v7

and Power is depicted in Figures 6.15(arm-a) and (power-a) respectively. The trans-

lation of Figure 6.15(b) ARM-v7 and Power is depicted in Figures 6.15(arm-b) and

(power-b) respectively. Clearly each of the two architectures place additional (and

unnecessary) barriers on interpreting barrier requirement from the memory orders of

program events; while, fences present a better indication of the necessary barrier

requirement.

1isync+ refers to cmp; bc; isync
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As a result, the two alternative approaches of strengthening memory orders of memory

access events and synthesizing fences are incomparable and subjectively superior.

Threats to Validity

Scalability. Since SMC limited in scalability, the dependence of FenSying and

fastFenSying on an SMC limits their scalability as well. There is a significant scope

for improvement in performance of the techniques in terms of the time of analysis

and scalability while ensuring near-optimality of the resulting fence synthesis.

Availability of benchmarks. There exist very few benchmarks of C11 programs

that utilize C11 weak ordering guarantees, and there are even fewer benchmarks with

bugs emerging from the weak ordering guarantees of C11.

Memory orders for testing. The benchmark suites such as SV-Comp [22] and

SCT [66] contain C programs without associated memory orders. To test the weaker

behaviors the memory access operations are associated with appropriate weak memory

orders which are chosen by the authors.

6.8.1 Future directions

Efficient synthesis. The time complexity of FenSying and fastFenSying is dom-

inated by the cycle detection, that is, O((|Eτ |+E).(C+1)) where E is in O(|Eτ |2) and

C is in O(|Eτ |!). Hence, reducing the size of E can reduce the complexity of cycle

detection.

The size of E can be reduced by reducing the number of candidate fences in the

intermediate trace. Clever heuristics may be used to compute a well suited set of

candidate fences instead of inserting a candidate fence at each feasible location.

Further, bounding techniques , such as depth bounding on the number of events or

the number of event relations may also reduce the complexity of cycle detection.

Alternate BTG. As depicted by the graph in Figure 6.13, BTG takes up the major share
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of the time of analysis of fastFenSying. Further, it can be observed from Table 6.4

that there exist tests for which the BTG (CDSChecker) can compute the complete set of

buggy traces but cannot generate them one at a time from the transformed programs

of each iteration of fastFenSying (such as test IDs 19 and 32). It may be concluded

that CDSChecker’s performance decreases with fences in the input program.

An alternate BTG may significantly improve the scalability of fastFenSying. Alterna-

tively, collecting the set of buggy traces from CDSChecker and internally computing

the set of invalidated and remaining traces in each iteration can also be explored.

Eliminating fences for efficient fixed programs. Fence elimination is out of the

scope of this work. For future, elimination of program fences can be explored aiming

at generating fixed programs with lower performance overhead. A similar approach

can be used to extend FenSying and fastFenSying to take bug free programs as

input for computing performance-efficient versions of the programs.

Support for program fence elimination can be extended primarily by including pro-

gram fences to compute the min-model using the SAT solver.

Support for richer constructs. The technique may be extended to support richer

constructs such as coarse-grained locking. The modules Weak-FenSying and Strong-

FenSying may be suitably extended for detecting cycles in the presence of locks.

6.9 Concluding remarks

This work presents the first fence synthesis techniques for the C11 memory model,

called FenSying and fastFenSying. The techniques provide an automated solution

for fixing a C/C++ program that violates a user specified (assert) property. The

techniques take buggy traces of a C/C++ program as input and synthesize C11 fences

in the program to make the program bug free.

The FenSying technique is shown to be sound and optimal. However, the optimal

computation is NP-hard and empirically the technique is seen to suffer in scalability.
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The fastFenSying technique is sound. The technique is not optimal but can be per-

ceived as near-optimal for two reasons; first, it is shown that the technique is optimal

for a single buggy trace, and second, empirically it is observed that fastFenSying

computes optimally in over 99.5% tests. This work also presents the worst case time

complexity analysis for the FenSying and fastFenSying algorithms.

The FenSying and fastFenSying techniques are accompanied with an implemen-

tation for C and C++ buggy input programs. This work presents the corresponding

implementation details including the structural overview and key components.

The implementation of the FenSying and fastFenSying techniques are tested over

1300+ litmus tests from previous works,with the focus on soundness and optimality

(for FenSying). FenSying and fastFenSying timeout for 4% and 2.5% of the tests,

respectively. For the remaining tests, the techniques perform a sound analysis. Both

the techniques also produce an optimal solution for the remaining tests.

To determine the effectiveness of FenSying and fastFenSying techniques and their

corresponding implementations, the presented tool is tested on challenging bench-

marks. The tests compare the techniques on the time of analysis, the number

of fences synthesized and strengthened, and scalability. The comparative results

on benchmarks highlight that fastFenSying significantly outperforms FenSying in

terms of the time of analysis and scalability, while incurring a small number of extra

fences in a small number of tests.

Finally, this work discusses the scope of FenSying and fastFenSying, and highlights

differences with some popular and similar notions in related fields. Based on the

scope of the techniques this work also proposes worthy future directions.
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Chapter 7

Conclusion

This work presents techniques for the ease of development of efficient programs that

produce expected outcomes under relaxed memory consistency models. The focus of

this work is on two objectives, (i)verification efficiency and (ii) developer productivity

and runtime efficiency.

The work proposes the techniques,

• ViEqui, under the objective of verification efficiency, presented in Chapter 4;

• MoCA, under the objectives of verification efficiency and developer productivity,

presented in Chapter 5; and,

• FenSying and fastFenSying, under the objectives of developer productivity

and runtime efficiency, presented in Chapter 6.

ViEqui is an efficient stateless model checker that is based on a novel equivalence

relation for trace partitioning called view-equivalence, that is as coarse as any exist-

ing equivalence relation. It is shown with relevant theorems that ViEqui is sound,

complete, and optimal in its exploration.

MoCA is a precise stateless model checker for a restriction of the C11 memory model

191
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over MCA. This work presents the restriction of the C11 happens-before relation and

proposes coherence conditions precisely for MCA. The work introduces novel type of

events called shadow-writes that simulate reordering through interleaving to achieve

the restriction. It is shown with relevant theorems that MoCA is sound, coherent under

C11 and precise for C11 restricted to MCA.

FenSying and fastFenSying are the first fence synthesis techniques for automated

fixing of buggy C11 programs. This work presents the approach of invalidating buggy

outcomes by breaking their coherence with fences. The FenSying technique performs

optimal (minimal) fence synthesis by introducing the smallest number of weakest

fences to fix a buggy program but suffers in the time of analysis and scalability.

The fastFenSying technique efficiently performs fence synthesis while performing

optimally in most cases. It is shown with relevant theorems that FenSying is sound,

and optimal and fastFenSying is sound and near-optimal.

Each technique is accompanied by an implementation to empirically validate the

claims and show the effectiveness of the techniques. The techniques are validated

on relevant litmus tests and ViEqui and MoCA are further compared against state-

of-the-art comparative techniques. Since, FenSying and fastFenSying are the first

techniques in their scope, their performance is compared against each other. Each

technique is also presented with a worst case time complexity analysis.

This document briefly presents the relevant background for this work in Chapter 3.

Further, a detailed background corresponding to each technique is presented in their

corresponding chapters (Chapters 4, 5 and 6). The background includes details on

the existing related work and the difference of the existing works with the proposed

techniques. Each technique is also presented with the scope of the work, comparison

with other similar notions and representations, and worthy future directions.

In summary, this work proposes provably correct techniques for the said objectives.

Each technique is further supported with a useful implementation, and empirical

study of the techniques establish relevance and efficacy of each technique and utility

of the accompanying implementation.



Appendix A

Glossary

ARM Memory model of ARM architecture for versions 8 and later

acq memory order acquire (memory order acquire)

acq-rel memory order acquire-release (memory order acq rel)

C11 C/C++ ISO 2011 memory model

bug A valid program trace that violates a user specified (assert) property

DPOR Dynamic Partial Order Reduction

(fast)FenSying FenSying and fastFenSying

MCA Multi-copy atomics

na non-atomic event type

non-MCA Non-multi-copy atomics

5 POR Partial order reduction

PSO Partial store order

rel memory order release (memory order release)

rlx memory order relaxed (memory order relaxed)

sc memory order sequentially consistent (memory order seq cst)

SMC Stateless Model Checker

TSO Total store order
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checking and the state explosion problem. Tools for Practical Software Verifi-

cation: LASER, International Summer School 2011, Elba Island, Italy, Revised

Tutorial Lectures, pages 1–30, 2012.

[31] Robert J Colvin and Graeme Smith. A wide-spectrum language for verification

of programs on weak memory models. In International Symposium on Formal

Methods, pages 240–257. Springer, 2018.

[32] computersforpeace. model-checker. https://github.com/computersforpeace/

model-checker, 2021.

https://github.com/computersforpeace/model-checker
https://github.com/computersforpeace/model-checker


BIBLIOGRAPHY 199

[33] Xing Fang, Jaejin Lee, and Samuel P Midkiff. Automatic fence insertion for

shared memory multiprocessing. In Proceedings of the 17th annual international

conference on Supercomputing, pages 285–294, 2003.

[34] Cormac Flanagan, Stephen N Freund, and Shaz Qadeer. Thread-modular verifi-

cation for shared-memory programs. In European Symposium on Programming,

pages 262–277. Springer, 2002.

[35] Cormac Flanagan and Patrice Godefroid. Dynamic partial-order reduction for

model checking software. ACM Sigplan Notices, 40(1):110–121, 2005.

[36] Shaked Flur, Kathryn E Gray, Christopher Pulte, Susmit Sarkar, Ali Sezgin, Luc

Maranget, Will Deacon, and Peter Sewell. Modelling the armv8 architecture,

operationally: Concurrency and isa. In Proceedings of the 43rd Annual ACM

SIGPLAN-SIGACT Symposium on Principles of Programming Languages, pages

608–621, 2016.

[37] Vojtech Forejt, Daniel Kroening, Ganesh Narayanaswamy, and Subodh Sharma.

Precise predictive analysis for discovering communication deadlocks in mpi pro-

grams. In International Symposium on Formal Methods, pages 263–278. Springer,

2014.

[38] gabriel araujjo. model-checker. https://github.com/gabriel-araujjo/

model-checker, 2021.

[39] Patrice Godefroid. Partial-order methods for the verification of concurrent sys-

tems: an approach to the state-explosion problem. Springer, 1996.

[40] Patrice Godefroid. Model checking for programming languages using verisoft. In

Proceedings of the 24th ACM SIGPLAN-SIGACT symposium on Principles of

programming languages, pages 174–186, 1997.

[41] Patrice Godefroid. Software model checking: The verisoft approach. Formal

Methods in System Design, 26(2):77–101, 2005.

https://github.com/gabriel-araujjo/model-checker
https://github.com/gabriel-araujjo/model-checker


200 BIBLIOGRAPHY

[42] Patrice Godefroid and Didier Pirottin. Refining dependencies improves partial-

order verification methods. In International Conference on Computer Aided Ver-

ification, pages 438–449. Springer, 1993.

[43] Patrice Godefroid and Pierre Wolper. Using partial orders for the efficient ver-

ification of deadlock freedom and safety properties. Formal Methods in System

Design, 2(2):149–164, 1993.

[44] Ashutosh Gupta, Thomas A Henzinger, Arjun Radhakrishna, Roopsha Samanta,

and Thorsten Tarrach. Succinct representation of concurrent trace sets. In Pro-

ceedings of the 42nd Annual ACM SIGPLAN-SIGACT Symposium on Principles

of Programming Languages, pages 433–444, 2015.

[45] Aric Hagberg, Pieter Swart, and Daniel S Chult. Exploring network structure,

dynamics, and function using networkx. Technical report, Los Alamos National

Lab.(LANL), Los Alamos, NM (United States), 2008.

[46] ISO/IEC. Programming languages – c. international standard. www.open-std.

org/jtc1/sc22/wg14/www/docs/n1548.pdf, 2011.

[47] Alglave Jade and Maranget Luc. diy7 tool suite. http://diy.inria.fr/doc/

index.html, 2017. Accessed: 2020-02-12.

[48] Donald B Johnson. Finding all the elementary circuits of a directed graph. SIAM

Journal on Computing, 4(1):77–84, 1975.

[49] Saurabh Joshi and Daniel Kroening. Property-driven fence insertion using re-

order bounded model checking. In International Symposium on Formal Methods,

pages 291–307. Springer, 2015.

[50] Jeehoon Kang, Chung-Kil Hur, Ori Lahav, Viktor Vafeiadis, and Derek Dreyer. A

promising semantics for relaxed-memory concurrency. ACM SIGPLAN Notices,

52(1):175–189, 2017.

[51] Michalis Kokologiannakis, Ori Lahav, Konstantinos Sagonas, and Viktor

Vafeiadis. Effective stateless model checking for c/c++ concurrency. Proceedings

of the ACM on Programming Languages, 2(POPL):17, 2017.

www.open-std.org/jtc1/sc22/wg14/www/docs/n1548.pdf
www.open-std.org/jtc1/sc22/wg14/www/docs/n1548.pdf
http://diy.inria.fr/doc/index.html
http://diy.inria.fr/doc/index.html


BIBLIOGRAPHY 201

[52] Michalis Kokologiannakis, Iason Marmanis, Vladimir Gladstein, and Viktor

Vafeiadis. Truly stateless, optimal dynamic partial order reduction. Proceed-

ings of the ACM on Programming Languages, 6(POPL):1–28, 2022.

[53] Michalis Kokologiannakis, Azalea Raad, and Viktor Vafeiadis. Model checking

for weakly consistent libraries. In Proceedings of the 40th ACM SIGPLAN Con-

ference on Programming Language Design and Implementation, pages 96–110,

2019.

[54] Michalis Kokologiannakis and Viktor Vafeiadis. Hmc: Model checking for hard-

ware memory models. In Proceedings of the Twenty-Fifth International Confer-

ence on Architectural Support for Programming Languages and Operating Sys-

tems, pages 1157–1171, 2020.

[55] Michael Kuperstein, Martin Vechev, and Eran Yahav. Automatic inference of

memory fences. ACM SIGACT News, 43(2):108–123, 2012.

[56] Robert Kurshan, Vladimir Levin, Marius Minea, Doron Peled, and
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