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Abstract— The internal state of the complex modern processors
often needs to be dumped out frequently during postsilicon
validation. Since the caches hold most of the state, the volume
of data dumped and the transfer time are dominated by the
large caches present in the architecture. The limited bandwidth
to transfer data present in these large caches off-chip results
in stalling the processor for long durations when dumping
the cache contents off-chip. To alleviate this, we propose to
transfer only those cache lines that were updated since the
previous dump. Since maintaining a bit-vector with a separate
bit to track the status of individual cache lines is expensive,
we propose two methods: 1) where a bit tracks multiple cache
lines and 2) an Interval Table which stores only the starting
and ending addresses of continuous runs of updated cache lines.
Both methods require significantly lesser space compared with
a bit-vector, and allow the designer to choose the amount of
space to allocate for this design-for-debug feature. The impact
of reducing storage space is that some nonupdated cache lines
are dumped too. We attempt to minimize such overheads.
We propose a scheme to share such cache update tracking
hardware (or Update Trackers) across multiple caches in case
of physically distributed caches so that they are replicated fewer
times, thereby limiting the area overhead. We show that the
proposed Update Trackers occupy less than 1% of cache area
for both the shared and distributed caches.

Index Terms— Cache compression, parameterized design-for-
debug (DFD) architecture, postsilicon validation, processor
debug, state dump-driven debugging.

I. INTRODUCTION

THE increasing complexity of modern processors has
resulted in the evolution of sophisticated postsilicon

validation features because the simulation techniques are
inadequate for executing large test case scenarios [1], [2].
During postsilicon validation, sample chips are validated
on test platforms where the execution is performed at high
speed, but elaborate mechanisms need to be put in place
to identify the cause of errors once faults are identified.
Recent research efforts in this area have investigated the
broad topics of bug localization and diagnosis [3]–[5], trace
signal selection [6], [7], and adaptation of test compression
techniques [8], [9].

Among several interesting design-for-debug (DFD)
features used in the industry today, is a dumping mechanism,
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where the entire state of the processor is transferred off-chip to
the debug infrastructure, to be analyzed offline. However, such
DFD hardware needs to operate under tight area constraints,
and should cause minimal interference in the normal execution
of the processor. Thus, the goals of an ideal DFD hardware
supporting efficient dumping during postsilicon validation are:
1) minimal intrusiveness; 2) minimal space requirements; and
3) maximum visibility into the chip. These requirements are
clearly orthogonal, and balancing the three is a complex task.

The entire processor state consists of all caches and
registers in various structures such as pipelines, regis-
ter files, translation lookaside buffers (TLBs), and reorder
buffers. Capturing this state at regular intervals and analyz-
ing sequences of such snapshots offline gives crucial hints
on possible causes of errors. However, due to the large
sizes of the last-level caches, transferring each snapshot
off-chip is a time consuming process. We also require that,
during the dumping phase, the processor should not update
the cache, since it may lead to inconsistencies. Therefore, the
processor is stalled during the dumping phase. The duration
of processor stalls can be reduced by decreasing the amount
of data that is required to be transferred off-chip [8], [10].
Such reduction in off-chip transfers also limits the pertur-
bations experienced by the test workloads due to the debug
infrastructure. This significantly improves reproducibility of
intermittent bugs.

Another way to reduce the amount of data to be transferred
off-chip is by dumping only the cache lines that were updated
after the previous snapshot. The straightforward method of
storing the information on the lines that were updated in
the current dumping cycle is to maintain a bit-vector where
each bit represents a cache line and is set to 1 if the line is
updated. This approach is also very efficient, as the amount
of processing required is minimal. However, its disadvantage
is that the amount of space required could be unacceptably
large for the large caches of modern processors, since the
bit-vector size equals the number of cache lines. In this
paper, we attempt to store the information about updated
cache lines in less space than that required by a bit-vector
representation, and allow the designer to control the area
overhead. The reduction in space utilized to capture the
information on updated cache lines in our proposed structure
may lead to a small increase in the number of lines transferred
off-chip.

In case of distributed caches, updates to all the caches need
to be tracked in order to obtain a consistent snapshot of the
state of the processor. The naïve way to achieve this is to
duplicate the Update Tracker for every cache. However, this
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may result in significantly high area overheads. We aim to limit
this area overhead by allowing multiple caches to share the
Update Tracker. We propose a scheme under which the number
of non-updated cache lines that are dumped off-chip remains
under acceptable limits, even when the Update Tracker is
shared across multiple caches.

The rest of this paper is structured as follows. Section II
outlines the prior research. Section III discusses in detail
the motivation and the methodology used for shared caches.
Section IV discusses schemes to share the Update Tracker
in physically distributed caches. Section V describes the
hardware implementation of our proposed method. Section VI
explains the experiments and results. Finally, the conclusions
are given in Section VII.

II. RELATED WORK

The challenge of limited visibility posed during postsilicon
validation is generally handled by two broad approaches:
1) tracing signals and 2) event triggers. Most of the issues that
arise when tracing signals are due to the limited storage space
available on-chip to store the signal values. This is improved
by getting rid of redundant signals and intelligently choosing
the signals for tracing. This improves the usage of trace
buffers, as they can now store values of many more signals
than previously possible. Novel methods have been proposed
to solve the issues related to tracing signals for debugging
purposes [11]–[15]. Event triggers are associated with a dif-
ferent set of research problems, including defining the triggers
correctly, storing the definitions of triggers, and routing signals
to and from the on-chip control units that decide whether or not
an event has occurred. Some novel solutions to these problems
have been proposed recently by researchers [16]–[20].
Recently, transaction-based debugging methods such
as [21] and [22] have been proposed. Other methods have
been proposed for inferring the subset of signals responsible
for the faulty behavior by observing the manifestations of
these signals on other easily observable parameters [23]–[27].
Some research works also target compression [28], [29] and
analysis [30]–[32] of traces collected from executions, which
are then used for simulations or bug localization. Our method
is orthogonal to, and complements the above-mentioned
approaches in that it is targeted at capturing a relatively
complete snapshot of the chip state, particularly caches. The
other approaches are still applicable in this context, during the
processor execution cycle between successive state dumps.

Another related research area is the field of compressing
bit-vectors [33]–[35]. This paper aims to track only the cache
lines updated after the previous dumping phase, using space
lesser than that used by a bit-vector. Therefore, our focus is
to eliminate the bit-vector itself.

The field of data clustering is conceptually close to our
area of work where n data points are to be grouped into
k clusters while minimizing a distance metric. We explored
this option by adapting a well-established clustering algorithm
BIRCH [36] to suit our application scenario. Through experi-
mentation we found that, in spite of the conceptual similarities,
a direct application of this method is relatively inefficient.

Fig. 1. (a), (c), and (e) Examples of bit vectors that capture the information
on updated cache lines. (b), (d), and (f) The corresponding 2-lines/bit bit
vector. The shaded portion of bit vector shows the dumped lines using the
interval table with k = 1.

This paper is similar in scope to [10] and [37]. Here,
we compress the cache contents using well-established com-
pression algorithms in order to reduce the amount of data
transferred off-chip. Our proposal focuses on two important
differences from the above works: 1) we attempt to track and
dump only the updated cache lines using very little space and
2) we allow the designer to parameterize this Update Tracker
based on an area constraint. The compression techniques
proposed in the above works can be applied on the cache
lines that are marked as updated by our technique to further
reduce the size of the data transferred off-chip; this further
strengthens the state dump-driven debugging approaches.

III. METHODOLOGY—SHARED CACHE

A. Definitions

Definition 1: A bit-vector corresponds to a sequence of
0s and 1s, where 1 indicates that the corresponding cache
line was modified after the previous cache dump and 0 indi-
cates otherwise. Unless otherwise mentioned, the bit-vector
maintains one bit per cache line.

Definition 2: We define the overhead as the number of
nonupdated cache lines that are transferred off-chip, expressed
as a percentage of the total number of cache lines. It is
quantified as (y − x/N) × 100%, where x is the number of
updated lines, y is the number of dumped lines, and N is the
total number of lines in the cache.

In this paper, we aim to use lesser space than a bit-vector
to track the cache lines that were modified since the previous
dump. The motivation to use lesser space is illustrated in
the example shown in Fig. 1(a). In this case, of the total
16 cache lines only 11 cache lines have been updated after
the previous snapshot (indicated by 1 in the corresponding
bit-vector). Moreover, all the updated lines are contiguous.
In this scenario, instead of a bit-vector, it is efficient to store
only the start and end addresses of the continuous run of 1s.
This requires only 8 bits (4 bits for each address), whereas the
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bit-vector requires 16 bits. This example results in a saving
of 50% of the number of bits used to store the information
on updated lines. Such runs of 1s is not uncommon due to
the high spatial locality of reference in caches. Our proposals
exploit this property to save storage space.

B. Method 1: t-Lines/Bit Bit-Vector

This method maps each bit to t (>1) adjacent cache lines.
A bit is set to 1 if any of the t cache lines to which it
corresponds is updated after the previous cache dump. This
method reduces the amount of storage required by a factor
of t . A designer has the flexibility to choose any value of t
that satisfies the area budget. A large value of t increases
the overhead due to an increase in the number of nonup-
dated cache lines in the proximity of an updated cache line.
In Fig. 1, columns (b), (d), and (f) illustrate the t-lines/bit
bit-vector for t = 2 corresponding to the bit-vectors shown
in columns (a), (c), and (e), respectively. The respective
overheads incurred are shown in the bottom row.

C. Interval Table

Definition 3: A pair of starting address and ending address
(〈start_addr, end_addr〉) defines an interval. A set of k intervals
is stored in an Interval Table I [k].

Unlike the previous method, this method does not partition
the cache lines into fixed size sets. Instead, a continuous run
of 1’s in the bit-vector is stored as an interval. The amount of
storage required to store an interval is constant irrespective
of the length of the run of 1’s. The shaded portion in
columns (a), (c), and (e) of Fig. 1 shows the set of cache
lines marked as updated by an Interval Table with k = 1.

There are two adversarial situations to the interval-based
approach in practice: 1) in a bit-vector, the actual number
of runs of 1’s can be very large and 2) the length of some
runs can be smaller than the number of bits required to store
their starting and ending addresses. To overcome the former
issue, we merge some adjacent intervals to reduce the number
of stored intervals to a given constraint k. The effect of the
latter is sought to be overcome by the space saved when there
are long runs of 1’s. Since log2 N bits are needed to address
N cache lines, storing k intervals requires 2klog2 N bits, and
it is essential that 2klog2 N < N (or k < (N/2log2 N )) for
the Interval Table to save space over the bit-vector. Therefore,
the main challenge now is to capture the information (starting
and ending addresses) of n runs of 1’s in just k intervals
where n � k.

Merging adjacent intervals due to the upper bound on k,
will capture some nonupdated cache lines into the intervals,
which leads to overheads. Thus, the intervals with the
smallest runs of nonupdated cache lines between them should
be merged. However, determining the nearest intervals is
nontrivial because of the online nature of the problem.
Interval Table I [k] needs to be maintained as and when the
cache lines are being updated. Intervals that were far apart at
some point in history can become the nearest if subsequent
updates by the processor occur to the cache lines between
the two intervals. Fig. 2 illustrates this issue with k = 2.

Fig. 2. Interval merging decisions for k = 2.

Initially, at time t1, only the cache lines 0, 1, and 15 are
updated; this is represented easily in two intervals 〈0, 1〉 and
〈15, 15〉. At time t2, line 7 is updated (highlighted in the
figure). Now, we can merge 7 with either 〈15, 15〉 or 〈0, 1〉.
We merge it with 〈0, 1〉 as line 7 is closer to it. The resulting
interval is 〈0, 7〉. Next, say the cache line 11 gets updated at
time t3. The newly updated line 11 is now equidistant from
the current intervals (〈0, 7〉 and 〈15, 15〉). Let us assume
we merge 11 with the interval 〈0, 7〉 resulting in the new
interval 〈0, 11〉. Similarly, the update to Line 13 at t4 results
in the interval 〈0, 13〉. We observe that the final two intervals
〈0, 13〉 and 〈15, 15〉 include nine 0’s, corresponding to
a 56% overhead. If the merging strategy was different,
it could be defeated by a different sequence of future
accesses. Such problems are common in practical online
algorithms, such as page replacement.

D. Optimal Offline Algorithm

Definition 4: A set of k intervals O[k] is said to be optimal
if no other set of k intervals exists with a lower overhead.

The Offline algorithm takes the number of intervals k that
can be stored and the set of all updated cache lines as inputs
and returns the optimal set of k intervals for these inputs.
The solution returned by the Offline algorithm helps determine
the theoretical lower limit of the overhead when using the
Interval Table method to maintain the information on updated
cache lines and can be used as a benchmark to compare the
performance of the other online algorithms.

Definition 5: A continuous run of nonupdated cache lines is
called a Gap and a Gap Table holds the starting address and
the length of the current set of Gaps.

Algorithm 1 summarizes the Offline strategy. Line 1
constructs a Gap Table by iterating over the bit-vector B and
storing the starting address and length of the continuous runs
of 0’s. This is shown in Fig. 3(a) for the initial bit-vector
marked (i). After constructing the Gap Table, Line 2 sorts it
in the descending order of the gap lengths [Fig. 3(b)]. The
top k − 1 entries are relevant to us. We first sort them in
increasing order of the start addresses (Line 3). Lines 5–8 in
the algorithm construct the final set of k intervals (O[k]) by
simply eliminating the cache lines constituting the topmost
k − 1 gaps in the sorted Gap Table. Fig. 3(c) and (d) indicates
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Algorithm 1 Offline Algorithm (Optimal)

Fig. 3. Illustration of the optimal Offline algorithm. (a) Initial gap table.
(b) Sorted gap table. (c) Optimal Interval Table for k = 2. (d) Optimal Interval
Table for k = 3.

the optimal set of intervals (O[k]) for k = 2 and k = 3,
respectively. The corresponding bit-vectors are shown in
Fig. 3(ii) and (iii) with the shaded regions indicating the
stored intervals. Some special cases are omitted in the
algorithm for the sake of simplicity of presentation.

E. Method 2: Greedy Algorithm

We propose a Greedy online algorithm to capture the infor-
mation on updated cache lines into Interval Table I [k]. When
the number of runs of 1’s exceeds k, we merge the adjacent
intervals to form a larger interval. Since this action causes
us to include some 0’s in the interval, we select for merging
two adjacent intervals with the minimum Gap between them.
Of course, some of the included 0’s may get updated to 1 in
the future due to spatial locality of accesses.

Definition 6: Local Gap is the distance of a newly
updated cache line to a boundary of its nearest runs of 1’s.
minLocalGap is the minimum among the two local gaps
(one to each boundary). Global Gap refers to the
distance between the adjacent intervals already stored

Algorithm 2 Greedy Algorithm (Online)

in the Interval Table I [k]. Similarly, minGlobalGap is the
minimum among the k − 1 global gaps.

The Greedy strategy is outlined in Algorithm 2. The
for-loop iterates over all the stored intervals, and checks for
membership of the newly updated cache line lineNum in the
corresponding interval. If lineNum is already a part of a stored
interval, the algorithm returns without modifying anything.
Otherwise, lineNum lies in a gap between two intervals.
minLocalGap captures the smallest distance of lineNum
to its nearest interval. Similarly, minGlobalGap stores the
minimum distance between any two previously stored adjacent
intervals. On exiting the for-loop, the algorithm would have
determined the least possible distance when accommodating
lineNum. In case minLocalGap is smaller, the new cache line
lineNum will be merged to its nearest adjacent interval. This
requires modification only to the nearest stored interval.
In case minGlobalGap is smaller, then the intervals around
the minGlobalGap will be merged to create space to store
lineNum in an interval of its own.

Fig. 4(a) shows the Local Gaps and Global Gaps for a
newly updated cache line (lineNum = 7) with an Interval
Table of size 3. Here, minLocalGap (for Gap 〈8, 8〉) is smaller
than minGlobalGap (for Gap 〈11, 13〉), and hence, only the
nearest stored interval (〈9, 10〉) is extended to accommodate 7.
Fig. 4(b) shows the final state of the Interval Table I [k] and
the corresponding bit-vector.

Fig. 5 shows an example where minGlobalGap is smaller
than minLocalGap. In this case, the intervals around the
minGlobalGap (〈0, 2〉 and 〈5, 6〉) are merged [as shown
in Fig. 5(c)] so as to create space for lineNum (14 in this
example). Once space is created, lineNum is stored in a new
interval by itself (〈14, 14〉).

This algorithm requires minimal amount of storage as
the information required for deciding the intervals to be
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Fig. 4. (a) Illustration of Local Gaps and Global Gaps. (b) Final bit-vector
on accommodating new incoming request.

Fig. 5. Illustration of Greedy algorithm when minGlobalGap is smaller than
minLocalGap. (a) The minLocalGap and minGlobalGap for the bit vector (i).
(b), (c), (d), and (e) The series of steps through which the Greedy algorithm
accommodates a newly updated cache line.

merged is derived by iterating once through the Interval Table.
We observe in our experiments that the overhead of the Greedy
algorithm tracks that of the Offline algorithm well for most of
the benchmarks.

The advantages of Greedy algorithm are: 1) the storage
space required is independent of the number of cache lines
unlike bit-vector, and hence, is suitable for large caches
and 2) the granularity of addressable units can also be
increased to t-lines instead of 1 line—larger t values causes
a decrease in the number of bits stored in the Interval Table.
The proof that the number of cache lines dumped by the
Greedy algorithm is at most twice that dumped by the Offline
algorithm (2 competitive) is given in [38].

Fig. 6. Hybrid algorithm (cache lines shaded in pink and yellow are captured
in auxiliary bit-vector and Interval Table, respectively). (a) State when a new
line (line 10) is updated. (b) State after accommodating the update request.

F. Method 3: Hybrid Algorithm

Definition 7: The Density (D) of a given window is defined
as the number of intervals in the window of cache lines.
A window with high density indicates large number of updated
cache lines in the window that are not contiguous.

The Hybrid algorithm extends the Greedy algorithm by
maintaining an additional bit-vector called auxiliary bit-vector
(of size b_size). This bit-vector is used to store the update
information of the most dense window of size b_size. Since
this region can change during the online operation of the cache,
we associate a start address b_start with this bit-vector. The
updates to the cache line at b_start and the next (b_size-1) lines
are tracked by the auxiliary bit-vector. A temporary bit-vector
is used for swapping intervals between the Interval Table and
the auxiliary bit-vector, as and when the need arises. Since
this temporary bit-vector is used only for swapping, we use
a t-bit bit-vector with (t = 2) as the temporary bit-vector to
limit the area overhead.

The Hybrid algorithm extends the Greedy algorithm in
two ways: 1) the auxiliary bit-vector filters the update requests
before sending them to the Interval Table and 2) update
information from the bit-vector is swapped with that of the
Interval Table in case it leads to freeing up of intervals in
the Interval Table. The check to determine whether or not
a window of length b_size exists in the Interval Table with
higher number of intervals than that in the bit-vector is per-
formed just before merging the intervals around minGlobalGap
(Line 14 of Algorithm 2). Fig. 6 details the sequence of steps
performed by the Hybrid algorithm to accommodate an update
request to a new cache line.

The reduction in the dumping overhead due to Hybrid
algorithm increases with the size of the auxiliary bit-vector.
However, a large auxiliary bit-vector results in increased area
overhead as it also warrants a large temporary bit-vector.
Moreover, the Hybrid algorithm requires multiple passes over
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the Interval Table to find the window that can be swapped
with the bit-vector.

IV. METHODOLOGY—DISTRIBUTED CACHES

As mentioned in Section I, the straightforward way to track
updated cache lines in distributed caches is to maintain the
update information of each cache separately. This results in a
linear increase of area overhead with the increasing number
of caches.

One way to reduce area overhead is to share the Update
Trackers across multiple caches. This requires the Update
Trackers to be replicated only Nt = (N/c) times (instead of
N times) where N is the total number of caches and c (≥1)
is the number of caches sharing the structure.

The case of c = N corresponds to a central structure that
tracks updated cache lines in all N caches. Since there is
no replication here, the area overhead is minimal. However,
such a central structure may become a bottleneck in the
system due to signal delay considerations. On the other hand,
c = 1 corresponds to the architecture where each cache has a
separate Update Tracker to track its updates. This distributed
architecture does not create any bottlenecks, but replicates the
hardware, thereby increasing the area overhead. Therefore,
the challenge is to determine the configuration where shar-
ing the Update Tracker: 1) occupies limited area; 2) does not
create bottlenecks in the system; and 3) dumping overhead
(even with sharing) is under acceptable bounds.

Definition 8: We define aggregate overhead in distributed
caches (O) to be the total number of nonupdated cache lines
across N distributed caches, expressed as a percentage of the
total cache lines across all the caches

O =
∑N

i=1(number of non-updated cache lines)i
∑N

i=1(total number of cache lines)i
× 100%.

(1)

The above definition is independent of c. In order to
keep the area overhead constant when sharing an Update
Tracker across c caches, we merge the update information of
c cache lines into a single cache line. Such merging of update
information can be done in two different ways: 1) horizontal
sharing, where the update information of the cache lines at
a particular line number spread across c caches is merged or
2) vertical sharing, where the update information of c adjacent
cache lines of the same cache is merged (similar to t-lines/bit
bit-vector).

A. Horizontal Sharing

Fig. 7 shows an example of two caches A and B sharing
a single Update Tracker (bit-vector and Interval Table). The
bit-vector and the Interval Table shown in Fig. 7(b) hold the
update information of both the caches (A and B) shown in
Fig. 7(a). The additional lines that are dumped from each
cache due to sharing the bit-vector are marked in blue. The
shared bit-vector is the bitwise-OR of the exclusive bit-vectors
of A and B.

However, this scheme suffers from increased overheads in
case of differential activity in the c caches. For example,

Fig. 7. Horizontal sharing; cache line 7 of the shared bit-vector is the OR of
Line 7 of A and B. (a) Caches A and B maintain separate Update Trackers
(bit-vector and Interval Table). (b) Caches A and B share the Update Tracker.

Fig. 8. Vertical sharing; cache line 7 of the shared bit-vector is the OR of
Lines 14 and 15 of A (similar to t-bit vector for t = 2). (a) Caches A and B
maintain independent Interval Tables. (b) Caches A and B shares an Interval
Table.

if only one of the c caches is updating its cache lines in a
particular epoch, cache lines with that line number in the other
c − 1 caches will also be dumped. Therefore, the dumping
overhead now depends on the number of caches sharing the
Update Tracker and the activity in each cache. If the Update
Tracker is an Interval Table, the dumping overhead may
additionally depend on the sequence of accesses seen by each
table.

B. Vertical Sharing

Fig. 8 shows an example of vertical sharing of Update
Trackers (bit-vector and Interval Table) between two caches.
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The bits shaded in blue in Fig. 8(a) are the additional cache
lines that are dumped due to this sharing scheme. Under this
scheme, merging the adjacent c cache lines in each of the
caches helps us keep the range of line numbers seen by the
Interval Table the same as that of a single cache. By merging
the adjacent c cache lines, we exploit the spatial locality of
the references to a cache to limit the area overhead.

The advantage of this scheme is that it allows for flexible
sharing of the Interval Table between the c caches. If one
(out of c) cache has long runs of 1’s, and therefore, requires
fewer intervals, the other caches will effectively have more
intervals available for storing their update information. This
also makes the dumping overhead independent of the activity
of each cache. An idle cache does not dump anything, which
is desirable.

V. HARDWARE DESIGN

In this section, we discuss the design choices for imple-
menting the Update Trackers. The hardware implementation
of bit-vector is straightforward and is not discussed.

A. Sorted Storage of Intervals

We decided to store the intervals in the Interval Table I [k]
in sorted order (based on their starting address) because it
allows minLocalGap and minGlobalGap in Algorithm 2 to be
computed in a single pass. We notice that the sorted order of
intervals is disturbed by a newly updated cache line only in
the case when minGlobalGap is smaller than minLocalGap.
We restore the sorted order of the table through a sequence of
swaps that shift some stored intervals. Fig. 5(b)–(e) shows the
sequence of operations when minGlobalGap is smaller than
minLocalGap. The movement operation requires O(k) time.

B. Memory Configuration

An appropriate memory architecture needs to be selected
to support the efficient computation of minLocalGap. Fast
parallel mechanisms for computing the minimum of n values
require log2(n) comparisons (using a tree of comparators).
In an aggressive design using b separate dual-ported banks,
we can read out 2b intervals simultaneously, and find the
minimum distance among these 2b values in log2(2b) cycles
(assuming one cycle per comparison). The same operation
requires b cycles if the table is stored in a single-bank dual-
port memory, with sequential accesses of a pair of intervals
at a time. The difference in time is pronounced only for large
values of b. The aggressive parallel implementation requires
a relatively large number of subtractors (to calculate the
distances) and comparators. Due to the above considerations,
we decided to use a single-bank dual-ported memory for
storing the Interval Table. Since the value of k is expected to
be small, the sequential processing does not impose significant
delays, as observed in our experiments.

C. Logic Design

Fig. 9 shows the detailed design of the hardware
implementation of the Greedy algorithm. The hardware uses

Fig. 9. Hardware design of Greedy algorithm.

a single dual-ported memory to store all the k intervals.
After each interval is read out in sequence, the check
for membership, and computation of minLocalGap and
minGlobalGap, are performed simultaneously. If the newly
updated cache line is determined to be a member of an existing
interval, the controller aborts all the in-flight operations and
returns to the initial state. Otherwise, the Local Gaps and
Global Gap are computed for the interval and checked against
the current minLocalGap and minGlobalGap. If either the
Local Gap or Global Gap is smaller than minLocalGap or
minGlobalGap, respectively, the new values are stored, along
with the index of the interval. The controller then decides
the intervals that are to be merged based on the values of
minLocalGap and minGlobalGap. In subsequent cycles, the
suitable intervals are read out, merged, and written back at
suitable locations to the Interval Table I [k].

Reading and computing minLocalGap and minGlobalGap
require k cycles. The merging operation would take two cycles.
Some intervals may have to be shifted in order to accommo-
date the newly updated cache line. In the worst case, such
movement of intervals requires k − 1 cycles, wherein all
the k − 1 intervals need shifting. Thus, our design requires
a maximum of 2k + 1 cycles to accommodate a newly
updated cache line into the Interval Table I [k]. The check for
membership of the newly updated cache line in the Interval
Table can be done faster using binary search through all the
intervals of the Interval Table. However, we cannot avoid
visiting all the intervals as we have to compute minLocalGap
and minGlobalGap required by the algorithm.

D. Update Buffer

We use an Update Buffer to temporarily store cache line
update requests that are received when the hardware is busy
processing the current cache line update. During the 2k + 1
cycles described above, the processor is not allowed to update
any other cache line. Such stalls could potentially slow down
the execution if they occur frequently. To minimize the impact
of such stalls, we include a small buffer to hold the addresses
of the cache lines that are updated while the hardware is busy.
Clearly, as the size of this Update Buffer increases, the number
of processor stalls decreases, but the debug hardware area
increases. The designer can control the size of the Update
Buffer. We examine its implications in Section VI.
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E. Extensions for Hybrid Algorithm

The controller of the Hybrid algorithm extends the con-
troller of the Greedy algorithm in two ways: 1) it filters
the incoming update requests through the auxiliary bit-vector
before sending them to the Interval Table and 2) it swaps the
update information contained in the Interval Table with that
stored in the auxiliary bit-vector. The first extension is simple,
and is not discussed further. The second extension involves:
1) scanning the Interval Table to identify the most dense
window of size b_size and 2) swapping the update information
between the Interval Table and the auxiliary bit-vector (using
the temporary bit-vector).

We maintain two pointers: 1) start of window and 2) end
of window to identify the most dense window in the Interval
Table that is to be swapped. Initially, the start pointer points
to the starting address of the first interval of the Interval Table
and the end pointer points to the ending address of the next
interval. In case the number of lines captured between the
two pointers is smaller than the size of the auxiliary bit-vector
(b_size), the end pointer is incremented to point to the ending
address of the next interval; otherwise, the start pointer is
incremented to the next interval, and the scan for a window
starts over. This repeats until the start pointer points to the
penultimate interval. In the worst case, this operation takes
up to ((k − 1)k/2) cycles, but in practice, we have observed
that this step takes a maximum of 3.5k cycles (for k = 32).
We avoid scanning the bit-vector to determine the number
of intervals in it by maintaining the count during online
operation. The number of intervals is incremented by 1 if both
the bits adjacent to the bit updated in the bit-vector are 0.
Similarly, the count is decremented by 1 if both the adjacent
bits are 1.

Swapping of the update information between the auxiliary
bit-vector and the intervals identified above is done using
the temporary bit-vector. During the online operation, it is
possible that the update information is stored in both the
Interval Table and the auxiliary bit-vector. This happens when
the minGlobalGap is less than minLocalGap, the number of
intervals in bit-vector is more than the number of intervals
in a window in the Interval Table, and the bit-vector lies in
the minGlobalGap. This occurs very rarely and is handled by
filtering the cache lines again through the bit-vector at the time
of dumping. The hardware that filters the incoming requests
is reused here.

VI. EXPERIMENTS

A. Setup

We used a simulation infrastructure to evaluate the impact
of our Update Trackers, and synthesized our proposed designs
with a 90-nm ASIC library. Our simulation setup consists of
three components as follows.

1) A pintool [39] to generate a trace of all the memory
addresses accessed by the processor during the execution
of a benchmark.

2) An in-house, functional, cache simulator which
instruments the cache using the traces generated in the
previous step.

3) A validation engine, which uses the proposed algorithms
to maintain the information on the recently updated
cache lines.

The cache simulator and the validation engine were pro-
grammed in C++ on Linux platform. We used a trace-driven
functional cache simulator for faster simulations. To determine
the size of the Update Buffer in the case of a single shared
cache, we used Simplescalar as this required cycle-accurate
simulations. However, since Simplescalar does not support
multiple threads, we used an in-house, cycle-accurate
simulator [40] to evaluate the size of the Update Buffer
in multicore systems with the distributed caches. We also
maintained a bit-vector to track the updated cache lines during
simulations, which is necessary to compute the overheads
of the proposed methods. The final state of the bit-vector is
used as input to the Offline algorithm (Algorithm 1).

All simulations discussed in Sections VI-B–VI-F used
L1 caches with 32-kB size, two-way associativity, 32 B/line;
shared L2 caches with 4-MB size, eight-way associativity,
128 B/line. For experiments with distributed caches, we used
16 distributed L2 caches, each of 256 kB size, four-way
associative, and 64 B/line (total 4 MB). We used an aux-
iliary bit-vector of size 256 bits for evaluating the hybrid
scheme.

We discarded the first 100 million memory references when
collecting the memory traces using pintool. This helped us
capture a region of execution where the threads of some
applications under consideration updated cache lines of a
select few caches, while in other applications, the cache
lines of all the caches were updated. This gave us a mix of
applications that is representative of possible load conditions
under which the Update Tracker is expected to perform.
We simulated five million memory accesses between consecu-
tive cache dumps. For cycle-accurate simulations, we allowed
the caches to warm up for a maximum of two million cycles.

We used CACTI 6.5 to estimate the cache areas. The
designs were implemented in VHSIC Hardware Description
Language (VHDL) and synthesized using Cadence Encounter
RTL Compiler.

B. Overhead of Various Schemes—Shared Cache

We varied the size of the Interval Table from 8 to 32 for
eight different benchmarks (6 and 2 from Mediabench-I & II,
respectively). The actual value of k need not be limited to pow-
ers of two. In general, smaller values of k are the more impor-
tant values to explore, because the smaller Interval Tables
lead to area-efficient designs compared with a bit-vector.
For our selected L2 cache configuration, the upper limit
on k is given by (32 768/2log2(32768)) ≈ 1092 intervals,
where 32 768 is the total number of cache lines.

Fig. 10 shows the dumping overhead for various sizes
of Interval Table. We observe that, as the size increases
from 8 to 32, the respective overheads of all schemes
(Offline, Greedy, and Hybrid algorithms) decreases signifi-
cantly for all benchmarks. This is expected because using
higher number of intervals reduces the number of times the
adjacent intervals are merged. Therefore, fewer nonupdated
cache lines are captured in the Interval Table.
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Fig. 10. Overhead of Offline, Greedy, and Hybrid algorithms for different values of k (shared cache).

We also observe that the overhead of the Greedy algorithm
closely follows that of the Offline algorithm across all bench-
marks for all the values of k. The maximum difference in the
overheads of the Offline and Greedy algorithms is 2.65% in
the case of adpcm_dec for k = 8. For k = 32, the maximum
difference is just 1.7%, and the average is 0.38%.

The Hybrid algorithm offers the best results in case of
shared caches for k = 8 and k = 16. In case of k = 32, the
performance of the Greedy and Hybrid algorithms are similar.
We observe that the dumping overhead of the Hybrid algorithm
is significantly smaller than that of the Offline (and Greedy)
algorithm for k = 8 and k = 16 for some applications like
g721_decode, gsm_enc, and gsm_dec. The overhead of the
Hybrid algorithm is less than that of the Offline algorithm
because the Hybrid algorithm merges adjacent intervals less
frequently. The average overhead of the Hybrid algorithm is
22% and 13.7% for k = 8 and k = 16, which is relatively
high. Hence, we fixed the amount of storage required by
each method to the amount of storage required by an Interval
Table of size k = 32 for the remaining experiments and for
our hardware implementation. Table I shows the number of
cache lines transferred off-chip for all benchmarks under each
scheme.

Since we need 15 bits to address 32 768 cache lines, each
interval requires 2 × 15 = 30 bits. Therefore, the total
storage space used for evaluating the rest of the experiments
is 30 × 32 = 960 bits, unless explicitly mentioned.

Fig. 11 shows the overhead for t = 2, 4, 8, 16, 32, and 64
(refer Section III-B). We observe that, as t increases
from 2 to 16, the overhead increases too. This is expected,
as for larger values of t , a larger number of cache lines are
tracked together.

C. Overhead of Various Schemes—Distributed Caches

We simulated a multiprogrammed environment where
the 16 cores of a system are shared by two multithreaded

Fig. 11. Overhead of t-lines/bit bit-vector—shared cache.

applications. We evaluated the dumping overhead of various
algorithms for horizontal and vertical sharing schemes
for c = 1, 2, 4, 8, and 16. We randomly scheduled the
application threads onto the cores of the system. We repeated
the simulation ten times, and have reported the average,
maximum, and minimum values observed for the application
pair here. We used five different pairs of benchmarks,
each chosen from Parsec and Splash suites, to evaluate our
proposal. We have not followed any specific policy to pair
the applications, but just ensured that the application pairs
captured varied activity between them. Therefore, we now
have application pairs (dedup + vips and barnes + ocean)
where all threads of both the applications update large
sections of their respective caches (high-activity by all
threads), an application pair (streamcluster + x264) where
very few threads in both the applications update small regions
of the cache (low-activity by all threads), an application pair
(radix + lu) where some threads update large regions (high-
activity by moderate number of threads), and an application
pair (facesim + fmm) where some threads are updating small
regions of cache (low-activity by moderate number of threads).
This set of application pairs serves as a useful benchmark
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TABLE I

NUMBER OF CACHE LINES TRANSFERRED OFF-CHIP FOR SHARED AND DISTRIBUTED CACHES, RESPECTIVELY

Fig. 12. Overhead of a simple bit-vector during horizontal sharing (distributed
cache).

to study the performance of the algorithms under various
scenarios that arise during postsilicon validation of the chip.

1) Horizontal Sharing: Fig. 12 shows the dumping over-
head of a simple bit-vector that is shared horizontally across
c caches. We observe that as the number of caches sharing
the bit-vector increases from c = 1 to 16, the dumping
overhead increases. This is due to an increase in the number
of nonupdated cache lines present across different caches that
are dumped due to sharing of the bit-vector. The dumping
overhead is bad for low-activity application pairs for higher
values of c even in case of a bit-vector. Moreover, for all
the application pairs, the dumping overhead under horizontal
sharing scheme is very high for c ≥ 4. We do not show the
dumping overhead of Interval Table because it is similar to
that of bit-vector (mean difference of less than 5%).

We also observe that the dumping overheads under the
horizontal sharing scheme is sensitive to the scheduling of the
application threads on the cores. A maximum variation of 50%
between two runs is observed in case of streamcluster + x264
for c = 8. We do not see any variations across multiple runs
for c = 16 because the update information of all caches is
tracked by a single Update Tracker.

2) Vertical Sharing: Fig. 13 shows the dumping overhead
of a bit-vector (conceptually similar to a t-bit vector in
case of shared cache with t = c), Offline, Greedy, and
Hybrid algorithms when shared vertically across c caches. The
overhead of the t-bit vector is the minimum overhead incurred
due to vertical sharing of the Update Tracker. This overhead
is due to merging the adjacent cache lines.

We observe that as c increases from 1 to 16, the dumping
overhead of the t-bit vector increases too. This is expected
because the number of adjacent lines that are merged also
increases from 1 to 16, resulting in higher number of nonup-
dated lines that are adjacent to an updated cache line being
dumped. We also observe that the mean dumping overhead of
this scheme is relatively small (<2%), for all the values of c,
in contrast to the horizontal sharing scheme. We also observe
that the variation in dumping overheads between successive
runs is significantly lower compared with that of the horizontal
sharing scheme. The maximum variation of 2.43% is seen in
case of the Hybrid algorithm in radix + lu. This shows that the
vertical sharing scheme is robust in the presence of scheduling
of the application threads.

We also notice that the performance of the Greedy and
Hybrid algorithms are comparable with the performance of the
Offline algorithm as c increases from 1 to 16. The maximum
difference in the average dumping overheads of the Offline and
the Greedy algorithm is just 1.44% and is seen in the case of
radix + lu for c = 4. Similarly, the maximum difference in
average overheads of the Offline and the Hybrid algorithm
is 1.28%, again in the case of radix + lu for c = 4. The addi-
tional complexity in maintaining the auxiliary bit-vector did
not translate to significant savings in the dumping overhead.
Table I shows the number of cache lines transferred off-chip
for all benchmark-pairs for each algorithm.

Another interesting observation is that the average dumping
overhead of the Interval Table-based algorithms (Offline,
Greedy, and Hybrid) tends to decrease as we go from
c = 1 to 8, and then marginally increases when we go from
c = 8 to 16 in some cases. For example, in case of radix + lu,
the dumping overhead decreases from 5.7% to 2.69%.
In case of streamcluster + x264 and facesim + fmm, the
dumping overhead increases from 3.1% to 3.2%, and from
15.4% to 15.7%, respectively, when c increases from 8 to 16.
This is because, as c increases, there are two opposing forces
that comes into play: 1) the savings in dumping overhead
due to increased number of intervals per Interval Table and
2) the increase in overhead due to higher number of cache
lines tracked per line number. The final dumping overhead
is influenced by the relative weights of the two for a given
configuration.

Based on these observations, we conclude that vertical
sharing is an appropriate strategy for tracking the updates
to cache lines in distributed caches. We prefer higher values
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Fig. 13. Overhead of Offline, Greedy, and Hybrid algorithms for different values of k (distributed cache).

Fig. 14. Slowdown versus buffer size (shared cache).

of c, because the control logic that maintains the Interval
Table would then have to be replicated fewer number of times,
thereby leading to greater reduction in area overhead.

D. Update Buffer Size Versus Processor
Stalls—Shared Cache

Fig. 14 shows the slowdown experienced by the processor as
a result of the stalls induced when the hardware corresponding
to the Greedy algorithm is busy when a new cache line update
arrives. Since the computational complexity associated with
a t-lines/bit bit-vector is limited, the slowdown experienced
by the processor is negligible and, hence, is not considered
here. We considered Update Buffer sizes of 2, 4, and 8.
As mentioned earlier (in Section V-D), the Update Buffer
size is an independent parameter that can be chosen by the
designer. We expect this buffer to be small, in keeping with

the area-efficiency goal of the design. We observe that for
all the benchmarks, as the buffer size increases from 2 to 8,
the slowdown decreases. This slowdown is negligible
(less than 1%) in 6 out of 8 benchmarks and is maximum
(7.66%) in the case of djpeg for buffer size of 2. The maximum
slowdown is only 5.4% for buffer of size 4. Based on these
observations, we decided to use an Update Buffer of size 4 for
the hardware implementation. We do not show the slowdown
experienced by the processor due to stalls induced by the
hardware corresponding to the Hybrid algorithm (for k = 32)
because it is as high as 13×.

E. Update Buffer Size Versus Processor
Stalls—Distributed Caches

Fig. 15 shows the slowdown experienced by the application
pairs in case of distributed caches due to the stalls induced
when a new update request finds the Interval Table
corresponding to the Greedy algorithm busy. We considered
Update Buffer sizes of 2, 4, and 8. We modeled a 5 × 5 NoC,
with a hop-delay of three cycles. The caches and the Interval
Table are connected to different routers. Therefore, a network
delay of 6 and 12 cycles is encountered for c = 2 and
c = 4, respectively. The delays obtained after synthesis of the
hardware is used in this experiment.

We notice that the slowdown experienced in the case of
c = 2 is lesser than that of c = 4 for all sizes of update
buffers. This is because of two reasons: 1) longer hardware
and network delays involved and 2) higher contention due
to sharing of the Interval Tables. We also observe that as
the Update Buffer size increases from 2 to 8, the mean
slowdown experienced decreases from 10.3% to 0.2%, and
35.1% to 8.8% in the case of c = 2 and c = 4, respectively.
Based on these observations, we chose c = 2 with an Update
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Fig. 15. Slowdown versus buffer size (distributed cache).

TABLE II

AREA OVERHEAD—SHARED CACHE

Buffer of size 4 as the configuration for implementing the
hardware.

The mean slowdown experienced by the processor due to
the hardware implementation of the Hybrid algorithm for
c = 2 and 4 (or k = 4 and 8, respectively) is as high as
53.9% and 34.5% in case of distributed caches for Update
Buffer of size 4 and 8, respectively.

F. Area Overhead

1) Shared Cache: We synthesized the designs correspond-
ing to the conventional bit-vector, t-lines/bit bit-vector for
t = 2, 4, 8, and 16 and the Greedy algorithm with k = 32 (for
the shared cache configuration) as discussed in Section V using
90-nm technology standard cell library. The processor stalls
computed earlier used the delays of these designs. Table II
shows the results as a percentage of the overall cache area for
the shared cache.

The highlight of this experiment is that the Greedy method,
in spite of the additional computational complexity, has an area
overhead of only 0.525% as compared with 11.76% of a con-
ventional 1-line/bit bit-vector. The savings due to reduction in
storage space is more than the increase in combinational logic
due to added processing complexity of the Greedy algorithm.
As expected, the area of t-lines/bit bit-vector proportionally
decreases as we increase the value of t .

2) Distributed Caches: We synthesized a bit-vector of
4096 bits. This bit-vector is shared by two caches in our
proposed architecture. The area occupied by a bit-vector in

this case is 0.74%. Therefore, the overall area overhead of
maintaining eight such bit-vectors is 5.92%.

We synthesized the Greedy algorithm with k = 4 (corre-
sponds to c = 2), as the above experiments indicated it to be
the optimal point. The area occupied by the Greedy algorithm
(including an Update Buffer of size 4) is 0.0176 mm2 which
is 0.09% of a distributed cache. For c = 2, we have eight
such Interval Tables, and hence, the overall area overhead is
0.09 × 8 = 0.72%.

Similarly, we also synthesized the Hybrid algorithm with
auxiliary bit-vector of size (b_si ze = 256/8 = 32) bits for
the same configuration. The area occupied by the Hybrid
algorithm per Interval Table is 0.0253 mm2 which is 0.13%
of the overall cache area. We duplicate this 8 times for c = 2,
and hence the area overhead is 1.034% of the overall cache
area.

G. Power Overhead

The Greedy algorithm consumes 17.18 and 7.94 mW per
cycle of operation in the case of shared and distributed caches,
respectively, which is 0.5% and 1.95% of the total read
dynamic power per read port of the corresponding caches for
a toggle rate of 0.02 toggles per ns, and 0.5 probability of a
signal being high.

H. Summary

The results indicate that the Greedy algorithm strikes a good
balance between the dumping and area overhead well, in case
of both shared and distributed caches for k = 32. In case of
distributed caches, even though the vertical sharing scheme
allows a fully centralized scheme that does not require any
duplication of the Interval Table, the contention at the Interval
Table and the network delays make sharing of the Interval
Table difficult beyond two caches (c = 2).

The dumping overhead of the Hybrid algorithm is mar-
ginally smaller than that of the Greedy algorithm in case of
both shared and distributed caches, but the area overhead is
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higher than that of the Greedy algorithm for Update Buffer of
size 4. However, the slowdown experienced by the applications
is very high for Update Buffer of size 4 and 8.

Based on these observations, we recommend the Greedy
algorithm with k = 32, and an Update Buffer of four entries
for shared as well as distributed caches, with two caches
sharing an Interval Table in case of distributed caches.

VII. CONCLUSION

In this paper, we proposed two space sensitive techniques,
bit-vector and Interval Table, to keep track of the cache
lines that are updated after the previous transfer of L2 cache
contents off-chip, during postsilicon validation. One major
feature of the proposed DFD hardware, called Update Tracker,
is that the designer can tune them to match his area budget.
Our proposed methods use a small fraction of the overall
cache area with an average dumping overhead of 11.5% as
compared with over 10% area overhead of a simple bit-vector
for a shared cache. We proposed a scheme to efficiently share
the Update Tracker across multiple caches in order to further
reduce the area overhead of storing the update information in
distributed caches. We restrict the area overhead of the Update
Trackers to less than 1% of the cache area in the case of
distributed caches too with an average dumping overhead of
less than 2%.
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